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ABSTRACT

Point cloud is a 3D image representation that has recently
emerged as a viable approach for advanced content modality
in modern communication systems. In view of its wide adop-
tion, quality evaluation metrics are essential. In this paper, we
propose and assess a family of statistical dispersion measure-
ments for the prediction of perceptual degradations. The em-
ployed features characterize local distributions of point cloud
attributes reflecting topology and color. After associating lo-
cal regions between a reference and a distorted model, the cor-
responding feature values are compared. The visual quality
of a distorted model is then predicted by error pooling across
individual quality scores obtained per region. The extracted
features aim at capturing local changes, similarly to the well-
known Structural Similarity Index. Benchmarking results us-
ing available datasets reveal best-performing attributes and
features, under different neighborhood sizes. Finally, point
cloud voxelization is examined as part of the process, improv-
ing the prediction accuracy under certain conditions.

Index Terms— Point cloud, objective quality metric, vi-
sual quality assessment.

1. INTRODUCTION

Objective quality evaluation is a research area that aims at
investigating and proposing algorithms that are able to pre-
dict the visual quality of content representations, typically as
perceived by human end-users. This research field is impact-
ful on several tasks that are related to information and com-
munication systems. For instance, having access to accurate
predictions of quality for contents after encoding or trans-
mission can greatly assist in improving user experience by
updating corresponding configurations of the underlying sys-
tems. Moreover, the benchmarking of new solutions can be
facilitated by using well-performing objective quality metrics
instead of subjective evaluation experiments. The latter are
considered to reveal ground truth scores of visual quality; yet,
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they are costly and cumbersome, as well as limited in terms
of large scale realization and ad-hoc implementation.

The development of algorithms to accurately predict the
level of distortion introduced in content representations un-
der realistic types of degradations (e.g., compression, noise)
has been at the center of attention for the research commu-
nity for many years. The initial focus was naturally drawn
by conventional images, where it was early understood that
naive implementations of error quantification in a pixel-by-
pixel basis, e.,g., Mean Square Error (MSE), did not corre-
late well with human judgements. As a consequence, efforts
were concentrated on approaches that consider characteris-
tics of the human visual system. These, in principle, can be
categorized as bottom-up, and top-down. The former denote
theoretical approaches that aim at measuring perceived errors
in a content, whereas the latter signify engineering solutions
that aim at capturing properties of human visual perception.
Objective quality metrics can also be clustered based on the
availability of the original version of the content at run-time
as full-reference, reduced-reference and no-reference metrics.

In the field of three-dimensional imaging, top-down, full-
reference approaches are the most common. Although largely
explored in the case of polygonal meshes, objective quality
evaluation for point clouds still remains a widely open prob-
lem. This type of media content has recently drawn a signif-
icant amount of interest due to the flexibility and efficiency
in acquisition, processing and rendering. In fact, the MPEG
standardization body is releasing its first point cloud coding
standard, which will facilitate compatibility across devices,
while the relevant efforts have triggered research on the devel-
opment of more efficient encoding solutions. However, there
is only a limited number of available objective quality assess-
ment methods so far with reported weaknesses [1, 2], which
urges the demand for better-performing algorithms.

In this study we aim to shed light on the effectiveness of a
wide range of features that we construct from explicit and/or
implicit information that is carried in a point cloud model.
The adopted features are estimators of statistical dispersion
in local neighborhoods, computed using several related for-
mulas. As part of the study, the impact of the neighborhood
size on the obtained quality scores is analysed, based on stan-
dardized benchmarking indexes. Moreover, the impact of a
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voxelization step prior to the computation of features is inves-
tigated, obtaining promising results, which bring us to intro-
duce the concept of “multi-scale” approaches in point clouds.
The performance evaluation is conducted using two available
datasets with diverse characteristics. This study can be re-
garded as an exploration of the applicability of the Structural
Similarity (SSIM) index [3] in a higher dimensional, irregular
space (volumetric content), incorporating not only color, but
also topological coherence among local regions.

2. RELATED WORK

Polygonal mesh representation has been the prevailing 3D
modality in computer graphics. Thus, a substantial amount
of related work has preceded and is reported in the liter-
ature. In particular, existing objective quality metrics for
meshes can be divided in two categories, namely, “image-
based” and “model-based” [4]. The first essentially exploits
the development of high-performing solutions from 2D imag-
ing, which are applied on a set of representative views of the
model. The second category relies on geometric errors, dihe-
dral angles [5], curvature statistics [6], and roughness mea-
surements [7], among others. The reader can refer to [8] for
an excellent review study on this topic.

Point cloud objective quality metrics can also be clus-
tered as “image-based” and “model-based” approaches, sim-
ilarly to mesh modelling counterpart. The idea of convert-
ing point clouds to meshes prior to application of relevant
algorithms was discarded quickly, as this additional process-
ing step is commonly lossy. Similarly to mesh models case,
“image-based” metrics rely on 2D imaging algorithms ap-
plied on model views [9, 10]. Although able to capture ge-
ometry, color and rendering distortions, this type of metrics
are governed by the selection of viewpoints (i.e., camera po-
sition and distance), the rendering mechanism to consume the
content [1], as well as environmental and lighting conditions
set on the virtual scene, which affect the perception of colors.

The most common “model-based” approaches so far as-
sess geometry and depend on Euclidean distances (point-to-
point), or projected errors along normal vectors (point-to-
plane) [11]. Algorithms based on similarity of local surface
approximations (plane-to-plane) [12] and curvature statistics
(PC-MSDM) [13] have been introduced, showing advances
in predicting the perceived distortions, especially in colorless
point cloud datasets. In [14], measurements of color errors
based on MSE and PSNR, applied either on the RGB or the
YCbCr color space, have been proposed. More recently, the
first attempts to combine geometry and color features have
been reported in [15, 16]. In [15], the evaluation of geome-
try distortions is based on curvature statistics, whereas sev-
eral color features based on lightness, chroma and hue are
examined, showing that lightness comparison and structure
perform better. In [16], color statistics such as histograms are
used to predict the texture distortion of point cloud contents,
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and a linear combination of geometry and color measures is
proposed to obtain a global indicator of distortion.

In this work, we extend previous efforts by generalizing
feature extraction process, while also exploring a higher di-
mensional feature space to obtain visual quality scores; that
is, we include information from additional point cloud at-
tributes, such as geometry and normal vectors, and evaluate
their efficiency. Moreover, we propose voxelization of mod-
els to improve prediction accuracy.

3. POINT CLOUD STRUCTURAL SIMILARITY

To measure structural similarity, we construct features that
quantify statistical dispersion of quantities that characterize
local topology and appearance of a point cloud. To capture lo-
cal properties, neighborhoods are formed around every point
of a model. Quantities to reflect local properties are computed
from point cloud attributes, which are either present (e.g., ge-
ometry), or can be estimated in case of absence (e.g., normal
vectors). In this study, four types of attributes are explored:
(i) geometry, (ii) normal vectors, (iii), curvature values, and
(iv) colors; yet, the same working principle can be easily ex-
tended to any other attribute.

The geometry-related quantities, in our case, are com-
puted based on Euclidean distances between a point of focus
and each point belonging to its neighborhood, and are em-
ployed to assess the coherence of the local geometric struc-
ture. The normal-related quantities are obtained by comput-
ing the angular similarity between the normal vector of a par-
ticular point and each neighbor, in order to examine the uni-
formity of the shape of the local surface. For the same pur-
pose, the curvature values are used. Finally, the color-related
quantities consist of luminance values that are employed to
estimate the local contrast, similarly to SSIM [3].

The features are extracted per neighborhood after ap-
plying dispersion statistics on the aforementioned quantities.
Statistical dispersion measurements are often utilized to es-
timate scale parameters; that is, population parameters that
indicate the spread of a distribution. Several such estima-
tors exist. Yet, in this study, the following are adopted: me-
dian (mA), variance

(
σ2
A

)
, mean absolute deviation (µADA),

median absolute deviation (mADA), coefficient of variation
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(COVA), and quartile coefficient of dispersion (QCDA), us-
ing Equations 1-4 for the last four metrics, respectively

µADA = E(A− µA) (1)

mADA = E(A−mA) (2)

COVA =
σA
µA

(3)

QCDA =
QA(3)−QA(1)

QA(3) +QA(1)
(4)

where µA indicates the mean, σA the standard deviation, and
QA(i) denotes the i-th quartile of a data set A.

A schematic diagram of the feature extraction process, as
explained above, is illustrated in Figure 1, with C denoting an
input point cloud and FC indicating the output features. Note
that each combination of dispersion estimator and attribute
quantity leads to a different FC . For simplicity reasons, the
reference to features henceforth implies a particular combina-
tion of these parameters, without limiting the generality.

The perceptual quality prediction is based on the similar-
ity of feature values that are extracted from a referenceX and
a point cloud under evaluation Y , as presented in Figure 2.
For this purpose, each neighborhood of Y is associated with a
neighborhood of X , by identifying for every point p of Y its
nearest point q in X . Then, the similarity is measured as the
relative difference between the corresponding feature values,
using Equation 5

SY (p) =
| FX(q)− FY (p) |

max {| FX(q) |, | FY (p) |}+ ε
(5)

with ε expressing an arbitrarily small number to avoid unde-
fined operations; here, we set ε equal to the machine rounding
error for floating point numbers. A total similarity score SY

for the model under evaluation Y is estimated through error
pooling across all points Np, based on Equation 6

SY =
1

Np

Np∑
p=1

SY (p)
k (6)

with k = {1, 2}, denoting the mean and MSE, respectively.1

4. VALIDATION METHODOLOGY

4.1. Datasets

Two datasets of static voxelized point clouds under com-
pression artifacts from state-of-the-art codecs are used [1, 2]
for performance evaluation. Hereafter, we refer to them as
MPCQA and IRPC, accordingly. The first dataset consists of
8 point clouds whose geometry and color were compressed

1A prototype MATLAB implementation is made available online at
https://www.epfl.ch/labs/mmspg/pointssim/.
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Fig. 3: Model pre-processing. With dashed lines the step in-
troduced for measurements at different scales.

at 6 levels using five codecs, namely, V-PCC and the four G-
PCC test model variations. The point clouds were evaluated
in an interactive platform side-by-side, using point-based ren-
dering with adaptive point size.

The second dataset consists of 6 point clouds whose ge-
ometry was compressed using three codecs, namely, V-PCC,
G-PCC (TriSoup module) and PCL, at three degradation lev-
els. The point clouds were evaluated in three different ses-
sions, with one of them being relevant to this study; that is
a fixed-size point-based rendering with color information ob-
tained from the original models after a re-coloring step. The
point clouds were evaluated in a passive scenario, using video
sequences of both the reference and the distorted models,
which were shown one after the other.

Both datasets consist of point clouds with diverse charac-
teristics, resulting from the different nature of the represented
models and the acquisition technologies that were employed.
Moreover, the wide span of encoding schemes that were used
lead to different types of artifacts, making them representative
and suitable candidates for benchmarking purposes.

4.2. Structural similarity computation

Prior to feature extraction, a pre-processing methodology out-
lined in Figure 3 is proposed and followed in this study. In
particular, point fusion is recommended in order to enable
identification of duplicated coordinates in a point cloud. In
our implementation, the redundant locations are discarded
and the corresponding color values are blended. This step
prevents enlisting the same location in neighborhood formu-
lation more than once (Figure 1), and eliminates unnecessary
correspondences in neighborhood association (Figure 2).

High-quality surface approximations are essential to ben-
efit from curvature- and normal-based features. To estimate
relevant attributes, we adopt the algorithm described in [15]
for quadric surface fitting. In this context, the k-nearest neigh-
bors of each point are initially identified (k = 12 in our case).
A Principal Component Analysis (PCA) is then issued to pro-
vide an orthonormal basis and a linear approximation of the
local surface, which passes from the centroid of the neigh-
borhood. A least-squares error quadratic fitting function is
computed across the normal of the plane, after transferring
the origin of the orthonormal basis from the centroid to the
transformed point of focus. The normal vector in this new co-
ordinate system is obtained by simply computing the gradient
of the locally fitted quadric surface at that point. Then, the
inverse transform brings the estimated normal vector back to
the original coordinate system. Moreover, the mean curvature

3



(a) Geometry-based features (b) Normal-based features (c) Curvature-based features (d) Color-based features

Fig. 4: MPCQA dataset. PCC (thick bars) and SROCC (thin bars) are grouped per metric. In every group, the neighborhood
size is 6, 12, 24 and 48, from left to right.

(a) Geometry-based features (b) Normal-based features (c) Curvature-based features (d) Color-based features

Fig. 5: IRPC dataset, rcolor session. PCC (thick bars) and SROCC (thin bars) are grouped per metric. In every group, the
neighborhood size is 6, 12, 24 and 48, from left to right.

value at the point of focus is computed from the coefficients
of the fitted quadric surface, as described in [15].

The feature extraction process described in Section 3, is
subsequently performed. In regard to the neighborhood for-
mulation (Figure 1), two approaches are common, namely, the
k-nearest neighbor, and the range search. In the first case, the
set is extended until the specified number of points is reached,
whereas in the second case, the set consists of points whose
distance is smaller than the specified range. Thus, in the for-
mer case, the range of the set is adaptive in terms of size and
the number of points is fixed, whereas in the latter case the
range is fixed and the number of points can vary. In our imple-
mentation, we follow the k-nearest neighbor in order to fixate
the population of quantities (distributions) over which the fea-
tures are computed. To examine the impact of the neighbor-
hood size in the prediction accuracy, in our analysis k takes
values from the set {6, 12, 24, 48}.

A structural similarity score for a model under evaluation
is computed based on relative differences of feature values
using Equation 6, after following the methodology described
in Section 3, and illustrated in Figure 2. In our analysis, the
same procedure is repeated using both the original and the
distorted models as a reference, resulting in quality scores
that are referred to as asymmetric-original and asymmetric-
distorted, respectively. The symmetric error is also computed
as the minimum out of the two asymmetric scores, leading to
a total of 144 quality predictors per neighborhood size.

Finally, we explore the prediction potentials of structural
similarity measurements obtained from scaled point clouds.

For this purpose, a voxelization step is introduced in our pre-
processing pipeline, as depicted in Figure 3. Voxelization is
realized by quantizing the coordinates of a model and by color
blending between points that fall in the same voxel. The res-
olution of the voxel grid is defined by a target voxel depth.
In our implementation, no clipping is applied on coordinates
lying outside of the grid, to avoid introducing extra loss.

4.3. Benchmarking

To evaluate how well an objective metric is able to estimate
perceptual quality, Mean Opinion Scores (MOS) computed
from ratings of subjects that participate in an experiment are
required and serve as ground truth. The objective quality
scores are typically benchmarked after application of a regres-
sion model. In our case, the logistic function is used following
the Recommendation ITU-T P.1401 [17]. The Pearson linear
correlation coefficient (PCC), the Spearman rank order corre-
lation coefficient (SROCC), and the Root-Mean-Square Error
(RMSE) are computed to conclude on the linearity, mono-
tonicity, and accuracy of objective predictors, respectively.

5. EXPERIMENTAL RESULTS

In Figures 4 and 5, the benchmarking results are provided
for both testing datasets. Each figure indicates all the dis-
persion estimators (i.e., metrics) that were employed, per at-
tribute. In the provided plots, the thick bars correspond to
the PCC index, while the thin bars indicate the SROCC. They
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are grouped per metric, indicated on the x-axis, and in each
group, the four selected neighborhoods are displayed in an in-
creasing order. The reported results correspond to predictions
based on asymmetric-distortion scores, which were found to
perform slightly better with respect to the alternatives.

In Figure 4, the performance of the metrics is presented
for the MPCQA dataset. It is evident that color-based features
are over-performing, achieving high scores, with the best be-
ing a PCC of 0.928 and SROCC of 0.920, for σ2 and k = 12.
We observe that median is the worst-performing metric, al-
though still achieving good results. In principle, the neigh-
borhood size is not critical, albeit better performance is ob-
tained for the majority of the metrics in mid-ranges (i.e., k
equal to 12 or 24). The curvature-based features are the sec-
ond best-performing solutions in this dataset. For the disper-
sion estimators that work better, namely, σ2, µAD and mAD,
the number of neighbors k is also not crucial. Regarding
geometry-based features, they are rather unstable with respect
to the local region size, while the majority of normal-based
features tend to improve as the neighborhoods are expanding.

In Figure 5, similar plots are employed to present the per-
formance of the metrics in the IRPC dataset. The color-based
features are found again to be the most accurate predictors.
However, their performance is notably deteriorated with re-
spect to the MPCQA dataset, achieving a maximum of 0.792
PCC and 0.643 SROCC using COV with k = 12. This perfor-
mance decrease can be explained by the fact that the color is
not directly degraded in this dataset. Nonetheless, distortions
are inherently added from point re-positioning and downsam-
pling due to geometry encoding. The second best option is
given by the geometry-based features, in regard to the PCC
index. However, the low SROCC values indicate that the pre-
dictions are not very reliable. The majority of features that
capture uniformity of surface shape perform very poorly, with
the exception of some metrics, namely, σ2, µAD and mAD,
applied on curvature values. The general poor performance
can be explained by the fact that (a) the dataset consists of
several rather noisy point clouds, and (b) the original color
values used for the decompressed models act as distractors.
Our results are in accordance with what is seen in [15].

5.1. Towards multi-scale structural similarity

The performance of structural similarity measurements is fi-
nally investigated after point cloud scaling. The latter is im-
plemented through voxelization, which enables color smooth-
ing and regular down-sampling of geometry, only for models
whose original geometric resolution is higher than the target
voxel depth.2 Moreover, color blur is introduced, reducing
blocking artifacts, simulating visual inspection from far dis-
tances. Note that if the original voxel depth is smaller than
the target, the color distribution remains unaltered, while the

2This essentially applies when the effective voxel depth of a model is
larger than the target; the effective implies no prior up-scaling.

(a) MPCQA dataset with k = 12 (b) IRPC dataset with k = 24

Fig. 6: Performance of color-based features after voxeliza-
tion. PCC (thick bars) and SROCC (thin bars) are grouped
per metric. In every group, the corner left bar corresponds
to no voxelization, whereas the rest of the bars correspond to
voxel depths obtained after decreasing the lowest reference
resolution of the dataset by 0, 1, 2 and 3, from left to right.

topology is up-scaled without impacting the number of points.
In Figure 6a, the performance of color-based features is

presented in the MPCQA dataset, after voxelization using bit-
depths equal and below the lowest resolution among original
models (i.e., this dataset consists of 9-bit and 10-bit models).
The best results are obtained with voxel depth equal to 9, with
a maximum PCC of 0.929 and SROCC of 0.936 using σ2 with
k = 12. It can be observed that as the target voxel depth is fur-
ther decreasing, the performance of the metrics is deteriorat-
ing. This can be explained by the increasing levels of blurring
artifacts that appear at lower bit-depths, which are enhanced
for models with severe color compression distortions. For this
demonstration, k was chosen equal to 12, while very similar
trends are obtained for other neighborhood sizes.

The benefits of model voxelization are more evident in
our next paradigm. In Figure 6b, the performance of color-
based features is demonstrated for the IRPC dataset, follow-
ing the same rationale (i.e., this dataset consists of 10-bit and
12-bit models). Based on our results, a remarkable perfor-
mance increase is observed, with a maximum of 0.893 for
PCC and 0.832 for SROCC at 8-bit voxel depth using mAD
with k = 24. Similar tendencies are noted for other k values.
This outcome is explained by the fact that geometry degrada-
tions that are exhibited in blocks, as well as the resolution of
the blocks, over which color blending is performed, affect the
output color values. In other terms, through voxelization, ge-
ometry degradations are reflected on the output color values.

In general, voxelization can be seen as a way to reduce
cross-content resolution, potentially providing a more suit-
able scale for objective quality predictors. However, the iden-
tification of appropriate voxel depths for point cloud models
or datasets, is not explored in this study.

In Table 1 the best-performing metrics reported in the lit-
erature and attained in this study, are summarized. For the
latter, results including and excluding model voxelization are
handled separately, and are presented following the notation:
(attribute, metric, neighborhood, voxel depth).
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Table 1: Best performing metrics per dataset.

Dataset Metric PCC SROCC
MPCQA point-to-plane with MSE [1] 0.858 0.884
MPCQA (color, σ2, k = 12, original) 0.928 0.920
MPCQA (color, σ2, k = 12, 9-bit) 0.929 0.936
IRPC PCQM [15] 0.873 0.807
IRPC (color, COV, k = 12, original) 0.792 0.643
IRPC (color, mAD, k = 24, 8-bit) 0.893 0.832

6. CONCLUSIONS

In this paper we propose and evaluate a wide set of features
based on estimators of a distribution’s dispersion. The fea-
tures are extracted from computed quantities that depend on
point cloud attributes, including geometry, normal vectors,
curvature values, and colors. A pre-processing methodology
for the models under evaluation is devised and applied to en-
sure high-quality measurements. Structural similarity scores
are computed based on relative difference of feature values
and reflect distortions, as expressed in the corresponding at-
tributes’ information. Our results show that color-based alter-
natives achieve the best performance in predicting perceptual
quality, in both datasets that were examined. Moreover, we
propose the use of voxelization prior to feature extraction, in
order to mitigate objective quality scores that are achieved at
high-resolution models. This extra processing step was found
effective in case of colored point clouds whose geometry is
only compressed, leading to more accurate visual quality pre-
dictions. This study aims to report the results of an extensive
performance analysis of features that measure local topolog-
ical and color consistencies. Future work will focus on the
impact of the neighborhood formulation algorithm and the
neighborhood sizes, on extending the work to non-voxelized
point clouds, and to combine the attributes and scales pre-
sented above in a single metric.
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