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ABSTRACT

In recent years, the research community has witnessed a
growing interest in immersive representations of the real
world, such as light field. However, due to the increased vol-
ume of data generated in the acquisition, new and efficient
compression algorithms are needed to store and deliver light
field contents. A Grand Challenge on light field image coding
was organised during ICIP 2017 to collect and evaluate new
compression algorithms for lenslet-based light field images.
This paper reports the results of the objective and subjective
evaluation campaign conducted to assess the responses to the
grand challenge. An adjectival categorical rating methodol-
ogy with 7-point grading scale was selected to perform sub-
jective assessments, whereas the objective assessment was
conducted using popular image quality metrics. Results show
that two proposals have comparable performance and outper-
form the others across all bitrates.

Index Terms— light field, subjective evaluation, objec-
tive evaluation, image coding, image compression.

1. INTRODUCTION

Light Field (LF) photography has revolutionized the way
scenes are captured and visualized, by storing the direction
of light rays along with their intensity. Several methods to ac-
quire LF contents have been proposed in the literature, most
notably through the use of multi-camera arrays [1] and hand-
held plenoptic cameras [2]. As more data is captured when
compared to traditional photography, efficient compression
algorithms are needed for storage and transmission of LF con-
tents. The ICIP 2017 Grand Challenge on LF image coding,
in association with JPEG Pleno Call for Proposals, was issued
in January 2017 to collect and evaluate new compression so-
lutions for LF images. The grand challenge was divided into
two main tasks, devoted on compressing LF images acquired

This work has been conducted in the framework of the Swiss National
Foundation for Scientific Research (FN 200021 159575) project Light field
Image and Video coding and Evaluation (LIVE).

with two different technologies, namely a plenoptic (lenslet)
device and a high-density UHD camera array setup. Due to
space constraints, this paper will only focus on the former.

For the lenslet-based challenge, proponents were asked to
compress LF images acquired with a Lytro Illum plenoptic
camera1, which uses an array of micro-lenses in front of the
main sensor. The data obtained from the sensor, usually re-
ferred to as lenslet image, needs to be processed to be properly
rendered, via transformation to an explicit 4D LF structure
of perspective views [3]. For the challenge, the proponents
could follow two workflows: one focused on compressing the
lenslet image (Figure 1), and the other focused on compress-
ing the stack of perspective views obtained after transforma-
tion to 4D LF structure (Figure 2). Additionally, proponents
were asked to provide a renderer, either proprietary or belong-
ing to a third party, that could make the decoded bitstream
ready for visualization, supporting their adopted representa-
tion model. This step was implemented to collect and assess
different representation models for LF rendering.

Overall, a total of five submissions were received as re-
sponses for the ICIP 2017 Grand Challenge. Two of the pro-
posals followed the workflow described in Figure 1, whereas
three adopted the workflow described in Figure 2. Addition-
ally, two state-of-the-art video codecs were used as anchors
to compare and validate the results. Authors of the first algo-
rithm P01 exploit the redundacies in the 4D LF structure of
perspective views by estimating a part of them as a weighted
sum of other perspective views, adopting a linear approxima-
tion prior [4]. They use HEVC to encode and transmit part of
the views, while non-encoded views are estimated by solving
an optimization problem. For algorithm P02, authors arrange
the perspective views into a multiview structure that can be
exploited by the corresponding extension of HEVC, namely
MV-HEVC [5]. They also propose a rate allocation scheme
to progressively assign the Quantization Parameters (QP) in
order to optimize the performance. Authors of P03 design a
lenslet-based compression scheme that uses depth, disparity
and sparse prediction information to reconstruct the final set

1https://www.lytro.com/
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Fig. 1: Encoding workflow for lenslet images.

Fig. 2: Encoding workflow for perspective views.

of views [6]. The bitrate allocation can be configured to im-
prove the reconstruction by encoding the lenslet image using
JPEG 2000, or to allow random access by encoding a subset
of views. Authors of P04 propose a novel representation of
the 4D LF as a multi-modal Gaussian Mixture Model, which
can be used to reconstruct the perspective views from the pa-
rameters of the model [7]. Their framework can also be em-
ployed to produce depth information and apply segmentation.
For algorithm P05, authors propose a lenslet-based encod-
ing scheme that uses a fully reversible transformation to 4D
LF to create sub-aperture views, which are then optimally re-
arranged and compressed using enhanced illumination com-
pensation in JEM software2. Adaptive filtering is then applied
to reconstruct the lenslet image [8].

2. VISUAL QUALITY ASSESSMENT

All the proposals were assessed through full reference ob-
jective metrics and subjective evaluations after the rendering
stage (point B in Figures 1 and 2). The reference BRef was
obtained by omitting the encoding and decoding stages in the
workflow (shown in green and blue, respectively). Codecs
were also evaluated at their maximum reconstruction power
BMax, obtained similarly by performing an as low as possi-
ble compression in the workflow. The evaluation was carried
out in three separate steps, to better assess the impact of the
compression and the rendering in the final result:

1. B against BRef : Evaluation of the combined impact
of encoder, decoder and renderer of the proposed al-
gorithm against the uncompressed rendered content, on
four fixed compression ratios.

2. B against BMax: Evaluation of the impact of encoder
and decoder of the proposed algorithm, using as ref-
erence the results of running the encoder at its maxi-
mum reconstruction quality BMax. This step was im-
plemented to isolate the impact of the proposed ren-
derer on the overall quality.

3. BMax against BRef : Evaluation of the proposed ren-
derer with respect to the reference renderer. This
step was implemented to assess the proposed rendering
model without the influence of compression artefacts.

2https://jvet.hhi.fraunhofer.de/

All three evaluation steps were implemented for the ob-
jective assessment, whereas for the subjective assessment the
second step was discarded, as changing the reference from
BRef to BMax in the tests would have biased the results.

2.1. Dataset and coding conditions

Five contents were selected from an LF image dataset to be
compressed for the Grand Challenge, namely I01 = Bikes, I02
= Danger de Mort, I03 = Stone Pillars Outside, I04 = Foun-
tain & Vincent 2 and I05 = Friends 1 [9]. The central view
of each content is depicted in Figure 3.

Demosaicing and devignetting was applied on the raw
camera data to create the 10-bit lenslet images (point A in
Figures 1 and 2). Each lenslet image was then processed us-
ing the LF MATLAB Toolbox v0.4 [10, 11] to create 15× 15
10-bit perspective views, which were also color and gamma
corrected. Both the lenslet image and the perspective views
were given as possible input for the Grand Challenge. The LF
MATLAB Toolbox was selected as reference renderer, and
the input perspective views constituted the reference BRef .
The performance of the proposed coding algorithms was eval-
uated on four fixed compression ratios, namely R1 = 0.75
bpp, R2 = 0.1 bpp, R3 = 0.02 bpp, and R4 = 0.005 bpp.
The ratios were computed with respect to the raw lenslet im-
age size (7728× 5368 pixels).

To assess the performance of the proposals, two anchors
were created using state-of-the-art video codecs, namely
HEVC Main10 and VP9. Following the workflow depicted
in Figure 2, both codecs perform the compression on the per-
spective views, which were previously rearranged according
to a serpentine order, converted to YCbCr format following
ITU-R Recommendation BT.709-6 [12], and downsampled
from 4:4:4 to 4:2:2, 10-bit depth, little endian format. For
the first anchor, the HEVC implementation x265 was used3,
while for the second anchor, the VP9 reference software was
used to compress the pseudo-temporal sequence4. Full de-
scription of the command line used to create the anchors can
be found in the JPEG Pleno Lenslet Dataset website5. The
anchors were not evaluated at their maximum reconstruction
power, as the reference renderer was used in the workflow
(BMax = BRef ). Moreover, due to the limitations of their
representation model, the authors of P04 chose not to sub-
mit any results for compression ratio R1. Hence, a total of
160 stimuli were used for the evaluation. A summary of the
proposals and the anchors can be found in Table 1.

2.2. Objective metrics

To evaluate the impact of the distorsions caused by the pro-
posed algorithms, PSNR and SSIM were selected from the

3https://www.videolan.org/developers/x265.html
4https://www.webmproject.org/vp9/
5http://grebjpeg.epfl.ch/jpeg pleno/index lenslet.html



Table 1: Summary of compression schemes.

Proponents Description

HEVC Anchor: Compression of perspective views using HEVC Main10 (x265 software implementation).
VP9 Anchor: Compression of perspective views using VP9 (reference software).
P01 Compression of perspective views using HEVC and linear approximation prior [4].
P02 Compression of perspective views using MV-HEVC [5].
P03 Compression of lenslet image using JPEG 2000 and depth, disparity and sparse prediction [6].
P04 Compression of perspective views modeled as Gaussian Mixture Model [7].
P05 Compression of lenslet image using optimal arrangement and enhanced illumination model [8].

(a) I01 (b) I02 (c) I03 (d) I04 (e) I05

Fig. 3: Central perspective view from each content used in the test.

literature to objectively assess the visual quality of the con-
tents. The metrics were applied separately to luminance chan-
nel Y of each perspective view (k, l), where k = 1, ...,K,
l = 1, ..., L and K = L = 15 represent the total number of
perspective views, as generated from the toolbox.

PSNR was computed for chrominance channels U, V of
perspective views (k, l), and a weighted average was calcu-
lated assigning factor 6 to channel Y , and factor 1 to U and
V [13]. The average PSNR value for Y channel was then
computed across the viewpoint images:

̂PSNRY =
1

(K − 2)(L− 2)

K−1∑
k=2

L−1∑
l=2

PSNRY (k, l), (1)

̂PSNRY UV and ̂SSIMY were analogously computed
following Equation 1.

2.3. Subjective Methodology

Following the ITU-R Recommendation BT.500-13 [14], a
comparison-based adjectival categorical judgement method-
ology with a 7-point grading scale was selected to perform the
subjective visual quality assessment, from -3 (much worse) to
+3 (much better), with 0 indicating no preference.

A passive assessment was considered in order to ensure
the same experience for all participants [15]. To avoid nega-
tive bias in the subjects, only a subset of 97 out of 225 per-
spective views was presented in the animation, as suggested
in [16], since the rest of the views already presents high vi-
sual distorsion before compression that can negatively affect
the results. As recommended in the aforementioned study,
participants were shown the LF contents as pre-recorded an-
imations navigating between the perspective views in a ser-
pentine order, to mimic the parallax effect. The views were

displayed at a rate of 10 frames per second (fps), to ensure a
smooth transition. The total length of the animation was 9.7
seconds. Each stimulus was displayed alongside the uncom-
pressed reference in a side-by-side arrangement. The posi-
tion of the reference was fixed for the duration of the test, and
participants were informed beforehand on which side of the
screen the reference would be displayed.

Participants were asked to rate the quality of the test stim-
uli when compared to the uncompressed reference. A training
session was organized before the experiment to familiarize
participants with artefacts and distorsions in the test images.
Four training samples, created by compressing one additional
content from the dataset on various bitrates, were manually
selected by expert viewers. The experiment was split in four
sessions. In each session, the stimuli were shown along with
the uncompressed reference, corresponding to approximately
8 minutes per session. The display order of the stimuli was
randomized, and the same content was never displayed twice
in a row. Each subject took part in all sessions, hence eval-
uating all 160 stimuli. A break of ten minutes was enforced
between sessions.

The test was conducted in a laboratory for subjective
video quality assessment, which was set up according to ITU-
R Recommendation BT.500-13 [14]. A professional Eizo
ColorEdge CG318-4K 31.1-inch monitor with 10-bit depth
and native resolution of 4096 × 2160 pixels was used for the
tests. The monitor settings were adjusted according to the
following profile: sRGB Gamut, D65 white point, 120 cd/m2

brightness, and minimum black level of 0.2 cd/m2. The con-
trolled lighting system in the room consisted of adjustable
neon lamps with 6500 K color temperature, while the color
of the background walls was mid grey. The illumination level
measured on the screens was 15 lux. The distance of the sub-
jects from the monitor was approximately equal to 7 times the



height of the displayed content, conforming to requirements
in ITU-R Recommendation BT.2022 [17]. Subjects were al-
lowed to move further or get closer to the screen.

A total of 28 subjects (19 males and 9 females) partici-
pated in the test, for a total of 28 scores per stimulus. Subjects
were between 18 and 35, with a mean age of 23.14 years old.
Before starting the test, all subjects were examined for visual
acuity and color vision using Snellen and Isihara charts, re-
spectively.

2.4. Subjective Data Processing and Statistical Analysis

Outlier detection and removal was conducted on the col-
lected scores, according to ITU-R Recommendation BT.500-
13 [14]. No outlier was detected, leading to 28 scores per
stimulus. The Mean Opinion Score (MOS) was computed for
each stimulus, and the corresponding 95% Confidence Inter-
vals (CIs) were calculated assuming a Student’s t-distribution.

To determine whether the differences in MOS between the
proponents were statistically different, a one-sided Welch’s
test at 5% significance level was conducted on the results,
with the following hypotheses:

H0 : MOSA ≤ MOSB

H1 : MOSA > MOSB ,

in which A and B are the proposed algorithms under com-
parison. The test was conducted for each compression ratio
and for each content. If the null hypothesis were to be re-
jected, then it could be concluded that codec A performed
better than codec B for the given content and compression
ratio, at a 5% significance level. Additionally, a one-way
ANOVA test was performed on the results to determine the
overall difference between codecs.

3. RESULTS

In this section, the results of objective and subjective quality
evaluation are outlined. Results of the evaluation campaign
are shown in Figures 4, 5 and 6. Results of ̂PSNRY UV

are omitted as they exhibited similar trends with respect tôPSNRY .

3.1. B against BRef

Results of ̂PSNRY and ̂SSIMY computed using BRef as
reference (Figure 4 (a) and (b), depicted for content I02)
show that all codecs have similar performance for compres-
sion ratio R1, with the exception of P05, which is consider-
ably worse. For compression ratios R2 and R3, codecs P04
and P05 perform worse than the other codecs, while P01 and
P02 achieve the best results. In particular, P01 and VP9 have
similar performance, whereas HEVC has a slightly poorer be-
haviour. For the lowest bitrate, P02 clearly outperforms the
anchors and other codecs.

(a) ̂PSNRY , B against BRef (b) ̂SSIMY , B against BRef

(c) ̂PSNRY , B against BMax (d) ̂SSIMY , B against BMax

(e) ̂PSNRY , BMax against BRef (f) ̂SSIMY , BMax against BRef

Fig. 4: Results of the objective evaluations. The first two rows
show metric vs bitrate for representative content I02, the first
using BRef and the second BMax as reference. The third row
shows the results of comparing BMax against BRef for all
contents. ̂PSNRY and ̂SSIMY are used as metric in the
first and second columns, respectively.

Results of subjective evaluations confirm the trend. In
particular, all codecs have similar performance for the high-
est bitrate, with the exception of P05 (Figure 5 (a - e) and
Figure 6 (d)). Among all proponents, P01 has the best per-
formance, P02 being a close second. For compression ratio
R2, proponents P01 and P02 perform similar to anchor VP9
and they surpass the other codecs on more than three out of
five contents (Figure 6 (c)). The same trend can be observed
for compression ratio R3, where P01 always performs better
than the other codecs, with the exception of P02, which has
worse results for only one out of five contents (Figure 6 (b)).
For the lowest bitrate, P02 has the best performance, rank-
ing better than the other codecs on at least three out of five
contents, followed by P03 and P01 (Figure 6 (a)).

One-way ANOVA performed on the results of the subjec-



(a) I01, B against BRef (b) I02, B against BRef

(c) I03, B against BRef (d) I04, B against BRef

(e) I05, B against BRef (f) BMax against BRef

Fig. 5: Results of the subjective evaluation. MOS vs bitrate
for all contents, with respective confidence intervals (a - e),
and comparison of BMax with respect to BRef for all con-
tents (f).

tive tests confirms that the codecs are significantly different
(p = 2.1376 × 10−111). In particular, proponent P03 has
comparable performance with respect to the anchors. Pro-
ponents P01 and P02 have statistically equivalent behaviour
and they are statistically better than the anchors, whereas P04
and P05 perform statistically worse than the anchors.

Results show that the chosen encoding workflow does not
have a direct influence on the visual quality of the compressed
images, as algorithms adopting one or the other workflow can
be found among the best and worst performing alike. While
state-of-the-art video codecs are crucially employed in the
best performing solutions, they result in subpar visual qual-
ity in the case of P05. This can be explained considering that
their algorithm performs the full transformation to 4D LF af-
ter compression, which may lead to error propagation.

(a) R4 (b) R3

(c) R2 (d) R1

Fig. 6: Pairwise comparison results for subjective tests. Each
cell represents the number of contents for which MOSi was
found to be statistically better than MOSj ; i indicates the row
and j the column of the matrix.

3.2. B against BMax

The comparison of the results obtained using BMax as refer-
ence (Figure 4 (c) and (d), shown for content I02) exhibit sim-
ilar trends with respect to what has been discussed in Section
3.1, although P02 shows a significant gain in performance
when using ̂PSNRY as metric. It is worth mentioning that,
in the ̂PSNRY case, proposal P03 seems to perform signif-
icantly worse when the reference is set to BMax when com-
pared to reference BRef (Figure 4 (a)), at least for higher bi-
trates.

3.3. BMax against BRef

The objective quality evaluation of BMax against BRef (Fig-
ure 4 (e) and (f)) shows that all proposed renderers achieve
favorable results, with the exception of P04. However, sub-
jective results show that BMax is never perceived as better
than BRef , and in certain cases it is considered as signif-
icantly worse than the reference (Figure 5 (f)). In particu-
lar, while some proposed renderers were sometimes rated as
slighly better than the reference, they fail to be significantly
better, as the confidence interval is always seen to be cross-
ing the zero. Moreover, in case of content I05, only P01 and
P02 are considered equivalent to the reference, while all other
codecs significantly underperform when compared to the ref-
erence renderer. Additionally, the renderer proposed in P04 is
always perceived as worse than the reference. This is mainly
due to the fact that the codec uses a mixture of Gaussians to
represent the LF structure, leading to poor results when using



full-reference objective metrics.

4. CONCLUSIONS

In this paper we report the results of objective and subjec-
tive quality assessment of new codecs to compress light field
images. Results show that direct application of state-of-the-
art video codecs to compress light field images can be im-
proved using new codec designs. In particular, two codecs
were found to outperform others in both objective and sub-
jective terms. It was also demonstrated that no proposed rep-
resentation model is statistically better than that adopted as
reference. Finally, it should be noted that, in addition to com-
pression efficiency and visual quality, other criteria such as
complexity, delay and random access should be also consid-
ered when adopting a preferred solution.
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