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ABSTRACT

Underwater object detection for robot picking has attracted a
lot of interest. However, it is still an unsolved problem due
to several challenges. We take steps towards making it more
realistic by addressing the following challenges. Firstly, the
currently available datasets basically lack the test set anno-
tations, causing researchers must compare their method with
other SOTAs on a self-divided test set (from the training set).
Training other methods lead to an increase in workload and
different researchers divide different datasets, resulting there
is no unified benchmark to compare the performance of dif-
ferent algorithms. Secondly, these datasets also have other
shortcomings, e.g., too many similar images or incomplete
labels. Towards these challenges we introduce a dataset,
Detecting Underwater Objects (DUO), and a corresponding
benchmark, based on the collection and re-annotation of all
relevant datasets. DUO contains a collection of diverse un-
derwater images with more rational annotations. The cor-
responding benchmark provides indicators of both efficiency
and accuracy of SOTAs (under the MMDtection framework)
for academic research and industrial applications, where JET-
SON AGX XAVIER is used to assess detector speed to simu-
late the robot-embedded environment.

Index Terms— Underwater object detection, robot pick-
ing, dataset, benchmark

1. INTRODUCTION

Underwater robot picking is to use the robot to automatically
capture sea creatures like holothurian, echinus, scallop, or
starfish in an open-sea farm where underwater object detec-
tion is the key technology for locating creatures. Until now,
the datasets used in this community are released by the Under-
water Robot Professional Contest (URPC1) beginning from
2017, in which URPC2017 and URPC2018 are most often
used for research. Unfortunately, as the information listed in
Table 1, URPC series datasets do not provide the annotation
file of the test set and cannot be downloaded after the contest.

1Underwater Robot Professional Contest: http://en.cnurpc.org.

Table 1. Information about all the collected datasets. * de-
notes the test set’s annotations are not available. 3 in Class
means three types of creatures are labeled, i.e., holothurian,
echinus, and scallop. 4 means four types of creatures are la-
beled (starfish added). Retention represents the proportion of
images that retain after similar images have been removed.

Dataset Train Test Class Retention Year
URPC2017 17,655 985* 3 15% 2017
URPC2018 2,901 800* 4 99% 2018
URPC2019 4,757 1,029* 4 86% 2019
URPC2020ZJ 5,543 2,000* 4 82% 2020
URPC2020DL 6,575 2,400* 4 80% 2020
UDD 1,827 400 3 84% 2020

Therefore, researchers [1, 2] first have to divide the training
data into two subsets, including a new subset of training data
and a new subset of testing data, and then train their proposed
method and other SOTA methods. On the one hand, train-
ing other methods results in a significant increase in work-
load. On the other hand, different researchers divide different
datasets in different ways, causing there is no unified bench-
mark to compare the performance of different algorithms. In
terms of the content of the dataset images, there are a large
number of similar or duplicate images in the URPC datasets.
URPC2017 only retains 15% images after removing similar
images compared to other datasets. Thus the detector trained
on URPC2017 is easy to overfit and cannot reflect the real per-
formance. For other URPC datasets, the latter also includes
images from the former, e.g., URPC2019 adds 2,000 new im-
ages compared to URPC2018; compared with URPC2019,
URPC2020ZJ adds 800 new images. The URPC2020DL

adds 1,000 new images compared to the URPC2020ZJ . It is
worth mentioning that the annotation of all datasets is incom-
plete; some datasets lack the starfish labels and it is easy to
find error or missing labels. [3] pointed out that although the
CNN model has a strong fitting ability for any dataset, the ex-
istence of dirty data will significantly weaken its robustness.
Therefore, a reasonable dataset (containing a small number
of similar images as well as an accurate annotation) and a
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Fig. 1. Examples in DUO, which show a variety of scenarios in underwater environments.

corresponding recognized benchmark are urgently needed to
promote community development.

To address these issues, we introduce a dataset called
Detecting Underwater Objects (DUO) by collecting and re-
annotating all the available underwater datasets. It contains
7,782 underwater images after deleting overly similar im-
ages and has a more accurate annotation with four types
of classes (i.e., holothurian, echinus, scallop, and starfish).
Besides, based on the MMDetection2 [4] framework, we
also provide a SOTA detector benchmark containing effi-
ciency and accuracy indicators, providing a reference for
both academic research and industrial applications. It is
worth noting that JETSON AGX XAVIER3 was used to as-
sess all the detectors in the efficiency test in order to simu-
late robot-embedded environment. DUO will be released in
https://github.com/chongweiliu soon.

In summary, the contributions of this paper can be listed
as follows.

• By collecting and re-annotating all relevant datasets, we
introduce a dataset called DUO with more reasonable annota-
tions as well as a variety of underwater scenes.

• We provide a corresponding benchmark of SOTA de-
tectors on DUO including efficiency and accuracy indicators
which could be a reference for both academic research and
industrial applications.

2MMDetection is an open source object detection toolbox based on Py-
Torch. https://github.com/open-mmlab/mmdetection

3JETSON AGX XAVIER is an embedded development board produced
by NVIDIA which could be deployed in an underwater robot. Please re-
fer https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-
kit for more information.

2. BACKGROUND

In the year of 2017, underwater object detection for open-sea
farming is first proposed in the target recognition track of Un-
derwater Robot Picking Contest 20174 (URPC2017) which
aims to promote the development of theory, technology, and
industry of the underwater agile robot and fill the blank of
the grabbing task of the underwater agile robot. The compe-
tition sets up a target recognition track, a fixed-point grasping
track, and an autonomous grasping track. The target recog-
nition track concentrates on finding the high accuracy and
efficiency algorithm which could be used in an underwater
robot for automatically grasping.

The datasets we used to generate the DUO are listed be-
low. The detailed information has been shown in Table 1.

URPC2017: It contains 17,655 images for training and
985 images for testing and the resolution of all the images
is 720×405. All the images are taken from 6 videos at an
interval of 10 frames. However, all the videos were filmed
in an artificial simulated environment and pictures from the
same video look almost identical.

URPC2018: It contains 2,901 images for training and
800 images for testing and the resolutions of the images are
586×480, 704×576, 720×405, and 1,920×1,080. The test
set’s annotations are not available. Besides, some images
were also collected from an artificial underwater environment.

URPC2019: It contains 4,757 images for training and
1029 images for testing and the highest resolution of the im-
ages is 3,840×2,160 captured by a GOPro camera. The test
set’s annotations are also not available and it contains images
from the former contests.

URPC2020ZJ : From 2020, the URPC will be held twice
a year. It was held first in Zhanjiang, China, in April and then

4From 2020, the name has been changed into Underwater Robot Profes-
sional Contest which is also short for URPC.



Fig. 2. The proportion distribution of the objects in DUO.

in Dalian, China, in August. URPC2020ZJ means the dataset
released in the first URPC2020 and URPC2020DL means the
dataset released in the second URPC2020. This dataset con-
tains 5,543 images for training and 2,000 images for testing
and the highest resolution of the images is 3,840×2,160. The
test set’s annotations are also not available.

URPC2020DL: This dataset contains 6,575 images for
training and 2,400 images for testing and the highest resolu-
tion of the images is 3,840×2,160. The test set’s annotations
are also not available.

UDD [5]: This dataset contains 1,827 images for train-
ing and 400 images for testing and the highest resolution of
the images is 3,840×2,160. All the images are captured by a
diver and a robot in a real open-sea farm.

3. PROPOSED DATASET

3.1. Image Deduplicating

As we explained in Section 1, there are a large number of
similar or repeated images in the series of URPC datasets.
Therefore, it is important to delete duplicate or overly similar
images and keep a variety of underwater scenarios when we
merge these datasets together. Here we employ the Percep-
tual Hash algorithm (PHash) to remove those images. PHash
has the special property that the hash value is dependent on
the image content, and it remains approximately the same if
the content is not significantly modified. Thus we can eas-
ily distinguish different scenarios and delete duplicate images
within one scenario.

After deduplicating, we obtain 7,782 images (6,671 im-
ages for training; 1,111 for testing). The retention rate of the
new dataset is 95%, which means that there are only a few
similar images in the new dataset. Figure 1 shows that our
dataset also retains various underwater scenes.

3.2. Image Re-annotation

Due to the small size of objects and the blur underwater en-
vironment, there are always missing or wrong labels in the
existing annotation files. In addition, some test sets’ annota-
tion files are not available and some datasets do not have the
starfish annotation. In order to address these issues, we follow
the next process which combines a CNN model and manual
annotation to re-annotate these images. Specifically, we first
train a detector (i.e., GFL [6]) with the originally labeled im-
ages. After that, the trained detector predicts all the 7,782
images. We treat the prediction as the groundtruth and use it
to train the GFL again. We get the final GFL prediction called
the coarse annotation. Next, we use manual correction to get
the final annotation called the fine annotation. Notably, we
adopt the COCO [7] annotation form as the final format.

3.3. Dataset Statistics

The proportion of classes: The total number of objects is
74,515. Holothurian, echinus, scallop, and starfish are 7,887,
50,156, 1,924, and 14,548, respectively. Figure 2 shows
the proportion of each creatures where echinus accounts for
67.3% of the total. The whole data distribution shows an obvi-
ous long-tail distribution because the different economic ben-
efits of different seafoods determine the different breed quan-
tities.

The distribution of instance sizes: Figure 3(a) shows an
instance size distribution of DUO. Percent of image size rep-
resents the ratio of object area to image area, and Percent of
instance represents the ratio of the corresponding number of
objects to the total number of objects. Because of these small
creatures and high-resolution images, the vast majority of ob-
jects occupy 0.3% to 1.5% of the image area.

The instance number per image: Figure 3(b) illustrates
the number of categories per image for DUO. Number of in-
stances represents the number of objects one image has, and
Percentage of images represents the ratio of the correspond-
ing number of images to the total number of images. Most
images contain between 5 and 15 instances, with an average
of 9.57 instances per image.

Summary: In general, smaller objects are harder to de-
tect. For PASCAL VOC [8] or COCO [7], roughly 50% of
all objects occupy no more than 10% of the image itself, and
others evenly occupy from 10% to 100%. In the aspect of
instances number per image, COCO contains 7.7 instances
per image and VOC contains 3. In comparison, DUO has
9.57 instances per image and most instances less than 1.5% of
the image size. Therefore, DUO contains almost exclusively
massive small instances and has the long-tail distribution at
the same time, which means it is promising to design a detec-
tor to deal with massive small objects and stay high efficiency
at the same time for underwater robot picking.
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Fig. 3. (a) The distribution of instance sizes for DUO; (b) The number of categories per image.

4. BENCHMARK

Because the aim of underwater object detection for robot
picking is to find the high accuracy and efficiency algo-
rithm, we consider both the accuracy and efficiency evalua-
tions in the benchmark as shown in Table 2.

4.1. Evaluation Metrics

Here we adopt the standard COCO metrics (mean average
precision, i.e., mAP) for the accuracy evaluation and also pro-
vide the mAP of each class due to the long-tail distribution.

AP – mAP at IoU=0.50:0.05:0.95.
AP50 – mAP at IoU=0.50.
AP75 – mAP at IoU=0.75.
APS – AP for small objects of area smaller than 322.
APM – AP for objects of area between 322 and 962.
APL – AP for large objects of area bigger than 962.
APHo – AP in holothurian.
APEc – AP in echinus.
APSc – AP in scallop.
APSt – AP in starfish.
For the efficiency evaluation, we provide three metrics:
Param. – The parameters of a detector.
FLOPs – Floating-point operations per second.
FPS – Frames per second.
Notably, FLOPs is calculated under the 512×512 input

image size and FPS is tested on a JETSON AGX XAVIER
under MODE 30W ALL.

4.2. Standard Training Configuration

We follow a widely used open-source toolbox, i.e., MMDe-
tection (V2.5.0) to produce up our benchmark. During the

training, the standard configurations are as follows:
•We initialize the backbone models (e.g., ResNet50) with

pre-trained parameters on ImageNet [9].
• We resize each image into 512 × 512 pixels both in

training and testing. Each image is flipped horizontally with
0.5 probability during training.
• We normalize RGB channels by subtracting 123.675,

116.28, 103.53 and dividing by 58.395, 57.12, 57.375, respec-
tively.
• SGD method is adopted to optimize the model. The

initial learning rate is set to be 0.005 in a single GTX 1080Ti
with batchsize 4 and is decreased by 0.1 at the 8th and 11th
epoch, respectively. WarmUp [10] is also employed in the
first 500 iterations. Totally there are 12 training epochs.
• Testing time augmentation (i.e., flipping test or multi-

scale testing) is not employed.

4.3. Benchmark Analysis

Table 2 shows the benchmark for the SOTA methods. Multi-
and one- stage detectors with three kinds of backbones (i.e.,
ResNet18, 50, 101) give a comprehensive assessment on
DUO. We also deploy all the methods to AGX to assess effi-
ciency.

In general, the multi-stage (Cascade R-CNN) detectors
have high accuracy and low efficiency, while the one-stage
(RetinaNet) detectors have low accuracy and high efficiency.
However, due to recent studies [11] on the allocation of more
reasonable positive and negative samples in training, one-
stage detectors (ATSS or GFL) can achieve both high accu-
racy and high efficiency.

Therefore, in terms of accuracy, the accuracy difference
between the multi- and the one- stage methods in AP is not



Table 2. Benchmark of SOTA detectors (single-model and single-scale results) on DUO. FPS is measured on the same machine
with a JETSON AGX XAVIER under the same MMDetection framework, using a batch size of 1 whenever possible. R: ResNet.

Method Backbone Param. FLOPs FPS AP AP50 AP75 APS APM APL APHo APEc APSc APSt

multi-stage:

Faster R-CNN [12]
R-18 28.14M 49.75G 5.7 50.1 72.6 57.8 42.9 51.9 48.7 49.1 60.1 31.6 59.7
R-50 41.14M 63.26G 4.7 54.8 75.9 63.1 53.0 56.2 53.8 55.5 62.4 38.7 62.5
R-101 60.13M 82.74G 3.7 53.8 75.4 61.6 39.0 55.2 52.8 54.3 62.0 38.5 60.4

Cascade R-CNN [13]
R-18 55.93M 77.54G 3.4 52.7 73.4 60.3 49.0 54.7 50.9 51.4 62.3 34.9 62.3
R-50 68.94M 91.06G 3.0 55.6 75.5 63.8 44.9 57.4 54.4 56.8 63.6 38.7 63.5
R-101 87.93M 110.53G 2.6 56.0 76.1 63.6 51.2 57.5 54.7 56.2 63.9 41.3 62.6

Grid R-CNN [14]
R-18 51.24M 163.15G 3.9 51.9 72.1 59.2 40.4 54.2 50.1 50.7 61.8 33.3 61.9
R-50 64.24M 176.67G 3.4 55.9 75.8 64.3 40.9 57.5 54.8 56.7 62.9 39.5 64.4
R-101 83.24M 196.14G 2.8 55.6 75.6 62.9 45.6 57.1 54.5 55.5 62.9 41.0 62.9

RepPoints [15]
R-18 20.11M 35.60G 5.6 51.7 76.9 57.8 43.8 54.0 49.7 50.8 63.3 33.6 59.2
R-50 36.60M 48.54G 4.8 56.0 80.2 63.1 40.8 58.5 53.7 56.7 65.7 39.3 62.3
R-101 55.60M 68.02G 3.8 55.4 79.0 62.6 42.2 57.3 53.9 56.0 65.8 39.0 60.9

one-stage:

RetinaNet [16]
R-18 19.68M 39.68G 7.1 44.7 66.3 50.7 29.3 47.6 42.5 46.9 54.2 23.9 53.8
R-50 36.17M 52.62G 5.9 49.3 70.3 55.4 36.5 51.9 47.6 54.4 56.6 27.8 58.3
R-101 55.16M 72.10G 4.5 50.4 71.7 57.3 34.6 52.8 49.0 54.6 57.0 33.7 56.3

FreeAnchor [17]
R-18 19.68M 39.68G 6.8 49.0 71.9 55.3 38.6 51.7 46.7 47.2 62.8 28.6 57.6
R-50 36.17M 52.62G 5.8 54.4 76.6 62.5 38.1 55.7 53.4 55.3 65.2 35.3 61.8
R-101 55.16M 72.10G 4.4 54.6 76.9 62.9 36.5 56.5 52.9 54.0 65.1 38.4 60.7

FoveaBox [18]
R-18 21.20M 44.75G 6.7 51.6 74.9 57.4 40.0 53.6 49.8 51.0 61.9 34.6 59.1
R-50 37.69M 57.69G 5.5 55.3 77.8 62.3 44.7 57.4 53.4 57.9 64.2 36.4 62.8
R-101 56.68M 77.16G 4.2 54.7 77.3 62.3 37.7 57.1 52.4 55.3 63.6 38.9 60.8

PAA [19]
R-18 18.94M 38.84G 3.0 52.6 75.3 58.8 41.3 55.1 50.2 49.9 64.6 35.6 60.5
R-50 31.89M 51.55G 2.9 56.8 79.0 63.8 38.9 58.9 54.9 56.5 66.9 39.9 64.0
R-101 50.89M 71.03G 2.4 56.5 78.5 63.7 40.9 58.7 54.5 55.8 66.5 42.0 61.6

FSAF [20]
R-18 19.53M 38.88G 7.4 49.6 74.3 55.1 43.4 51.8 47.5 45.5 63.5 30.3 58.9
R-50 36.02M 51.82G 6.0 54.9 79.3 62.1 46.2 56.7 53.3 53.7 66.4 36.8 62.5
R-101 55.01M 55.01G 4.5 54.6 78.7 61.9 46.0 57.1 52.2 53.0 66.3 38.2 61.1

FCOS [21]
R-18 18.94M 38.84G 6.5 48.4 72.8 53.7 30.7 50.9 46.3 46.5 61.5 29.1 56.6
R-50 31.84M 50.34G 5.4 53.0 77.1 59.9 39.7 55.6 50.5 52.3 64.5 35.2 60.0
R-101 50.78M 69.81G 4.2 53.2 77.3 60.1 43.4 55.4 51.2 51.7 64.1 38.5 58.5

ATSS [11]
R-18 18.94M 38.84G 6.0 54.0 76.5 60.9 44.1 56.6 51.4 52.6 65.5 35.8 61.9
R-50 31.89M 51.55G 5.2 58.2 80.1 66.5 43.9 60.6 55.9 58.6 67.6 41.8 64.6
R-101 50.89M 71.03G 3.8 57.6 79.4 65.3 46.5 60.3 55.0 57.7 67.2 42.6 62.9

GFL [6]
R-18 19.09M 39.63G 6.3 54.4 75.5 61.9 35.0 57.1 51.8 51.8 66.9 36.5 62.5
R-50 32.04M 52.35G 5.5 58.6 79.3 66.7 46.5 61.6 55.6 58.6 69.1 41.3 65.3
R-101 51.03M 71.82G 4.1 58.3 79.3 65.5 45.1 60.5 56.3 57.0 69.1 43.0 64.0



obvious, and the APS of different methods is always the low-
est among the three size AP. For class AP, APSc lags signifi-
cantly behind the other three classes because it has the small-
est number of instances. In terms of efficiency, large parame-
ters and FLOPs result in low FPS on AGX, with a maximum
FPS of 7.4, which is hardly deployable on underwater robot.
Finally, we also found that ResNet101 was not significantly
improved over ResNet50, which means that a very deep net-
work may not be useful for detecting small creatures in un-
derwater scenarios.

Consequently, the design of high accuracy and high effi-
ciency detector is still the main direction in this field and there
is still large space to improve the performance. In order to
achieve this goal, a shallow backbone with strong multi-scale
feature fusion ability can be proposed to extract the discrim-
inant features of small scale aquatic organisms; a specially
designed training strategy may overcome the DUO’s long-tail
distribution, such as a more reasonable positive/negative la-
bel sampling mechanism or a class-balanced image allocation
strategy within a training batch.

5. CONCLUSION

In this paper, we introduce a dataset (DUO) and a correspond-
ing benchmark to fill in the gaps in the community. DUO
contains a variety of underwater scenes and more reasonable
annotations. Benchmark includes efficiency and accuracy in-
dicators to conduct a comprehensive evaluation of the SOTA
decoders. The two contributions could serve as a reference
for academic research and industrial applications, as well as
promote community development.
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