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ABSTRACT

Vehicle re-identification (reID) is to identify a target vehicle
in different cameras with non-overlapping views. When de-
ploy the well-trained model to a new dataset directly, there
is a severe performance drop because of differences among
datasets named domain bias. To address this problem, this
paper proposes an domain adaptation framework which con-
tains an image-to-image translation network named vehicle
transfer generative adversarial network (VTGAN) and an
attention-based feature learning network (ATTNet). VTGAN
could make images from the source domain (well-labeled)
have the style of target domain (unlabeled) and preserve iden-
tity information of source domain. To further improve the do-
main adaptation ability for various backgrounds, ATTNet is
proposed to train generated images with the attention struc-
ture for vehicle reID. Comprehensive experimental results
clearly demonstrate that our method achieves excellent per-
formance on VehicleID dataset.

Index Terms— Domain adaptation, image-to-image
translation, Vehicle re-identification

1. INTRODUCTION

Video surveillance for traffic control and security plays a sig-
nificant role in current public transportation systems. The task
of vehicle reID often undergoes intensive changes in appear-
ance and background. Captured images in different datasets
by different cameras is a primary cause of such variations.
Usually, datasets differ form each other regarding lightings,
viewpoints and backgrounds, even the resolution, etc. As
shown in Fig.1, images in VeRi-776 are brighter and have
more viewpoints than images in VehicleID. And images in
VehicleID have higher resolution than images in VeRi-776.
Besides that, it could not contain all cases in real scenario for
every dataset, which makes different datasets form their own
unique style and causes the domain bias among datsets. For
reID [1], most existing works follow the supervised learning
paradigm which always trains the reID model using the im-
ages in the target dataset first to adapt the style of the tar-
get dataset [2][3][4][5]. However, it is observed that, when
the well-trained reID model is tested on other dataset without
fine-tuning, there is always a severe performance drop due to

VeRi-776 VehicleID
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Fig. 1: Illustration of the datasets bias between VeRi-776
and VehicleID. The VeRi-776 and VehicleID present different
styles,e.g., distinct lightings, backgrounds, viewpoints, reso-
lutions etc.

the domain bias.
There are few studies on vehicle reID about the cross-

domain adaptation. And only a few methods exploit un-
labeled target data for unsupervised person reID modelling
[6][7][8]. However, some of them [9] need extra information
about source domain while training, such as attribute labels
and spatio-temporal labels, which are not existing on some
datasets. And there are only several methods exploiting un-
supervised learning [10, 11] without any labels, for instance,
SPGAN [6] and PTGAN [8]. SPGAN is designed for per-
son reID that integrates a SiaNet with CycleGAN [12] and
it does not need any additional labels during training. How-
ever, though SPGAN is effective on the person transfer task,
it causes deformation and color distortion in vehicle transfer
task in our experiment. PTGAN is composed of PSPNet [13]
and CycleGAN to learn the style of target domain and main-
tain the identity information of source domain. In order to
keep the identity information, PSPNet is utilized to segment
the person images first. As we all know, it needs pre-trained
segment model for PSPNet, which increases the complexity
of the training stage.

To sump up, this paper proposes an end-to-end image-
to-image translation network for the vehicle datasets, which
named VTGAN. To preserve the identity information of im-
ages from source domain and learn style of images from tar-
get domain, for every generator in VTGAN, it is composed
of a content encoder, a style encoder and a decoder. An at-
tention model is proposed in the content encoder to preserve
the identity information from the source domain. And the
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style encoder is designed to learn the style of the target do-
main with the style loss. Furthermore, VTGAN does not need
any labels and paired images during the translation procedure,
which is closer to the real scenario. To better adapt the tar-
get domain (unlabeled), ATTNet is designed for vehicle reID
with the generated images obtained from the stage of transla-
tion. It has better generalization ability through the proposed
attention structure to focus on the foreground and neglect the
background information of the input image as much as possi-
ble during training procedure. In summary, our contributions
can be summarized into two aspects:

1) We propose VTGAN to generate the images which
have the style of target domain and preserve identity informa-
tion of source domain. It is an efficient unsupervised learning
model and works by transferring content and style between
different domains separately.

2) ATTNet is presented to train the generated images,
which is based on attention structure and could extract more
distinctive cues while suppressing background for vehicle
reID task.

2. METHOD

2.1. Overview

Our ultimate goal is to perform vehicle reID model in an
unknown target domain for which are not labeled directly.
Hence, we introduce a two-step vehicle reID method based
on Generative Adversarial Network (GAN). The first step is
to transfer the style between source domain and target do-
main. In this step, the VTGAN is proposed to generate images
which have the style of target domain and preserve the iden-
tity information of source domain. After generating the style
transferred images, in the second step, we design a multi-task
network with the attention structure to obtain more discrimi-
native features for vehicle reID.

2.2. VTGAN

VTGAN is designed to transfer the style between source do-
main and target domain in the case of preserving the identity
information of images from source domain. As illustrated in
Fig.2, VTGAN consists of generators G,F , and domain dis-
criminators DS , DT for both domains. For each generator in
VTGAN, it contains content encoder Ec, style encoder Es

and decoder De three components. Ec is designed to pre-
serve the identity information from images of source domain
through the proposed attention model, which could extract the
foreground while suppressing background. And to learn the
style of target domain, the Es with the gram loss is added to
the translation network. At last, the decoder De embeds the
output of Ec and Es to generate the translated image.

Fig. 2: The structure of VTGAN. VTGAN contains two map-
ping functions: G : X→Y and F : Y→X , and associated
adversarial discriminators DT and DS . Lconst and Lstyle

represents cycle consistency loss and gram loss which are
employed to further regularize the mappings (best viewed in
color).

2.2.1. Content Encoder

In order to keep the identity information from source domain,
the attention model is designed to assign higher scores of vi-
sual attention to the region of interest while suppressing back-
ground in the content encoder.

Fig. 3: The illustration of proposed attention structure.

As shown in Fig.3, we denote the input feature map of
attention model as f . In this work, a simple feature fusion
structure is utilized to generate the f . We fuse the every out-
put of the ResBlock to form f , which can be formulated as
f = [fr1, fr2, ..., fr9], where fri is the ith feature map gen-
erated by the ith ResBlock. i ∈ [1, 9] and [·] denotes the
concatenation operation. For the feature vector fi,j ∈ <C of
the feature map at the spatial location (i, j), we can calculate
its corresponding attention mask ai,j by

ai,j = Sigmod(FC(fi,j ;Wa)) (1)

where FC is the Full Connected layer (FC) to learn a map-
ping function in the attention module and Wa are the weights
of the FC. The final attention mask α = [ai,j ] is a probability
map obtained using a Sigmod layer. The scores represent the
probability of foreground in the input image.

And after the attention model, a mask a is generated,
which has high scores for foreground and low scores for back-
ground. Hence, the attended feature map fc is computed by



element-wise product of the attention mask and the input fea-
ture map, which could be described as follows:

fc(i,j) = ai,j ⊗ fi,j (2)

where (i, j) is the spatial location in mask a or feature map
fc. And ⊗ is performed in an element-wise product.

2.2.2. Style Encoder

Besides the content branch, there is a branch to learn style
of target domain. In this branch, different with the Ec

g and
Ec

f , the style network Es
g and Es

f do not contain the attention
model. To learn the style of the target domain, Es

g is designed
with the gram loss to output the style features fs which has
similar distribution of the target domain Y . The gram loss
could be formulated as follows:

Lstyle =
1

NM
(T (x)−A(y))2 + 1

NM
(T (y)−A(x))2

(3)

where N is the number of feature maps, M is calculated by
width × height, width and height represent the width and
height of images. T (x), T (y), A(y) and A(x) are the gram
matrix of output features Es

g(x), E
s
f (y), E

s
g(y) and Es

f (x),
respectively.

2.2.3. Decoder Network

For the decoder network, it is composed of two deconvolu-
tion layers and a convolutional layer to output the generated
images G(I). The input of the decoder network is the combi-
nation of fc and fs which represent the content features and
style features, respectively. In this paper, we employ a con-
catenate layer to fuse fc and fs and a global skip connection
structure to make training faster and resulting model general-
izes better, which could be expressed as:

G(I) = tanh(conv(deconv(deconv([fc, fs]) + fe2))) (4)

where [.] represents the concatenate layer. And fe2 represents
the feature map generated by the second stride convolution
blocks. fc and fs are the output of content encoder and style
encoder, respectively.

2.2.4. Loss function

We formulate the loss function in VTGAN as a combination
of adversarial loss, content loss and style loss:

L = LGAN + λ1Lid + λ2Lstyle (5)

where the λ1 and λ2 control the relative importance of three
objectives. The style loss Lstyle could be calculated by

Eq.(3). VTGAN utilizes the target domain identity constraint
as an auxiliary for image-image translation. Target domain
identity constraint was introduced by [14] to regularize the
generator to be the identity matrix on samples from target do-
main, written as:

Lid = Ey∼pdata(y)||F (y)− y||1 + Ex∼pdata(x)||G(x)− x||1
(6)

For LGAN , it consists of three parts which two adversarial
losses and a cycle consistency loss. VTGAN applies adver-
sarial losses to both mapping functions. For the generator F
and its discriminatorDT , the objective could be expressed as:

LT (F,DT , X, Y ) =Ex∼pdata(x)[(DT (x))
2]

+ Ey∼pdata(y)[||DT (F (y))− 1||1]
(7)

where, X and Y represent the source domain and target do-
main, respectively. pdata(x) and pdata(y) denote the sample
distributions in the source and target domain. The objective
of generator G and discriminator DS also could be built. Be-
sides, the VTGAN requires F (G(x)) ≈ x and G(F (y)) ≈ y
when it learns the mapping of F and G. So the cycle con-
sistency loss is employed in VTGAN which could make the
network more stable. The cycle consistency loss could be de-
fined as:

Lcyc(F,G,X, Y ) =Ex∼pdata(x)[||F (G(x))− x||1]
+ Ey∼pdata(y)[||G(F (y))− y||1]

(8)

2.3. ATTNet

As we all know, the diversity background is a big factor for
the problem of cross domain. And in order to make the reID
model adapt to the target domain, we are facing a condition
that it is better to focus on the vehicle images and neglect
the background when we train the feature learning model.
Hence, a two-stream reID network with attention structure is
designed in this paper.

As shown in Fig.4, the input images are obtained from the
image generation module and are divided into positive and
negative sample pairs. For one branch, the input image is fed
into five ResNet Blocks [15] to output the feature maps fr
with the size of 7 × 7 × 2048. Then they are passed into
a Global Average Pooling (GAP) layer to obtain the feature
map fg . fg is utilized to generate the mask M through the
proposed attention structure. Given the feature map fr, its
attention map is computed as M = Softmax(Conv(fg)),
where the one Conv operator is 1× 1 convolution. After ob-
taining the attention map M , the attended feature map could
be calculated by fm = fg ⊗M . The operator ⊗ is performed
in an element-wise product. Then the attended feature map
fm will be fed into the subsequent structure. A shortcut con-
nection architecture is introduced to embed the input of the



Fig. 4: The structure of ATTNet.

attention network directly to its output with an element-wise
sum layer, which could be described as fs = fg + fm. In this
way, both the original feature map and the attended feature
map are combined to form features fa and utilized as input to
the subsequent structure. And after two FC layers, we could
obtain the feature fd. At last, a skip connection structure is
utilized to integrate fg and fd by the concatenate layer to ob-
tain more discriminative features for identification task and
verification task, which could be described as fa = [fd, fg].

3. EXPERIMENTS

3.1. Datasets

VeRi-776 [16] is a large-scale urban surveillance vehicle
dataset for reID. This dataset contains over 50,000 images of
776 vehicles with identity annotations, camera geo-locations,
image timestamps, vehicle types and colors information. In
this paper, 37,781 images of 576 vehicles are employed as a
train set. VehicleID [17] is a surveillance dataset from real-
world, which contains 26267 vehicles and 221763 images in
total. From the original testing data, four subsets, which con-
tain 800, 1600, 2400 and 3200 vehicles, are extracted for ve-
hicle search in different scales.

3.2. Implementation Details

For VTGAN, we train the model in the tensorflow [18] and
the learning rate is set to 0.0002. Note that, we do not utilize
any label notation during the learning procedure. The min-
batch size of the proposed method is 16 and epoch is set to
6. During the testing procedure, we employ the Generator G
for VeRi-776 → VehicleID translation and the Generator F
for VehicleID→ VeRi-776 translation. The translated images
are utilized for training reID models. For ATTNet, We im-
plement the proposed vehicle re-id model in the Matconvnet
[19] framework. We utilize stochastic gradient descent with a
momentum of µ = 0.0005 during the training procedure. The
batch size is set to 16. The learning rate of the first 50 epoch
is set to 0.1, and the last 5 to 0.01.

3.3. Evaluation

3.3.1. Comparison Methods

There are really little methods about the vehicle reID of cross
domain. So in this paper, we only discuss several methods and
test them on VeRi-776 and VehicleID. Direct Transfer means
directly applying the model trained by images from source
domain on the target domain. CycleGAN [12], SPGAN [6]
and VTGAN are employed to translate images from source
domain to target domain, and then the generated images are
utilized to train reID model. Baseline [20] denotes the com-
pared training network of reID. ATTNet is our proposed net-
work.

3.3.2. Comparison of generated images

To demonstrate the effectiveness of our proposed style trans-
form model, the VehicleID and VeRi-776 are utilized to train
the VTGAN. And CycleGAN and SPGAN are taken as com-
pared methods. Fig.5 is the comparison results, which the
source domain is VeRi-776, and target domain is VehicleID.
For each group, the first row is the original images in VeRi-
776. The second and third rows are generated by CycleGAN
and SPGAN, respectively. The last row is generated by the
proposed VTGAN.

From the Fig.5, we could find that, most images generated
by CycleGAN are distorted seriously when transfer images
from VeRi-776 to VehicleID. And though the SPGAN works
better than the CycleGAN, the generated images also have
evident deformation. However, for VTGAN, not only is the
vehicle color and type information completely preserved, but
also learns the style of the target dataset. As we can see from
Fig.5, generated images by VTGAN have higher resolution
and become darker, which learns from VehicleID.

3.3.3. The impact of Image-Image Translation

Firstly, we utilize CycleGAN to translate labeled images from
the source domain to the target domain then train the baseline
reID model with translated images in a supervised way. As



Fig. 5: The effect of the generated images. The first row is
original images. The generated images using CycleGAN, SP-
GAN lie in the second row and third row respectively. The
last row are generated images by VTGAN.

shown in Table.1, when trained on VeRi-776 training set using
the baseline method and tested on VehicleID different testing
sets, rank-1 accuracy improves from 35% to 39.39%, 30.42%
to 32.97%, 27.28% to 28.44% and 25.41% to 26.38%, re-
spectively. Through such an image-level domain adaptation
method, effective domain adaptation baselines can be learned.
From the Fig. 5, we could find that, though some of gener-
ated images by CycleGAN are distorted, the performance of
reID model trained by generated images is improved. This
illustrates methods of image-image translation have learned
the important style information from the target domain, which
could narrow-down the domain gap to a certain degree.

3.3.4. The impact of VTGAN

To verify the effectiveness of the proposed VTGAN, we con-
duct several experiments which training sets are images gen-
erated from different image translation methods. As shown
in Table.1, on VehicleID, compared with CycleGAN +
Baseline, the gains of V TGAN+Baseline are 5.05%, 6%,
6.66% and 5.79% in rank-1 of different test sets, respectively.
Though SPGAN has better performance in the stage image-
to-image translation than CycleGAN, it also causes deforma-
tion and color distortion in real scenario (see Fig.5). Hence,
compared with SPGAN+Baseline, for different size of test
sets on VehicleID, V TGAN +Baseline has 1.57%, 1.51%,
1.56% and 1.72% improvements in mAP, respectively. All of
these could demonstrate that the structure of VTGAN is more
stable and could generate suitable samples for training in the
target domain.

3.3.5. The impact of ATTNet

To further improve re-ID performance on target dataset, we
propose ATTNet. Fig.6 is CMC resutls on VehicleID of

different methods. As shown in Fig.6, compared to meth-
ods with baseline reID model, not only original images but
also generated images, methods using ATTNet have bet-
ter performance. For instance, from the Table.1, we could
find that, compared with Direct Transfer + Baseline,
Direct Transfer + ATTNet has 8.26%, 9.05%, 8.67%,
and 7.99% improvements in rank-1 of different test sets when
the model is trained on VeRi-776 and tested on VehicleID. Be-
sides, it is obvious that compared with the baseline methods,
the reID model using the ATTNet have significant improve-
ment for every image translation method. This demonstrates
that the reID model trained by the proposed ATTNet can bet-
ter adapt to cross-domain task than the baseline method.
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Fig. 6: The CMC curves of different methods on VehicleID.
(a) The result tested on the set with 800 vehicles. (b) The re-
sult tested on the set with 1600 vehicles. (c) The result tested
on the set with 2400 vehicles. (d) The result tested on the set
with 3200 vehicles.

4. CONCLUSION

In this paper, we propose a vehicle reID framework based on
GAN, which includes the VTGAN and ATTNet for domain
adaptation. The VTGAN is designed to generate the vehicle
images which preserve the identity information of source do-
main and learn the style of target domain. The ATTNet is
proposed to train the reID model with generated images. It
can be observed from the results that both the VTGAN and
ATTNet achieve good results. What’s more, it is obvious that
existing datasets usually contain several viewpoints of vehicle
images. It is also a limit for reID task in new domain. Hence,
in our future studies, we would focus on using the GAN to



Table 1: Comparison of various domain adaptation methods over Baseline model and ATTNet-reID model on VehicleID.

Methods Test size = 800 Test size = 1600 Test size = 2400 Test size = 3200
mAP(%) Rank1(%) Rank5(%) mAP(%) Rank1(%) Rank5(%) mAP(%) Rank1(%) Rank5(%) mAP(%) Rank1(%) Rank5(%)

Direct Transfer + Baseline 40.05 35.00 56.68 34.90 30.42 48.85 31.65 27.28 44.49 29.57 25.41 42.11
CycleGAN + Baseline 44.24 39.39 60.10 37.68 32.97 53.16 33.17 28.44 47.92 30.73 26.38 43.84

SPGAN + Baseline 48.27 42.87 66.55 42.51 37.46 58.97 38.41 33.54 53.68 35.04 30.45 49.13
VTGAN + Baseline 49.53 44.44 66.74 43.90 38.97 59.93 40.07 35.10 56.29 36.86 32.17 51.63

Direct Transfer + ATTNet 47.97 43.26 62.93 43.94 39.47 58.51 40.42 35.95 54.34 37.60 33.40 50.55
CycleGAN + ATTNet 46.96 42.68 60.72 43.27 38.88 57.44 39.39 35.09 53.05 37.05 33.07 49.38

SPGAN + ATTNet 52.72 48.25 67.20 48.01 43.44 63.04 44.17 39.51 59.05 41.05 36.75 54.63
VTGAN + ATTNet 54.01 49.48 68.66 49.72 45.18 63.99 45.18 40.71 59.02 42.94 38.72 55.87

generate the various viewpoints of vehicle images to expand
the dataset and improve the performance of reID model.
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