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ABSTRACT

Nowadays, skeleton information in videos plays an impor-
tant role in human-centric video analysis but effective cod-
ing such massive skeleton information has never been ad-
dressed in previous work. In this paper, we make the
first attempt to solve this problem by proposing a multi-
modal skeleton coding tool containing three different coding
schemes, namely, spatial differential-coding scheme, motion-
vector-based differential-coding scheme and inter prediction
scheme, thus utilizing both spatial and temporal redundancy
to losslessly compress skeleton data. More importantly, these
schemes are switched properly for different types of skele-
tons in video frames, hence achieving further improvement
of compression rate. Experimental results show that our
approach leads to 74.4% and 54.7% size reduction on our
surveillance sequences and overall test sequences respec-
tively, which demonstrates the effectiveness of our skeleton
coding tool.

Index Terms— feature coding, skeleton coding

1. INTRODUCTION AND RELATED WORK

Skeleton information in videos is of increasing important re-
cently in many applications such as event detection, video
recognition, etc. For example, previous works have shown
how action recognition can benefit from skeleton-based video
modeling [1, 2, 3, 4]. A person’s pose is described by multiple
skeleton key joints and the skeleton information in videos rep-
resents the dynamic characteristics of body postures, which
makes skeleton information widely used in human action
recognition and other video analysis tasks.

Since video analysis is directly performed based on
extracted features, shifting the feature extraction into the
camera-integrated module can reduce the analysis server load
and is highly desirable. Therefore, some feature coding meth-
ods that aim to compress and transmit different kinds of ex-
tracted features of videos are proposed recently. Duan et
al. [5] describe the compact descriptors for video analysis,
where handcrafted and deep features are compressed and
transmitted in a standardized bitstream. Chen et al. [6] intro-
duce their proposed Region-of-Interest (ROI) location coding
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Fig. 1. (a) An example of skeletons (b) Skeleton information
in one video frame (c) Overview of skeletons compression
algorithm

tool where the ROI location information itself is coded in the
video bitstream.

Recently, reliable human skeletons can be obtained from
the depth sensor using real-time skeleton estimation algo-
rithms. However, transmitting these skeletons directly back
to the analysis server is too expensive. In this paper, we argue
that skeleton information in videos plays an important role in
video analysis. However, existing approaches have been over-
looked coding this massive skeleton information. Therefore,
it is necessary to develop new algorithms to encode this skele-
ton data efficiently. To the best of our knowledge, this paper is
the first to study coding skeleton information into bitstream.

In our case, skeletons in many video frames need to be
compressed and transmitted. We present human skeleton by
fourteen key joints as shown in Fig. 1a. For example, the 1st is
located at the nose and that labeled as 11th presents the right
ankle. Our task is to encode and transmit the size and loca-
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Fig. 2. The framework of our multimodal skeleton coding method.

tion of each key point of these skeletons to the decoder. One
straightforward way to do this is to directly transmit the (x, y)
coordinates of every key joint. This simple method can work
well when there are only few people in the video. However,
when the number of skeletons becomes large (for example,
the video-frame shown in Fig. 1b), these skeleton location
data will become huge and non-negligible. According to our
experiments, the skeleton data will take about 42% of the to-
tal bits for a video like Fig. 1b with about 35 skeletons in each
frame. Therefore, new algorithms are required to efficiently
compress these massive skeleton data.

To this end, we propose a novel approach to compress the
skeleton information by combining skeletons encoderm loss-
less along with video codec, whose framework is shown in
Fig. 1c. In the encoder, the input video frame will be encoded
by video encoder such as H.265. Meanwhile, the skeletons
of this video frame are encoded by our skeletons encoding
module that also takes the skeletons of previous frames from
the local skeletons decoder as input. These previous skele-
tons will be used as the reference to reduce the redundancy
of skeletons in the current frame. Then the resulting skele-
tons bitstream will be added together with the bitstream of
the frame as the final output bitstream. Since the decoding
process can be easily derived from the encoding process, we
will only focus on discussing skeleton encoding in this paper.

The proposed multimodal skeleton coding tool con-
tains three coding schemes: (1) Spatial differential-coding
scheme, (2) Motion-vector-based (MV-based) differential-
coding scheme, and (3) Inter prediction scheme, which are
switched dynamically to encode different types skeletons. In
summary, our contributions are two folds:

1. This is the first work to study coding skeleton infor-
mation itself into bitstream. A skeleton coding tool is
developed in this paper, which achieves skeletons com-
pression in videos with up to 54.7% compression rate
on average.

2. We introduce three different schemes for skeleton cod-
ing. Furthermore, a multimodal scheme that integrates
these schemes is proposed and achieves more robust
skeletons encoding results.

The rest of paper is organized as follows: Section 2 de-
scribes the framework of our skeleton information coding

tool. Section 3 describes the detail of our coding tool and
its three sub-schemes. Section 4.2 shows the experimental
settings and results. Section 5 concludes this paper.

2. OVERVIEW OF OUR METHOD

Fig 2 shows the framework of our multimodal skeleton cod-
ing algorithm. Skeletons are relayed to three coding schemes
properly to achieve higher compression rate losslessly. The
spatial differential-coding scheme utilizes the spatial redun-
dancy to compress skeleton data while MV-based differential-
coding scheme and inter prediction scheme are mainly based
on the temporal redundancy. Thus, our multimodal skele-
ton coding tool can compress complex skeleton trajectories
within crowed scene efficiently.

3. THE SKELETON INFORMATION CODING TOOL

In this section, we will first detail the definition of skeletons
in video and then describe the three proposed skeleton coding
schemes. Finally, a multimodal skeleton coding method is
introduced.

3.1. Definitions

As we mentioned, the skeleton of a human can be described
and coded by fourteen key points. According to this, we de-
fine the skeleton information as:

SKi = {li, (xi,1, yi,1), (xi,2, yi,2), . . . , (xi,14, yi,14)} (1)

where li is the ID of the ith human SKi in one frame and
(xj , yj) are the horizontal and vertical coordinates of jth key
point of SKi (j ∈ {0, 1, . . . , 14}). Note that each person has
a unique ID over whole video and is decided according to its
first appearing time in the video. The index of ith skeleton
i in one frame is decided according to its label. With these
29 elements, one human skeleton in one video frame can be
determined uniquely.

The difference between two skeletons are defined as the
set of difference between the same key joint:

SKi − SKk = {(xi,j − xk,j , yi,j − yk,j)|j = 1, 2, . . . , 14}
(2)
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Fig. 3. Illustration of spatial differential-coding scheme

3.2. Skeleton Coding Schemes

Three coding schemes are introduced in our skeleton infor-
mation coding tool:

Spatial differential-coding scheme. Considering the
spatial correlation of joints within a skeleton, we developed a
spatial differential-coding scheme that utilizes the spatial re-
dundancy to compress the skeleton data. As shown in Fig. 3,
only the absolute coordinates of 1th joint with the difference
vectors (see the red joint and vectors between joints) of a
skeleton are encoded.

The procedure is as follows: for each skeleton in a frame,
the coordinates of 1th joint are first encoded and a set E =
{1} that represents the 1th joint has been encoded is initial-
ized. Then for each encoded joint in set E, the difference be-
tween it and each of its neighbors are encoded. This process
is repeated until all joints of a skeleton are encoded.

MV-based differential-coding scheme. When a lot of
skeletons exist and need to be encoded in a dense crowd
scene, we need a new compression algorithm for skele-
tons to deal with such huge amount of skeleton data effi-
ciently. Therefore, we developed a MV-based difference-
coding scheme that mainly utilizes the temporal redundancy
of skeletons (the same persons’ skeletons in different frames
are highly correlated). As shown in Fig. 4, the skeleton with
lighter yellow joints and dash lines in tth frame is co-located
with the one in (t − 1)th frame. Then a predicted skeleton
is obtained using the motion vector calculated with the 2nd

joint (The 2nd joint corresponds to the center of a human) of
co-located and original skeletons. Finally, the differences be-
tween the predicted skeleton using MV and the original one
are encoded.

Formally, for a frame at T = t, the (t − 1)th frame is
chosen as the reference frame. Then for each skeleton SKt

i ,
difference between it and its corresponding skeleton in se-
lected reference frame is encoded. More specifically, the mo-
tion vector (MV) of 2nd joint is first calculated:

MV (SKi,SKk) = (MVx,MVy)

= (xi,2 − xk,2, yi,2 − yk,2)
(3)

Then the motion compensation (MC) of other joints of SKi
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Fig. 4. Illustration of MV-based differential-coding scheme
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Fig. 5. Illustration of inter prediction scheme

is achieved using the MV of 2nd joint:

MC(SKi)

= {(xi,j +MVx, yi,j +MVy)|j = 1, 3, 4, . . . , 14}
(4)

Finally, the encoded parameters is defined as:

EP (SKi) = SKi −ME(SKi) (5)

Inter prediction scheme. In the MV-based differential-
coding scheme, the motion vector of 2nd joint is utilized to
predict all joints. It is the optimal solution when the skeleton
is nearly translated from the previous to the current frame (i.e.
every joint of the body moves in the same direction and over
the same distance, without any rotation, reflection). However,
human bodies are non-rigid objects and therefore the real sit-
uation is different obviously. Therefore, we argue that more
accurate predictions of joints will lead to less residual, thus
achieving a higher compression rate.

For inter prediction scheme, the corresponding skeletons
in (t− 1)th, (t− 2)th frames are used to predict the skeleton
in tth frame (light yellow joints and dash lines) as shown in
Fig. 5. Then the differences between the original skeleton and
the predicted skeleton are encoded.

Trajectories prediction. There are a lot of researches
working on trajectories prediction [7, 8, 9, 10]. In our method,
the trajectories prediction method proposed in [10] is used.
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Fig. 6. An example of encoding skeletons in a frame with our multimodal coding tool.

More specifically, every key joint of a skeleton in tth frame is
predicted individually with the corresponding joint in (t−1)th
and (t − 2)th frame (i.e. the (t − 1)th and (t − 2)th frames
are chosen as the reference frames).

3.3. Multimodal skeleton coding

Considering labeling the skeleton data is expensive, the skele-
tons in videos may be the data estimated by the existing skele-
ton estimation methods. However, these methods may intro-
duce some unexpected skeleton trajectories (for example, lack
of key joints, inaccurate matching, and tracking), which leads
to the correlations between skeletons become more complex
and a more robust and efficient algorithm is needed. To this
end, we propose a multimodal skeleton coding method where
three schemes are switched for encoding skeletons.

The framework of our multimodal skeleton coding
scheme has been shown in Fig. 2. Moreover, the switching
rules are defined as follow:

1. For a skeleton that newly appears in the current frame,
the spatial difference-coding scheme is used. Besides,
the spatial differential-coding scheme is also used for
the first frame.

2. When both MV-based differential-coding scheme and
inter prediction can be used simultaneously for a skele-
ton, the one with less encoded bit length is chosen.
A flag indicating the chosen scheme is allocated and
transmitted.

3. For other skeletons that exist in (t−1)th and tth but can
not be found in (t− 2)th frame, MV-based differential-
coding scheme is used.
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Fig. 7. Some example video frames

Furthermore, several details should be noted: (1) For a
skeleton that exists in the previous frame but disappears in
the current frame, a disappear flag is allocated in bitstream.
(2) For a skeleton that is exactly the same as its correspond-
ing skeleton in the reference frame, a skip flag is allocated to
indicate such condition instead of encoding fourteen zeros.

Fig 6 shows an example of coding skeletons in a frame
using our proposed multimodal coding method. S1 exists in
all three frames and therefore both MV-based scheme and in-
ter prediction scheme can be used. Finally, the MV-based
scheme that leads to less bit length for encoding this skeleton
is chosen and a flag is transmitted. Because S2 only exists in
the last and current frame, MV-based scheme is chosen. S1

disappears in the current frame so that a skip flag is allocated.
As for S4 that newly appears in the current frame, the spatial



Table 1. Experimental results of different coding schemes. Sequences 0, 1, 2 come from to PoseTrack dataset [11].
Size(KB)

Seq. Frames Resolution #/Frame
Frame
Skip

Skeletons
Source Direct-

coding CM1 CM2 CM3 CM4

GT 3.61 3.36(-6.7%) 0.86(-76.2%) 0.80(-77.8%) 0.78(-78.4%)0 ES 3.65 3.26(-10.6%) 1.42(-61.2%) 1.71(-53.1%) 1.42(-60.9%)
GT 1.86 1.74(-6.7%) 0.58(-68.8%) 0.55(-70.5%) 0.53(-71.5%)0 31 1280x720 3

1 ES 1.90 1.69(-11.3%) 0.90(-52.8%) 0.99(-47.9%) 0.86(-54.6%)
GT 2.42 2.26(-6.8%) 1.14(-52.9%) 1.23(-49.2%) 1.11(-53.9%)0 ES 2.42 2.22(-8.1%) 1.00(-58.6%) 1.25(-48.2%) 1.01(-58.4%)
GT 1.25 1.16(-7.3%) 0.67(-46.5%) 0.82(-34.3%) 0.67(-46.3%)1 31 1280x720 2

1 ES 1.25 1.15(-8.3%) 0.61(-50.9%) 0.86(-31.0%) 0.61(-50.8%)

2 31 1280x720 2

GT 2.42 2.87(18.6%) 1.44(-40.4%) 1.28(-47.2%) 1.24(-48.6%)0 ES 2.74 3.21(17.3%) 2.15(-21.2%) 2.35(-14.0%) 2.19(-20.1%)
GT 1.25 1.48(18.6%) 0.89(-28.8%) 1.08(-13.9%) 0.88(-29.2%)1 ES 1.33 1.58(18.6%) 1.13(-15.1%) 1.36(-2.2%) 1.15(-13.4%)

3 50 1008x672 8-10

GT 18.15 14.30(-21.2%) 5.61(-69.1%) 9.51(-47.6%) 5.60(-69.1%)0 ES 20.93 16.56(-20.9%) 11.64(-44.4%) 14.01(-33.0%) 11.37(-45.7%)
GT 9.83 7.16(-27.1%) 4.38(-55.5%) 5.63(-42.7%) 4.45(-54.8%)1 ES 10.43 8.24(-21.0%) 6.56(-37.1%) 7.77(-25.5%) 6.44(-38.2%)

4 86 800x608 18-22

GT 65.28 46.03(-29.5%) 15.09(-76.9%) 24.97(-61.8%) 14.16(-78.3%)0 ES 76.29 52.69(-30.9%) 36.90(-51.6%) 46.00(-39.7%) 33.48(-56.1%)
GT 32.66 23.02(-29.5%) 10.68(-67.3%) 15.76(-51.7%) 10.17(-68.8%)1 ES 38.20 26.38(-30.9%) 20.42(-46.6%) 24.81(-35.1%) 18.81(-50.8%)

5 80 1280x720 23-33

GT 86.27 61.69(-28.5%) 14.36(-83.4%) 29.96(-65.3%) 21.27(-75.3%)0 ES 86.28 58.86(-31.8%) 61.65(-28.5%) 89.65(-3.9%) 56.46(-34.6%)
GT 43.31 30.94(-28.6%) 10.90(-74.8%) 19.21(-55.6%) 13.98(-67.7%)1 ES 41.47 27.87(-32.8%) 29.56(-28.7%) 43.89(-5.8%) 27.76(-33.1%)

6 100 1920x1080 34-35

GT 149.02 118.11(-20.7%) 7.43(-95.0%) 16.95(-88.6%) 11.66(-92.2%)0 ES 146.37 116.71(-20.3%) 85.42(-41.6%) 112.72(-23.0%) 77.44(-47.1%)
GT 86.24 52.08(-39.6%) 6.09(-92.9%) 14.06(-83.7%) 9.67(-88.8%)1 ES 71.25 56.52(-20.7%) 43.80(-38.5%) 58.05(-18.5%) 39.75(-44.2%)

Average on our surveillance seq.
GT - -28.1% -76.9% -62.1% -74.4%
ES - -26.2% -39.6% -20.6% -43.7%

Average - -15.3% -53.8% -41.0% -54.7%

differential-coding scheme is applied. The resulting bitstream
of tth frame is also shown in Fig 6.

4. EXPERIMENTAL RESULTS

4.1. Settings

In our experiments, the aforementioned four schemes (three
single-modal schemes and one multimodal scheme) are eval-
uated and compared.

During the test, 7 videos with different resolutions and
scenes are included. Three of them come from PoseTrack
dataset [11] and others are collected and labeled by ourselves.
Some examples of them are shown in Fig. 7. To evaluate the
performance of our methods under different motion degrees,
test sequences are re-sampled with different sample rates be-

fore being encoded. Apart from encoding the ground truth of
skeletons (GT), we also evaluate our methods with skeletons
estimated by [12] (ES). Note that only compression rate is
used to evaluate our proposed lossless compression method.

4.2. Results of different coding schemes.

Table 1 compares the performance of different coding
methods. In Table 1, CM1 represents using the spatial
differential-coding scheme; CM2 represents using the MV-
based differential-coding; CM3 represents using the inter pre-
diction scheme; CM4 represents our full version, multimodal
coding method. Note that for a skeleton that MV-based
scheme (inter prediction scheme) can not be used, spatial
differential-coding scheme is used in CM2 (CM3). From Ta-
ble 1, we can have the following observations:



1. The full version of our approach, the multimodal cod-
ing method (CM4), achieves the best performance on
average. Specifically, it can reduce 54.7% size of en-
coded skeleton data on average.

2. More importantly, our multimodal scheme shows su-
perior performance (extra 4.1% compression) to MV-
based scheme when compressing estimated skeletons
of surveillance sequences (i.e. the most practical situ-
ation). This demonstrates that our multimodal coding
method is more robust than other compared methods
when the skeletons trajectories in videos are complex
and noisy and therefore is especially useful in the real
applications.

3. When looking at encoding annotated skeletons of our
collected surveillance sequences, 76.9% and 74.4%
reduction of encoded size are obtained by our MV-
based differential-coding scheme and multimodal cod-
ing method, respectively. This clearly indicates the ef-
fectiveness of our designed skeleton coding schemes.

4. Our MV-based scheme achieves 53.7% compression
rate across all test sequences, which is slightly worse
than our multimodal scheme. This indicates that MV-
based scheme can also provide satisfactory results at
different kinds of applications.

5. CONCLUSION

This paper presents a new skeleton coding tool for encod-
ing skeletons in videos. We introduce a multimodal scheme
where three encoding sub-schemes that utilize both spa-
tial and temporal redundancy to compress skeleton data are
switched properly, hence achieving higher coding efficiency.
Experimental results show that skeleton data can be reduced
efficiently using our multimodal coding tool.
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