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ABSTRACT

The picture-wise just noticeable difference (PJND) for a given

image and a compression scheme is a statistical quantity giv-

ing the smallest distortion that a subject can perceive when

the image is compressed with the compression scheme. The

PJND is determined with subjective assessment tests for a

sample of subjects. We introduce and apply two methods of

adjustment where the subject interactively selects the distor-

tion level at the PJND using either a slider or keystrokes. We

compare the results and times required to those of the adap-

tive binary search type approach, in which image pairs with

distortions that bracket the PJND are displayed and the differ-

ence in distortion levels is reduced until the PJND is identi-

fied. For the three methods, two images are compared using

the flicker test in which the displayed images alternate at a

frequency of 8 Hz. Unlike previous work, our goal is a global

one, determining the PJND not only for the original pristine

image but also for a sequence of compressed versions. Results

for the MCL-JCI dataset show that the PJND measurements

based on adjustment are comparable with those of the tra-

ditional approach using binary search, yet significantly faster.

Moreover, we conducted a crowdsourcing study with side-by-

side comparisons and forced choice, which suggests that the

flicker test is more sensitive than a side-by-side comparison.

Index Terms— Just noticeable difference, subjective

quality assessment, flicker test, paired comparison, JPEG

1. INTRODUCTION

Image compression schemes, e.g., JPEG, are widely used to

meet the constraints of transmission bandwidth and storage.

With the increase of the compression level, more and more

subjects could perceive the image compression artifacts that

affect their visual quality of experience. The picture-wise just

noticeable difference (PJND) is the smallest distortion that a

subject can perceive when an image is compressed. Given the

PJNDs of a group of subjects, the fraction of subjects who do

not see any distortion when comparing an original image with

its compressed version is called the satisfied user ratio (SUR).

Determining the relationship between the compression

scheme and user satisfaction is challenging, but essential be-

cause of the practical applications. For example, content

providers want to model the relationship between bitrate and

user satisfaction to maximize user satisfaction with a fixed bi-

trate. Thus, conducting a subjective study to identify PJNDs

of subjects is a prerequisite for studying this relationship.

Many methods may be used to assess the PJND. A base-

line method is given by linear or full search. The reference

image is compared with the sequence of compressed images

with decreasing bitrate until a difference is noticed. This is a

linear search, called the “method of limits” in psychophysics.

In full search, randomized comparisons with all compressed

images are carried out. In the baseline method many unnec-

essary comparisons may have to be made. Therefore, in pre-

vious research, more efficient search strategies based on the

bisection method were applied.

• Standard (aggressive) binary search. A binary search

algorithm can speed up the baseline annotation proce-

dure. The search procedure helps to quickly narrow

down the first noticeable difference, resulting in fewer

subjective comparisons than the linear search.

• Relaxed binary search. This is a modification of stan-

dard binary search where the size of the bracketing in-

terval is scaled by 3/4 instead of 1/2 in each iteration.

The relaxed version takes longer but is more robust with

respect to the nondeterministic outcomes of compar-

isons.

• Paired comparisons with scale reconstruction. Many

two-alternative forced-choice (2AFC) comparisons are

made, also between compressed images. Subjects iden-

tify the image with higher quality. A pair for which one

of the images collects 75% of the votes is considered to

have a perceptual distance equal to 1 JND.

PJND assessment methods can further be grouped accord-

ing to the way the images are presented for comparison. The

reference and the test image can be displayed sequentially or

simultaneously for a specified duration. In the latter case,
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the two images can be viewed side-by-side or on top of each

other, alternating at a certain frequency.

For industrial applications, an estimation of the PJND for

any input media elements is required without lengthy user

studies. Such prediction methods are typically trained with

PJND datasets previously acquired in laboratory or crowd-

sourcing studies. Particularly, for predictions based on deep

learning, large datasets are required for training. However,

very few such datasets are available, see Section 2. To facili-

tate an efficient creation of large PJND datasets, we compare

several PJND assessment methodologies.

There is no unique definition of a PJND. A just notice-

able difference can be detected by observers at differing levels

of distortion, depending on the way images are assessed and

compared. For example, the results depend on the display

size, viewing distance, ambient illumination, and on whether

a single or double stimulus method is used. Therefore, the

actual PJND values in a study or in an application depend

on the choice of the technique for their measurement. For

image communication systems, perceptually lossless or near-

lossless encoding methods are most relevant. Thus, it is of

practical advantage to (1) have a sensitive test for just notice-

able differences, and (2) extend these measurements so that

one can assign a fractional PJND level for all distorted im-

ages, e.g., for images compressed at arbitrary quality factors.

Regarding the desired high sensitivity of PJND tests, the

JPEG-XS standard has adopted a flicker test [1]. Instead of

comparing a test image side-by-side with a reference image,

the reference and compressed images are displayed sequen-

tially, rapidly alternating at a frequency of 8 Hz. In order to

achieve (2), the PJND tests need to be extended to a global

one so that the PJND for several reference images (i.e., the

source image, compressed at different bitrates) are attained.

From these results, quality scale values in JND units can be

reconstructed, similar to those derived from standard paired

comparisons, see Section 3.2 and [2]. Therefore, in this pa-

per, we also apply the flicker test and we assess the PJND for

a sequence of (compressed) reference images.

The main contributions of this paper are as follows.

• We introduce a global PJND assessment for a source

image where PJNDs are measured according to increas-

ing distortion levels of the reference image.

• We introduce and evaluate two methods of adjustment

for PJND assessment, a slider-based method and a

keystroke-based method, both using the flicker test.

• We show that the measurements are comparable with

those of the traditional binary search, yet significantly

faster.

• With a crowdsourcing study, we show that measure-

ments with the flicker test are more sensitive than com-

mon side-by-side comparisons with a forced choice.

2. PREVIOUS WORK

In this section, we survey the main subjective quality assess-

ment studies to collect PJND annotations. We also point to

the JND-based image and video datasets that have been built

in these studies. Later, we discuss papers that are also relevant

to the methods used in this contribution.

2.1. Assessment of JND for images

Jin et al. [3] conducted subjective quality assessment tests to

collect JND samples for JPEG compressed images and built

a dataset called MCL-JCI. The tests involved 150 participants

and 50 source images of resolution 1920 × 1080. From each

source image, 100 compressed versions were generated by

varying the JPEG quality factor (QF) from 1 (lowest) to 100

(highest). The image compressed with QF = 100 was used

as a reference image. The reference image and a compressed

image were displayed side by side on a 65-in TV with a reso-

lution of 3840 × 2160 to determine whether they are notice-

ably different. The viewing distance was 2 m from the center

of the monitor. For a given image, JND samples were col-

lected from 30 subjects. The standard binary search was used

to speed up the process. The study found that humans can

distinguish only a few distortion levels (five to seven).

Fan et al. [4] studied the JND of symmetrically and asym-

metrically compressed stereoscopic images for JPEG2000

and H.265 intra-coding. The study considered 12 stereo im-

ages and was conducted by 36 subjects. Stereo image pairs

(one source pair and one distorted pair) were shown side by

side on a 65-in 3D monitor with native resolution 3840 ×
2160. The subjects wore polarized glasses and were seated

1.6 m from the monitor. Relaxed binary search was used to

collect the JND sample from a subject. Outlier subjects were

detected, and their PJND samples were removed.

Liu et al. [5] created a JND dataset for panoramic images

viewed using a head-mounted display. The study involved 42

participants and included 40 source images of resolution 5000

× 2500. JPEG was used to compress each source image with

100 quality factors. The reference image and a compressed

image were displayed simultaneously in random order. For

each source image, the test included at least 25 observers. The

standard binary search was used to identify the JND. Outliers

were removed based on range and standard deviation.

2.2. Assessment of JND for video

Wang et al. [6] considered 30 source video sequences of res-

olution 1902 × 1080, duration 5 s, and different frame rates.

They compressed the video sequences by varying the quan-

tization parameter (QP) of the H.264/AVC video coder from

1 (smallest distortion) to 51 (highest distortion). More than

150 people participated in the study. The viewing distance

and display monitor were as in [3]. The video sequence cor-

responding to QP = 1 was used as a reference. The reference



and a distorted version were displayed one after another. JND

samples were collected from 50 subjects. The standard binary

search was used to speed up the process. The resulting JND

dataset was called MCL-JCV.

The study in [7] involved five source images and five

video sequences of resolution 1920 × 1080. The images were

encoded with JPEG, while the video sequences were encoded

with H.264 and H.265. The viewing distance and display

monitor were as in [3]. The standard binary search was used

to speed up the process.

Wang et al. [8] built a large-scale JND video dataset called

VideoSet for 220 5-s source videos in four resolutions (1080p,

720p, 540p, 360p). Each source video was compressed with

H.264 using QP values from 1 to 51. The viewing distance

was set according to the ITU-R BT.2022 recommendation.

The source video and a distorted version were displayed one

after another. A relaxed binary search was used to collect

the JND sample from a given subject. At least 30 subjects

were involved in the JND estimation of each video sequence.

Unreliable subjects and outlying samples were removed.

In [9], 40 HD (1920 × 1080) source video clips were con-

sidered. Each clip had a duration of 5 s and a frame rate of 30

fps. Each clip was compressed with H.265 by varying the QP

value from 1 to 51. The source clip and a distorted version

were played side-by-side time-synchronously on a 65-in 4K

UHD TV. For each source clip, 30 subjects participated in the

test. The distance between a subject and the screen was three

times the screen height. Standard binary search was used.

Outlying samples were excluded with the three-sigma rule.

2.3. Other relevant work

Hoffman and Stolitzka [10] proposed tests to determine if a

compressed image differs from a reference image by more

than one JND. The testing environment was according to ISO

3664. The monitor used had a 24.3-in diagonal and resolu-

tion 1920 × 1200. A reference (uncompressed) image and

an image consisting of the alternating reference image and a

distorted version were presented side by side. The observer

had to identify which of the two images was non-flickering.

A database of about 250,000 responses collected from 35 ob-

servers to 18 images was made available. The flicker method

proposed in this paper was adopted as a standard [1].

Zhang et al. [11] collected a large-scale dataset of percep-

tual judgements, which included asking subjects whether one

reference patch and one distorted patch are identical. They

used 20 types of distortions (e.g., photometric distortions,

noise, blurring, and compression artifacts) and sequentially

composed pairs of distortions. The two patches had a resolu-

tion of 64 × 64 and were shown for 1 s each, with a 250 ms

gap in between.

Redi et al. [12] compared the performance of absolute cat-

egory rating obtained by the single stimulus (SS) method with

that of the quality ruler (QR) method. The QR consists of a

series of reference images varying in a single attribute (sharp-

ness), with known and fixed quality differences between the

samples, given by a certain number of JND units [13]. For

the QR method, the quality of an input image is compared to

the image qualities on the ruler. The study showed that QR

scores have narrower confidence intervals than SS scores.

Visual analogue scales, like sliders, for assessing per-

ceived quantities such as length, area, or sensory stimuli like

loudness or taste have been studied in psychology and have

been shown to be reliable measurement tools [14].

3. METHODS

In this section we describe the proposed PJND estimation us-

ing methods of adjustment and the derivation of JND scale

values by paired comparisons that we used to estimate the

gain in sensitivity due to the flicker display technique.

3.1. Flicker-test-based PJND estimation in the lab

For an image I , we obtain a sequence Id, d = 0, 1, . . . , 100
with I0 = I and Id being the JPEG compressed version with

quality factor QF = 101 − d, d = 0, . . . , 100. Thus, as the

distortion level d increases, the bitrate decreases. For 10 ref-

erence images Ir, r = 0, 10, . . . , 90, our objective is to search

for their PJNDs among the images Id, d > r.

We used a flicker test, with the reference and the com-

pressed test image being displayed successively at a fre-

quency of 8 Hz. Using this display scheme, we implemented

three subjective assessment methods for the PJND.

• Slider based adjustment. The marker of a slider con-

trols the distortion level of the test image. Subjects

move the slider to the position corresponding to the

smallest distortion level with noticeable flicker.

• Keystroke based adjustment. The distortion level of the

test image is increased or decreased according to key

strokes on the left resp. right arrow keys. The initial

step size is ∆d = 10, and it is reduced to 5, 2, and 1,

each time when the direction is changed.

• Relaxed binary search. In this adaptive method, de-

scribed in Section 1, subjects are only required to de-

termine if a given image pair is flickering or not.

3.2. Crowdsourced PJND estimation: Paired comparison

We also estimated the sensitivity of PJND assessments with

plain side-by-side display instead of the flicker test. For this

purpose, we applied the method of paired comparisons with

scale reconstruction as used, e.g., in the construction of the

quality ruler [10]. We selected image pairs (Ik, Il) with dis-

tortion levels k, l from the set {0, 10, ..., 90}. As this requires

a very large number of comparisons, we conducted this study

using crowdsourcing.
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Fig. 1: PJND vs. distortion level of the reference image for source image 48 of the MCL-JCI dataset. Blue disks denote the

PJND raw data with areas proportional to the frequencies of the data points. The reference images were derived at distortion

levels 0,10,. . .,90. The red-dotted line connects the median values.

From the fractions Ak,l of subjects that consider Ik to

have a better quality than Il, we can reconstruct quality scale

values on the JND scale using Thurstone’s approach (case V)

with the maximum likelihood method [15]. From Thurstone’s

model that assigns Gaussian random variables of equal vari-

ance σ2 = 1

2
to the qualities of all items on the sensory con-

tinuum, we conclude that a scale difference of 0.6745 corre-

sponds to 1 JND unit. This is based on a 50% JND, i.e., if two

stimuli (Ik, Il) are 1 JND unit apart, then the detection rate of

a just noticeable difference is 50%. In terms of a 2AFC test,

this 50% detection rate corresponds to a rate of 75% prefer-

ence of the item with the better visual quality, since the other

half of the observers cannot notice a difference and will be

guessing the correct item half of the time.

4. EXPERIMENTS

4.1. Subjective assessment for PJND estimation

We carried out a lab study on selected images from the MCL-

JCI dataset [3], see Section 2.1. We sorted all 50 images in

ascending order of the mean PJNDs given in the dataset for

[3]. The images at positions 5(n− 1) + 1, n = 1, . . . 10 were

selected, covering the full range of PJNDs. These 10 images

are labeled in the dataset by SRC04, 05, 12, 14, 17, 26, 32,

36, 43, and 48.

The slider- and keystroke-based methods were applied to

these 10 images. For the more complex binary search strat-

egy, we reduced to five source images (SRC12, 14, 32, 43, 48)

each giving eight reference images: Ir, r = 0, 10, . . . , 70.

We followed the ISO standard [1] to set up the study en-

vironment. Before conducting experiments, each participant

was informed that the collected data would be processed ac-

cording to data protection regulation and signed a consent

form. Next, each participant filled a form to provide personal

information such as age and gender. Finally, each participant

was given a set of instructions about the study, including the

definition of image flickering and PJND, as well as guidance

on how to determine if an image is flickering.

The duration of a study for one image was around 20

minutes. If a participant took part in three studies continu-

ously, there were two 5-minute breaks in-between. Overall,

the number of participants was 21 (16 males and 5 females)

for the slider-based study; 15 (10 males and 5 females) for

the keystroke-based adjustment study; and 14 (9 males and 5

females) for the relaxed binary search study.

4.2. Subjective assessment for paired comparison

We conducted a crowdsourced paired comparison on the

Amazon Mechanical Turk (AMT) platform1 for five images at

eight distortion levels, I0, I10, . . . , I70 (see Fig. 4). To reduce

the image sizes for simultaneous display on common desk-

top screens, we cropped the images to patches of size 600 ×
480. Given two image patches, crowd workers were asked to

identify the one with better quality. Each patch was compared

with all others. Each patch pair appeared twice, i.e., an image

is on the left side in one pair and on the right in the other one.

This resulted in
(

8

2

)

× 2 = 56 pairs with 50 collected votes

each. This totaled 2,800 answers per reference image, and

14,000 answers overall, collected from 259 crowd workers.

We removed outliers as follows. First, we discarded all

jobs of crowd workers whose number of answers was less

than or equal to 10. Second, for each crowd worker, we cal-

culated the true positive rate (TPR) of his/her jobs. The TPR

is the fraction of judgements that correctly identified the im-

age of better quality. Here we assumed that the image with

the higher bitrate has better quality. We sorted the jobs in as-

cending order of TPR and iteratively removed the jobs with

the lowest TPR until 80% of all answers remained.

5. RESULTS

We analyzed the PJND values for the 10 source images us-

ing the three subjective PJND measurement methods (slider-,

1www.mturk.com/
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Fig. 2: Three examples of PJND medians as functions of distortion level of the reference image, with 95% confidence intervals.

Fig. 3: Time measurements (seconds per PJND) averaged

over all participants, with 95% confidence intervals.

keystroke-based, and relaxed binary search). Fig. 1 illustrates

an example of the raw data of our PJND measurements. Fig. 2

shows the medians of the PJND values and the corresponding

95% confidence intervals for five selected reference images.

The comparison shows that all three methods produced

similar PJND results with generally slightly lower PJNDs for

the relaxed binary search. This indicates that the slider- and

keystroke-based methods gave comparable results to the re-

laxed binary search method, with the difference that the re-

laxed binary search method was more sensitive compared to

the adjustment methods. Also it had a higher standard devia-

tion across all levels of distortion.

Fig. 3 compares the response times for the three meth-

ods. The average processing time per PJND measurement de-

creased with the distortion level of the reference image. This

is because the number of images that are compared to a refer-

ence image decreases with the increase of the distortion level

of the reference and because the distortions at consecutive

high distortion levels are easily distinguishable. In compar-

ison, the relaxed binary search method takes roughly 1.5 to

2 times more time than the two adjustment methods. With

Fig. 4: Image qualities in units of JND obtained by paired

comparisons.

the slider or keystrokes, many redundant comparisons can be

skipped rapidly. The average time per JND measurement for

the slider, keystroke, and relaxed binary search methods were

12.22, 12.11, and 20.77 s, respectively.

Fig. 4 shows the results of the side-by-side comparisons

without flicker in the crowdsourcing study. The reconstructed

scale values (in JND units) were shifted so that the original

source images have a quality equal to 1 JND. In summary, the

average drop in quality from distortion level 0 (no distortion)

to level 70 is only about 0.54 JND. In contrast, for the flicker-

based tests the PJND for reference level 0 typically is in the

range from 60 to 70. In other words, the flicker test provides

about twice the sensitivity of a side-by-side comparison.

It should be expected that as the distortion level of the ref-

erence image increases, also the PJND increases. Therefore,

it is surprising that in Fig. 2 the medians of the PJNDs initially

decrease up to distortion level of about 40 and only then be-

gin to increase. This observation can be made for all PJNDs

assessed by the three subjective tests across all 10 source im-

ages. This finding is in line with Fig. 4: The perceptual image

quality does not monotonically decrease. For a deeper under-

standing of this result, further tests would be required.



6. CONCLUSION AND FUTURE WORK

To estimate the PJND efficiently, we introduced two sub-

jective assessment methods, a slider-based method and a

keystroke-based method, and compared them with a tradi-

tional one, the relaxed binary search method. We applied the

flicker test and assessed the PJND for 10 reference images

with different distortion levels.

Compared with the relaxed binary search method, the pro-

posed methods are faster, however, less sensitive. Moreover,

an additional crowdsourced paired comparison showed that

the flicker test is about twice as sensitive as the classical side-

by-side comparisons with forced choice.

To compare our lab-based results using the flicker test

with PJND estimates in the crowd, also using the flicker test,

we will carry out a pilot study using the full search paradigm.

Future investigations of subjective assessment of global

picture-wise just noticeable difference should uncover the re-

sponse process during the measurement. Understanding this

process will help us develop and optimize the dynamic sub-

jective assessment of PJND.
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