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ABSTRACT

Automatic prediction of salient regions in images is a well de-
veloped topic in the field of computer vision. Yet, virtual re-
ality omnidirectional visual content brings new challenges to
this topic, due to a different representation of visual informa-
tion and additional degrees of freedom available to viewers.
Having a model for visual attention is important to continue
research in this direction. In this paper we develop such a
model for head direction trajectories. The method consists
of three basic steps: First, a computed head angular speed is
used to exclude the parts of a trajectory where motion is too
fast to fixate viewer’s attention. Second, fixation locations of
different subjects are fused together, optionally preceded by a
re-sampling step to conform to the equal distribution of points
on a sphere. Finally, a Gaussian based filtering is performed
to produce continuous fixation maps. The developed model
can be used to obtain ground truth experimental data when
eye tracking is not available.

Index Terms— visual attention, fixation maps, omnidi-
rectional visual content, virtual reality, 360-degree images
and video

1. INTRODUCTION

Omnidirectional visual content or cinematic virtual reality is a
technology which provides immersive experience to viewers
by displaying still images or video with a full spherical cover-
age of the field of view. Content of such type is acquired with
special devices performing a particular work-flow. Certain
omnidirectional acquisition systems, e.g. multi-lens and cata-
dioptric cameras, produce ready-to-display images or video,
whilst others, e.g. multi-camera systems, require an addi-
tional step of off-line stitching. The latter combines signals
from several image sensors into a panoramic planar represen-
tation, such as an equirectangular or cubic projection. Om-
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nidirectional images and video are typically consumed using
a virtual reality (VR) head-mounted display (HMD). Visual
content represented in one of the projections is rendered on
a viewport of an HMD where data from acceleration and ori-
entation sensors is used to define which part of the content
is to be displayed. This data, if stored, can then be used for
analysis of human visual attention in VR imaging.

Computational prediction methods for human visual at-
tention have been studied for decades in conventional flat im-
ages. The first theoretical computational model of human
visual attention was introduced by Koch and Ullman in [1],
and the first practical implementation was presented by Clark
and Ferrier in [2]. Detailed descriptions and classifications of
state-of-the-art visual attention models can be found in [3–5].
There exist two main approaches for modeling human visual
attention, namely, bottom-up and top-down. The former starts
by computing different features in images, typically intensity,
color and orientation characteristics. These features are then
fused together to produce a saliency map. The latter approach
takes into account certain high level information about the
scene which is used, for example, by incorporating face, ob-
ject, and text detection. Top-down methods are often com-
bined with bottom-up models.

Visual attention for spherical images has been studied
in [6, 7]. Bogdanova et al. propose bottom-up methods to
obtain saliency maps from omnidirectional images for static
and dynamic cases. Features are computed and fused in a
spherical domain. However, these studies do not provide any
detailed descriptions about interpretation of experimental vi-
sual attention data for omnidirectional images.

Experimental visual attention data, unlike prediction
models, does not provide saliency maps. After initial process-
ing, one can obtain fixation locations, i.e. points in the image
where observers fixated their attention. This data can be fur-
ther processed to produce continuous fixation maps. The first
step is to analyze eye movements using one of the methods
based on velocity and distance criteria. Methods to obtain
fixation locations are described in [8–10]. Typically the next
step is to produce a continuous fixation map by applying to



fixation locations a Gaussian filter with a certain standard de-
viation corresponding to the high acuity vision area [11].

In VR environment, in addition to eye movements, ob-
server’s head direction must be taken into consideration. One
can find studies on eye-head coordination in humans during
different tasks in [12, 13]. The main findings in these stud-
ies support a hypothesis that the human eye movement range
is restricted not physiologically but neurologically and this
range is narrower when a subject’s head is not fixed. Nonethe-
less, there is no commonly adopted model for interpretation
of eye-head position data in visual attention fixation maps for
omnidirectional visual content.

In this paper, we propose a simple approach to treat raw
experimental head direction trajectories in virtual reality con-
tent. The proposed approach implies three basic steps: First,
a computed head angular speed is used to exclude the parts of
a trajectory where motion is too fast to fixate viewer’s atten-
tion. Second, fixations of different subjects are fused together.
If needed, this step is preceded by re-sampling track coordi-
nates in order to conform to the equal distribution of points
on a sphere. Finally, a Gaussian based filtering is performed
to produce continuous fixation maps.

2. EXPERIMENTAL DATA

The data used in the present work has been obtained during
a subjective quality evaluation experiment [14] on omnidirec-
tional images. For the current study we selected only the head
direction tracks recorded from unimpaired stimuli.

2.1. Experiment

Figure 1 depicts the contents used in the experiment. Ob-
servers were asked to assess visual quality of four differ-
ent omnidirectional images represented in the equirectangular
projection and compressed with different quality parameters
and different codecs. In particular, viewers were instructed
to search for compression artifacts. Overall, 40 subjects par-
ticipated in the experiment, 25 male and 15 female subjects,
between 18 and 32 years old with the average and the median
of 24.9 and 24.8, respectively. All participants were tested
for correct color vision and visual acuity using Ishihara and
Snellen charts respectively.

The experiment was conducted using the testbed for sub-
jective evaluation of omnidirectional visual content proposed
in [15]. This software has been developed for iOS and is pub-
licly available for download1. During the experiment, sub-
jects were wearing an HMD composed of a VR head-mount
with buttons2 and a mobile device installed inside as a screen.
iPhone 6 was used to display the images. The overall resolu-
tion of the phone’s screen is 1334 × 750 pixels, which gives
667× 750 pixels per eye. The vertical field of view provided

1https://github.com/mmspg/testbed360
2https://mergevr.com

(a) Harbor (b) KiteFlite

(c) PoleVault (d) SkateboardTrick

Fig. 1: Omnidirectional images used in the experiment

by the hardware-software solution is 90 degrees, which corre-
sponds to 8.33 pixels per degree. All the subjects were sitting
on a rotatable chair during the experiment.

2.2. Head direction tracks

Raw data of a head direction trajectory contains an array of
yaw and pitch coordinates along with their time-stamps. The
tracks were recorded for each assessed stimuli, however only
the trajectories obtained from unimpaired images have been
selected for the current study. Each presented content has
head direction tracks from 40 subjects. Two seconds of data
in the beginning of each track were dropped. This has been
performed in order to compensate the initial head position im-
pact on calculating user gaze fixations.

3. FIXATION LOCATIONS

An angular velocity of observer’s head evidently impacts his
ability to fixate attention. Although the fact that human visual
perception depends on motion is well known, the impact of
the ocular-vestibular reflex can decrease its effect. Nonethe-
less, here we assume there exits a threshold head angular ve-
locity beyond which users are not able to focus their attention
on any object. The value of 15 degrees per second has been
chosen as the upper boundary for this paper. However, it is a
parameter and more experimental data is needed to determine
the optimal threshold angular velocity.

3.1. Head angular velocity

Observer head position is a vector [θ φ], where θ and φ repre-
sent yaw and pitch respectively. Values of yaw and pitch in
degrees over time are presented in Figure 2 (top and middle).
In order to obtain head angular velocity we compute a first
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Fig. 2: Yaw (top) and pitch (middle) of viewer’s head direc-
tion trajectory. Head angular velocity (bottom), red horizontal
line depicts the threshold

order derivative of the following vector:

Vang =

[
Vθ

Vφ

]
=

[
dθ
dt
dφ
dt

]
Considering only the velocity magnitude, the norm of the vec-
tor is taken as:

‖Vang‖ =

√(
dθ

dt

)2

+

(
dφ

dt

)2

The yaw and pitch data is represented in digital format.
Thus we compute a derivative using a standard method of nu-
merical differentiation. For each signal sample the difference
with its next value is obtained and divided by the sampling
period:

s′n =
sn − sn−1
Tsampl

Then a 2nd order Butterworth low-pass filter with cutoff fre-
quency of fc = 2 Hz is applied separately to Vθ and Vφ in or-
der to remove digital differentiation noise. We use a forward-
backward numerical implementation of the filter to avoid a
group delay in the signal [16]. The resulting head angular ve-
locity over time is depicted in Figure 2 (bottom). All the head
direction trajectory data with speed above the threshold (red
line in Figure 2) is discarded from further analysis.

Figure 3 (a) shows a typical head direction trajectory. The
color of the trajectory reflects the head angular velocity. Only
the regions colored with green are considered as fixations of
attention.
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Fig. 3: A typical head motion trajectory colored with its an-
gular velocity in degrees per second (top), and fixation loca-
tions obtained from it (bottom).

3.2. Equal distribution of points on sphere

There exist cases when after the head angular velocity restric-
tions, a resulting track requires an additional step of process-
ing before becoming a set of viewers’ fixations. Depending
on the device used to obtain the raw data, the discrete domain
of coordinates can distribute points in a non-equidistant man-
ner on the surface of a sphere. If so, a re-sampling needs to
be performed on the data in the following way.

For each latitude level one re-samples the longitude signal
s(n) defined on n ∈ N to the signal g(m) defined onm ∈M ,
where M = N cos(φ) and φ ∈ (−π/2, π/2).

Resulting head fixation locations for a typical trajectory
of one observation are depicted in Figure 3 (b).

3.3. Fusion

Fixation locations obtained from different subjects must be
fused together in oder to derive statistical information. One
can propose several ways to perform a fusion:

1. Add all the points from each subject as unity values to
a resulting fixation set.
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(a) Gaussian kernel
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(b) Gaussian kernel in viewport domain
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(c) Modified Gaussian kernel

Fig. 4: (a) Gaussian filter applied in equirectangular domain. (b) Gaussian in viewport domain. (c) Modified Gaussian proposed
in the paper. Filters are applied to equirectangular image containing three unity points at (-90,-72), (0,0), and (90,45) degrees.

2. Sum-up all the points in cells with specified size pro-
ducing a weighted set.

3. Only add points if a certain percent of subjects fixated
in this particular location or a predefined area around it.

We use the second method to produce fixation locations
further in the present work because of its moderate computa-
tional complexity.

4. CONTINUOUS FIXATION MAP

Fixation location data does not typically allow to properly de-
pict the regions of visual attention. Because of its discrete
nature, this information is not consistent even among human
subjects. Indeed, very rarely a person will fixate their atten-
tion in the same exact point as another. Thus there is a need
to introduce a statistical areas of fixations. For conventional
images typically a Gaussian filter is applied to model a human
acuity vision region of 1-2 degrees. In case of head direction
fixations we assume that the region of possible attention is 30
degrees. Same as in Section 3 this value is a parameter and
may be changed after further experimentations.

4.1. Gaussian filter in viewport domain

Omnidirectional content is consumed using an HMD. An ob-
server sees a part of panoramic picture rendered in the view-
port. Therefore, to highlight viewing area angle we need to
apply Gaussian filter in the viewport domain.

G(u, v) =
1

2πσ2
e−

u2+v2

2σ2

where u and v are viewport coordinates. However, one nor-
mally works with an equirectangular or other panoramic rep-
resentations of omnidirectional image or video. Thus, in the
equirectangular domain, the kernel becomes:

Geqr(θ, φ) =
1

2πσ2
e−

u2(θ,φ)+v2(θ,φ)

2σ2

Functions u(θ, φ) and v(θ, φ) are calculated as follows:[
u
v

]
=

[
0 k

x 0
0 0 m

x

]
Rβ
Z
Rα
Y

xy
z

∣∣∣∣∣∣
x>0

where k and m are the scaling coefficients for viewport coor-
dinates, Rβ

Z
and Rα

Y
are rotations for yaw and pitch respec-

tively, and vector [x y z] represents Cartesian coordinates of
a point on the image sphere:xy

z

 =

r sinφ cos θr sinφ sin θ
r cosφ


The result of applying kernelGeqr(θ, φ) to filter the image

directly in the equirectangular format is shown in Figure 4 (b).
Another approach to perform Gaussian smoothing in an

equirectangular picture is to apply the filter in the rendered
viewport and then project it back. However, the drawback of
this method is the interpolation noise added during the trans-
formations.

4.2. Modified Gaussian kernel in equirectangular domain

The method of filtering proposed in subsection 4.1 is compu-
tationally very heavy. To simplify the calculations we propose
a modified Gaussian kernel.

Gmod(x, y) =
1

2πσ2
y

e−
x2

2σx e
− y2

2σy

where
σx =

σy
cos(φ)

and σy is a constant value. In the denominator of normal-
ization coefficient we use σ2

y instead of σxσy to prevent the
change of the amplitude with x.

Figure 4 (c) shows an equirectangular image filtered us-
ing kernel Gmod(x, y). As can be seen by comparing Fig-
ures 4 (b) and (c), Gaussian filter in the viewport domain and
Modified Gaussian kernel give visually similar results.
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Fig. 5: Fixation locations (top row) and continuous fixation maps (bottom row) computed for the contents.

4.3. Generic statistical kernel in equirectangular domain

Faced with a lack of statistical data on eye-head relative
movements, we assumed a Gaussian distribution of eye fix-
ations around the center of a viewport. However, if we have
such statistics it can be applied to form a kernel in the view-
port domain:

K ≡ f(u, v)
where f(u, v) is a probability density function on (u, v) ∈
R2, which can be estimated from statistical frequency distri-
bution of eye fixations in the viewport by applying a regres-
sion to its two-dimensional histogram mi,j with k2 the num-
ber of bins:

f(u, v)
∣∣∣u=(i−k/2)w
v=(j−k/2)w

∼=
mi,j∑

i,j∈N
mi,j

where i, j ∈ N are the indexes of each histogram bin, and
w ∈ R+ is the bin width. The histogram is calculated as:

mi,j =
∑

(i−1−k/2)w<up≤(i−k/2)w
(j−1−k/2)w<vp≤(j−k/2)w

X[up, vp]

∣∣∣∣∣∣∣i∈[1,k]
j∈[1,k]

where X[up, vp] is the relative frequency distribution of
fixation locations (up, vp) ∈ R2, which are determined as a
shift from the viewport center for p ∈ [1,M ], p ∈ Z andM is
finite. The number of bins must be chosen according to one of
the criteria described in [17,18] depending on the distribution
law.

Moving to the equirectangular domain can be performed
as in Subsection 4.1:

Keqr(θ, φ) = K(u(θ, φ), v(θ, φ))

A filter with the kernel Keqr(θ, φ) can be applied to fixa-
tion locations directly in the equirectangular domain.

5. RESULTS AND DISCUSSION

We apply the proposed approach to compute fixation loca-
tions and continuous fixation maps as interpretation of the
raw experimental data described in Section 2. A head angu-
lar velocity threshold equal to 15 degrees per second is used.
The Gaussian filtering is performed using σ = 15 in the base
function. In order to fuse individual fixation locations, the
points are summed up in cells of 1×1 degree. The modified
Gaussian kernel Gmod(x, y) is used to filter the data in the
equirectangular domain. Figure 5 shows the fixation locations
and the continuous fixation maps for four contents used in the
experiment.

In the present work we apply Gaussian filtering in
equirectangular projection. However, the proposed approach
can be easily generalized to cope with other panoramic rep-
resentations of omnidirectional visual content, such as cubic
mapping and other convex polyhedron projections. Only the
calculation of u = u(x, y) and v = v(x, y) must be changed
to comply with a new projection.

In more theoretically oriented work [6,7], authors develop
a mathematical model for Gaussian filtering in the geome-
try of the two-dimensional surface of a sphere. We consider
these to be unnecessary complications, due to the fact that an
observer sees only a rendered rectilinear viewport of an om-
nidirectional content and not the entire image. Thus applying
vision range models in the viewport geometry appears to re-
flect better user experience and perception.

Head motion information is typically available without
any additional cost during rendering of omnidirectional visual
content in VR environments. For instance, during broadcast-



ing, a content provider can obtain anonymized head direction
trajectory statistics of consumers. This information can be
further used to adapt compression parameters when adaptive
coding is applied. An example of such an adaptive coding
method has been proposed in [19] for conventional images.

6. CONCLUSION

In this paper we have described a simple model to obtain fixa-
tion locations and continuous fixation maps from head direc-
tion trajectories for virtual reality content. The model incor-
porates analysis of a head angular velocity and provides the
idea of a generic solution to produce continuous fixation maps
for omnidirectional images represented in panoramic projec-
tions. Those fixation maps obtained from head position data
can be a suitable first order approximation when eye tracking
data is not available.

Furthermore, we applied the above approach to the raw
experimental data and obtained the visual attention results for
four omnidirectional images as a proof of concept.

Future work will focus on quantification of the approxi-
mation error when compared to true gaze detectors data. It
may concern also refining the parameters of a threshold head
angular velocity and statistical distribution of attention in a
viewport by conducting additional subjective experiments.
More specifically, generic statistical kernel for data smooth-
ing can be estimated practically from experimental data.
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