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ABSTRACT

The CenterTrack tracking algorithm achieves state-of-the-art
tracking performance using a simple detection model and
single-frame spatial offsets to localize objects and predict their
associations in a single network. However, this joint detection
and tracking method still suffers from high identity switches
due to the inferior association method. To reduce the high
number of identity switches and improve the tracking accuracy,
in this paper, we propose to incorporate a simple tracked
object bounding box and overlapping prediction based on the
current frame onto the CenterTrack algorithm. Specifically, we
propose an Intersection over Union (IOU) distance cost matrix
in the association step instead of simple point displacement
distance. We evaluate our proposed tracker on the MOT17
test dataset, showing that our proposed method can reduce
identity switches significantly by 22.6% and obtain a notable
improvement of 1.5% in IDF1 compared to the original
CenterTrack’s under the same tracklet lifetime. The source
code is released at https://github.com/Nanyangny/CenterTrack-
IOU.

Index Terms— Multi-object tracking, joint detection and
tracking, data association

1. INTRODUCTION

Multi-object tracking (MOT) is a popular topic in computer
vision due to its wide application in areas such as transportation
and elderly care. Recent progress on joint detection and
tracking technique has drawn much research attention in MOT
problems. MOT is a task to estimate trajectories for objects of
interest through space and time [1]. The rapid development of
deep learning has advanced the research on MOT.

MOT is often addressed by the tracking-by-detection
paradigm which consists of two parts [2]. First, an object
detection algorithm that outputs detection results in the form
of bounding boxes location in every frame; then an association
algorithm is used to link up the newly detected objects with
the existing tracks based on spatial information or extracted
re-identification (re-ID) features, or both. Most of the existing
MOT solvers use two separate models to perform the two steps
respectively. Although there has been significant development

in object detection [3, 4, 5] and re-ID [6, 7] separately to
enhance the overall tracking performance, those methods
hardly achieve real-time inference speed due to the slow and
complex association methods [8, 9, 10] and separate learned
models without shared features.

Recent research in simultaneous detection and tracking
method [11, 12, 13] provides another viable research direction
for MOT tasks. Under this approach, existing detectors are
converted into trackers and both tasks are combined in the
same framework. Two tasks now share the same set of low-
level features, therefore no need for re-computation.

CenterTrack [13], one of the state-of-the-art trackers,
adopts the idea of simultaneous detection and tracking methods
with point-based detection. In CenterTrack, each object is
represented by the center point of its bounding box. This
center point is tracked through time. Objects in a frame are
represented by a heatmap of points. CenterTrack takes in
heatmaps of two consecutive frames and trains the model to
output an offset vector from the current object center to its
center in the previous frame. A simple greedy matching is
performed using the distance between the predicted offset and
detected center point in the previous frame to associate object
identities. This tracking-conditioned detection framework
replaces the need for a motion model [13], which reduces
the need for extra computation. However, CenterTrack relies
on center displacement offset to associate objects in adjacent
frames only, which is not enough to provide robust association
ability especially when occlusions occur. Additionally, long-
range tracklet association is not explored in [13]. Therefore, in
this paper, we propose to integrate the prediction of the tracked
object bounding box to the existing CenterTrack tracking
model, which enables robust distance cost matrix calculation
based on both center displacement and tracked object bound-
ing box prediction to associate objects through long-range
tracklets, shown in Figure 1. Our main contributions in this
project are:

• Incorporate tracked object bounding box prediction to
CenterTrack using robust cost matrix calculation in
object association.

• Evaluate the proposed method on MOT17 dataset to
obtain a significant reduction in identity switches (IDs)
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Fig. 1: Overview of our proposed method: A network is
configured to predict tracked bounding box and IOU based on
the original CenterTrack model. IOU distance cost matrix is
calculated between the tracked object bounding boxes B̂(t−1)

(in blue) at the previous frame and tracked object bounding
boxes prediction B̂(t) (in dotted red) from the current frame,
followed by IOU filtering. Finally, a simple greedy matching
algorithm is used to associate objects in the current frame.

and notable improvements in accuracy score only with
additional two output branches.

This paper is organized as follows: In Section 2 and 3,
the detailed methodology of the baseline baseline CenterTrack
model and proposed tracking method are introduced. The
experiment details and results are described in Section 4. We
conclude this paper in Section 5.

2. BASELINE CENTERTRACK ALGORITHM

CenterTrack takes three inputs, the current frame, the previous
frame, and a heatmap rendered from tracked object centers.
Then, the model outputs a center detection heatmap for the
current frame, the bounding box size map, and a center offset
map.

Heatmap Representation CenterTrack is built on Center-
Net [4]. Objects are presented by the center point of their
bounding boxes. For each center p of class C in each frame,
it is rendered as a Gaussian-shaped peak into a heatmap Y ∈
[0, 1]

W
R ×H

R ×C = R({p0,p1, ...}), the rendering function at
position q ∈ R2 is defined as:

Rq({p0,p1, ...}) = max
i

exp
(
− (pi − q)2

2σ2
i

)
(1)

where the Gaussian kernel σi is a function of the object size
[14].

Tracking-conditioned Detection In CenterTrack, two
frames are passed to the network: the current frame I(t) ∈
RW×H×3 and the prior frame I(t−1) ∈ RW×H×3. This
allows the model to estimate the change between the frames

and potentially reason about the occluded objects at time t
from visual information at time t−1. To help the model detect
the objects in the current frame, a heatmap rendered from prior
detections Ŷ ∈ [0, 1]

W
R ×H

R ×C and size map Ŝ ∈ RW
R ×H

R ×2,
are used to feed the model as well, whereR is a downsampling
factor and C is the number of classes. To reduce false positive
detections, local maxima (peaks) in a 3×3 region are used and
only peaks with a confidence score greater than a threshold τ
are rendered. The object sizes are extracted from the size map
to calculate the objects’ bounding boxes.

Object Association CenterTrack predicts a center dis-
placement as two output channels D̂(t) ∈ RW

R ×H
R ×2. For

each detected object at location p̂, the predicted D̂(t)

p̂(t) shows

the difference of object center in the current frame p̂(t) and the
previous frame p̂(t−1), D̂(t)

p̂(t) = p̂(t)− p̂(t−1). With this center
offset prediction, the object center location in the previous
frame can be easily tracked. For each detection at p̂, a simple
greedy matching algorithm is used to associate it with the
closet unmatched prior detection at position p̂ − D̂p̂ [13]. If
the distance is more than the bounding box size of objects in
the adjacent frames, a new tracklet is spawn. This association
method uses displacement distance only.

Objective Functions Focal loss is used as the training
objective function to learn the heatmap [15, 14]:

Lk =
1

N

∑
xyc

{
(1− Ŷxyc)

α log(Ŷxyc) if Yxyc = 1,

(1− Yxyc)
β(Ŷxyc)

α log(1− Ŷxyc) otherwise

whereN is the number of objects, Yxyc a ground-truth heatmap
corresponding to the annotated centers, and α = 2 and β = 4
are hyperparameters of the function.

The regression objective functions for size and displace-
ment use the L1 loss [13]:

Lsize =
1

N

N∑
i=1

|Ŝpi
− si|, (2)

where si is the bounding box size of the i-th object at location
pi.

Loff =
1

N

N∑
i=1

|D̂p(t)
i
− (p(t−1)

i − p(t)
i )|, (3)

where p(t)
i and p(t−1)

i are tracked centers.

3. PROPOSED METHOD

Our proposed tracked object bounding box prediction (Cen-
terTrack++) is built upon the CenterTrack tracking method
in [13]. The original CenterTrack association method only
uses single-frame tracked center offsets to associate objects
through time, this method may fail in long-range tracklets
or when occlusions occur as the occluded object’s identity
tends to assign to the object that occludes it. Under those
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Fig. 2: Illustration of proposed CenterTrack++. Only two
new output branches (Tracked Size and IOU) are added to the
original CenterTrack [13] framework.

cases, a single center displacement is not sufficient to obtain
accurate tracking results. Therefore, additional size prediction
is proposed to allow the tracking algorithm to better deal with
the identity association by taking the overlapping of prior
tracked object bounding boxes and predicted tracked bounding
boxes into consideration. With two additional outputs on top
of the existing tracking-conditioned CenterTrack method, the
number of IDs can be easily reduced and tracking accuracy
will then be improved, resulting in a better MOT tracker.

3.1. Tracked Object Bounding Box and IOU Prediction
(CenterTrack++)

Inspired by the idea of IOU distance in SORT [16] and IOU-
Tracker [17], IOU information is used in the association. To
enable IOU distance calculation, prediction of tracked object
bounding box in the prior frame with long-range tracklet
lifetime is as shown in Figure 2.

Tracked Object Bounding Box Prediction. There are
two possible ways to predict tracked object bounding box in
the previous frame based on the current frame.

• Tracking wh Similar to the learning of center offset in
the original CenterTrack model, the width and height
difference T̂ S ∈ RW

R ×H
R ×2 of the object’s bounding

box in the current frame and the previous frame is
learned. This is used to predict the bounding box
of the tracked object in the prior frame. For each

detected object at location p̂, T̂ S
(t)

p̂(t) is the difference of

object size in the current frame ŝ(t) = (ŵ(t), ĥ(t)) and
previous frame ŝ(t−1) = (ŵ(t−1), ĥ(t−1)), calculated
by ŝ(t) − ŝ(t−1), where ŵ and ĥ are width and height of
object bounding box at location p̂.

• Tracking ltrb Apart from learning width and height
difference, we can also use offsets of the left, top, right,
and bottom (ltrb) of the bounding box from the center
in the prior frame instead, thus T̂ S ∈ RW

R ×H
R ×4. For

each detected object at location p̂, T̂ S
(t)

p̂(t) = (x̂(t−1) −
ŵ(t−1)

2 , ŷ(t−1)+ ĥ(t−1)

2 , x̂(t−1)+ ŵ(t−1)

2 , ŷ(t−1)− ĥ(t−1)

2 ),
x̂ and ŷ are horizontal and vertical coordinates of p̂.

IOU Prediction. To further suppress inaccurate associa-
tion, the IOU value of the bounding box of the same target in
adjacent frames (IOU-adjacent) is learnt to provide a filtering
threshold for unlikely associations. It is reasonable to assume
that the IOU-adjacent is equal or smaller than IOU between
detection in the prior frame and the regressed object bounding
box based on the current frame (IOU-tracked). Any IOU-
tracked that is smaller than the predicted IOU-adjacent should
not be associated. Therefore, we configure the network to learn
the IOU-adjacent (O ∈ [0, 1]

W
R ×H

R ×1). For each detected
object at location p̂, Ô(t)

p̂(t)
= IOU( ˆb(t−1), ˆb(t)), where ˆb(t−1)

and ˆb(t) are tracked bounding box in the previous and current
frame at position p̂ respectively. The model is conditioned
to reason about how much overlapping of the same object’s
bounding box between adjacent frames.

Therefore, two additional outputs would be produced by
the model under this proposed method. The L1 loss objective
function can be applied to them. For IOU prediction:

LIOU =
1

N

N∑
i=1

|Ô(t)
pi
− IOU(b

(t−1)
pi

, b
(t)
pi
)|, (4)

where b(t−1)
pi

and and b(t)pi
are tracked ground-truth bounding

boxes.
In the case of Tracking wh approach for tracked object

bounding box prediction:

Ltracked size =
1

N

N∑
i=1

|T̂ S
(t)

pi
− (s

(t−1)
i − s(t)i )|. (5)

In the case of Tracking ltrb approach for tracked object
bounding box prediction:

Ltracked size =
1

N

N∑
i=1

|T̂ S
(t)

pi
− (x

(t−1)
i − w

(t−1)
i

2
,

y
(t−1)
i +

h
(t−1)
i

2
,

x
(t−1)
i +

w
(t−1)
i

2
,

y
(t−1)
i − h

(t−1)
i

2
)|.

(6)
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3.2. Association Steps

As explained in [16], IOU distance can implicitly handle short-
term occlusions caused by passing targets. Since we can
predict the tracked object bounding boxes from the current
frame, IOU distance cost matrix can be naturally incorporated
into the association process. IOU distance cost is calculated by

1 − IOU(b̂(t−1), t̂b
(t)
), where b̂(t−1) is detected bounding

box in the prior frame and t̂b
(t)

is tracked bounding box
prediction from the current frame. If the IOU distance cost
is more than Ô

(t)

p̂
(t)
i

at the detected point p̂(t)i , we set the

corresponding cost to infinity which effectively prevents from
unlikely associations. After distance cost matrix computation,
a simple greedy matching algorithm is employed to assign
object identities.

As displacement and IOU distance cost matrices are
now available, we further explored the possibilities of us-
ing different combinations and orders of matrices during
association. Not only using a single matrix, two matrices
can be summed up together to produce a combined matrix
for the association. Additionally, we can use two matrices
sequentially. Specifically, after one round of a simple greedy
matching with one distance cost matrix, a different cost matrix
can be used to associate the remaining unmatched detections
and tracklets further with another round of greedy matching.
Tracking performances of different association methods are
reported in section 4 under Ablative Studies.

4. EXPERIMENTS

4.1. Dataset and Metrics

We use MOT17 [18] dataset to train and evaluate the proposed
method in our paper. MOT17 contains 7 sequences for training
and test respectively. The videos were captured by stationary
cameras mounted in high-density scenes with heavy occlusion.
Only pedestrians are annotated and evaluated. The video
framerate is 25-30 FPS. Since MOT17 does not provide
an official validation split, we split each training sequence
into halves, the first half for training and the second one
for validation in our ablative studies. Our main results are
reported on the test set. We followed the same metric used
in the original CenterTrack model, the CLEAR metric [19]
and Identification F1 score (IDF1) [20], to evaluate overall
tracking accuracy.

4.2. Implementation Details

Our implementation is based on CenterTrack, DLA [21] is
used as the network backbone with Adam optimizer [22] at
a learning rate of 1.25e − 4 and a batch size of 16. We use
standard data augmentations include horizontal flipping, ran-
dom resized cropping, and color jittering. For all experiments,
we use 70 epochs for the network training. The learning rate

Table 1: Results on MOT17 validation set using the track-
ing wh approach.

Association IDF1↑ MOTA↑ IDs↓ FP↓ FN↓
DIS 69.2 66.2 219 3.9 29.5
IOU 71.1 66.7 204 3.6 29.3

Combined 70.9 66.2 233 3.9 29.6
DIS→IOU 70.0 66.2 218 3.9 29.5
IOU→DIS 69.8 66.8 185 3.6 29.2

Table 2: Results on MOT17 validation set using the track-
ing ltrb approach.

Association IDF1↑ MOTA↑ IDs↓ FP↓ FN↓
DIS 69.2 66.2 219 3.9 29.5
IOU 72.4 66.7 191 3.8 29.2

Combined 70.8 66.5 236 3.8 29.3
DIS→IOU 70.5 66.6 202 3.8 29.2
IOU→DIS 71.4 66.7 166 3.8 29.2

drops by 1/10 at the 60th epoch. We train and test the proposed
model with three GTX 1080 Ti GPUs.

The input size is resized to 960× 544, with downsampling
R = 4. Followed the recommended parameters in Center-
Track, we also use random false positive ratio λfp = 0.1
and random false negative ratio λfp = 0.4 to generate noises
in the dataset to train a robust tracking-conditioned object
detector. Similarly, we only output tracklets with confidence
of θ = 0.4 and above and render heatmap with a threshold
τ = 0.5. The network is pre-trained on CrowdHuman dataset
[23] before training on MOT17 dataset. However, unlike
original CenterTrack, we use long-range tracklets, tracklet
lifetime = 30, discarding the unmatched tracklets only after 30
frames.

4.3. Ablative Studies

As described in the previous section, we experimented cost ma-
trix with different combinations and orders: 1. Displacement
only (DIS), used in original CenterTrack; 2. IOU only (IOU);
3. IOU and displacement (Combined); 4. IOU first followed
by displacement (IOU→DIS); 5. Displace first followed by
IOU (DIS→IOU).

The result of IOU only association method in Table 1
and 2 confirm the benefits of using additional tracked object
bounding box prediction to reduce IDs of object tracking, both
IDF1 improves compared to the baseline DIS CenterTrack
tracking algorithm, with a significant 3.2% IDF1 improvement
from baseline method using tracking ltrb approach in Table
2. Since our proposed method focuses on improving Center-
Track’s association ability, not detection capability, a small
improvement in MOTA is expected and observed as MOTA
metrics MOTA penalizes detection errors and IDs while IDF1
focuses on the tracking accuracy of detected objects. [24].

Comparing the overall performance between tracking wh
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and tracking ltrb approach to predict tracked object bounding
box, it is observed that the use of ltrb offsets is more effective
to regress the width and height of the bounding box of the
tracked centers from the current detected centers compared to
just learning from the size offset between adjacent frames.

However, the idea of sequential matching using differ-
ent matrices yields little or no improvement in association
accuracy compared to single IOU matching, implying that
single IOU matching is sufficient to provide accurate tracking
results. Additionally, the idea of a combined distance matrix
does not necessarily improve tracking accuracy neither, this
could be due to the addition of two distance matrices with
different scales, which can be considered as noises to corrupt
the associating power of the other matrix.

CenterTrack++ is more robust in object tracking compared
to CenterTrack in cases when occlusions occur or objects
exit the frame. Figure 3 and 4 demonstrate CenterTrack++’s
ability to track objects accurately during those cases while
CenterTrack fails.

(a) CenterTrack

(b) CenterTrack++

Fig. 3: Comparison of the tracking results on the sequence
”MOT17-09” validation when short-term occlusions occur with
each arrow representing 10-frame interval.

4.4. Test Result

From the ablative studies, we found out that the use of
IOU distance in the association step under the tracking ltrb
approach yields the best performance. We adopt the best
method and evaluate its performance on MOT17 test data. The
results are shown in Table 3. It is shown that our method can
reduce the IDs significantly by 22.6% and obtain a notable
improvement of 1.5% in IDF1 score compared to the Original
CenterTrack under the same tracklet lifetime. Our method
obtains the best performance based on MOTA, IDF1 and IDs
evaluation metric among trackers only using spatial features

for association. Compared with FairMOT [2] that employs
re-identification based on additional appearance features, our
method still obtains better IDs score (2352 vs. 3303).

Table 3: Comparison of the state-of-the-art methods under
”private detector” protocol. Note: S=Spatial, A=Appearance.

Tracker
Association

Features
MOTA↑ IDF1↑ IDs↓

TubeTK[25] S 63 58.6 4137
CenterTrack[13] S 67.8 64.7 3039

Ours S 68.1 66.2 2352
SST[26] A 52.4 49.5 8431

CTrackerV1[27] S+A 66.6 57.4 5529
DEFT[28] S+A 66.6 65.4 2823

FairMOT[2] S+A 73.7 72.3 3303

(a) CenterTrack (b) CenterTrack++

Fig. 4: Comparison of the tracking results on the sequence
”MOT17-02” validation set when the leftmost person exited
the frame. CenterTrack assigns the same ID to different
person(ID:19), while CenterTrack++ does not.

5. CONCLUSION

In this paper, we propose tracked object bounding box
and overlapping prediction outputs onto the CenterTrack
tracking algorithm, which reduces the IDs and improves
overall tracking accuracy. The extra prior tracked object
bounding box and overlapping prediction enable the use of the
IOU distance matrix to associate objects across frames more
accurately. Experiments on MOT17 test dataset under private
protocol show that our proposed method achieves the best
performance among the trackers only using spatial features in
the association.
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“Tracking objects as points,” European Conference on
Computer Vision (ECCV), 2020.

[14] Hei Law and Jia Deng, “Cornernet: Detecting objects as
paired keypoints,” 2019.

[15] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He,
and Piotr Dollár, “Focal loss for dense object detection,”
2018.

[16] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft,
“Simple online and realtime tracking,” in 2016 IEEE
International Conference on Image Processing (ICIP),
2016, pp. 3464–3468.

[17] E. Bochinski, V. Eiselein, and T. Sikora, “High-speed
tracking-by-detection without using image information,”

in 2017 14th IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS),
2017, pp. 1–6.

[18] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth,
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