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ABSTRACT

In this work, we propose a swimming analytics system for au-
tomatically determining swimmer stroke rates from overhead
race video (ORV). General ORYV is defined as any footage of
swimmers in competition, taken for the purposes of viewing
or analysis. Examples of this are footage from live streams,
broadcasts, or specialized camera equipment, with or without
camera motion. These are the most typical forms of swim-
ming competition footage. We detail how to create a system
that will automatically collect swimmer stroke rates in any
competition, given the video of the competition of interest.
With this information, better systems can be created and addi-
tions to our analytics system can be proposed to automatically
extract other swimming metrics of interest.

Index Terms— Swimming, computer vision, athlete
tracking, action recognition, stroke rate

1. INTRODUCTION

In this work, we propose a swimming analytics system for au-
tomatically determining swimmer stroke rates from overhead
race video (ORV). We define General ORV as any footage
of swimmers in competition, taken above the water level for
the purposes of viewing or analysis. Examples of this in-
clude footage from live streams, broadcasts, or specialized
camera equipment, with or without camera motion. Much of
the data requested by swimming coaches, such as stroke rates
for swimmer analytics, can be manually extracted from ORV.
We aim to automatically extract this data as extraction can be
very time-consuming and error-prone for humans.

No system that completely automates the analysis of gen-
eral swimming ORV currently exists. However, a system that
takes specialized static ORV of an entire pool has been pro-
posed in [1]]. Our proposed system differs in that the camera
is allowed to move and capture only a portion of the pool,
which covers most typical ORV scenarios from swimming
broadcasts and live streams. In particular, our system takes
advantage of the developments in deep models for computer
vision to allow greater flexibility regarding the input video
that can be used for extracting relevant swimming analytics.

The paper is organized as follows. In Section 2} relevant
prior work is reviewed. Section |3| describes the dataset we
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have developed for training and testing, which we are releas-
ing with the paper. Section |4|describes the proposed system,
including its modules, detection, tracking, and stroke rate es-
timation. Experiments are described in Section [5] followed
by a conclusion in Section [6]

2. RELATED WORK

Methods of computer vision and human pose estimation have
been considered for swimming analytics for years. Initially,
work was conducted to collect analytics in highly controlled
environments [2]]. For example, underwater footage was ana-
lyzed from a swimming channel. This footage was very dif-
ferent from the general ORYV, and the setup could not easily
translate to general race swimming, but the approach showed
that automated swimming analytics had promise. Later, ORV
was proposed as a source of data for automated collection of
swimming analytics [1} 3} 4} 5, 16]].

In [3} 4], a calibrated lab-like setup was proposed for au-
tomated swimming analytics from ORV. The authors used a
complex assortment of tracking algorithms, human proposed
regions of interest, and a multitude of hand-crafted computer
vision methods in order to analyze swimmers. While excel-
lent results were obtained, the methods were tailored to the
one pool their work was dedicated to. A highly complex tun-
ing process would have to be repeated for each new pool to
be analyzed. More recently, [l 6] presented a novel method
for extracting the stroke rate of a swimmer given a video of
a single swimmer. As ORV does not usually track a single
swimmer for the entirety of a race, this approach cannot be
directly applied to general ORV.

The most recent published work on this topic [[1]] presents
a system called DeepDASH, in which all swimmers’ strokes
could be automatically extracted from static, wide-angle high
definition ORV that captures the entire pool at all times. Our
proposed approach allows for a similar set of analytics to
be extracted, but from a more general broadcast-style ORYV,
which is much more common and widely available.

3. SWIMMER ANALYTICS DATASET

As part of this research, in addition to the methods described
in the paper, a swimming analytics dataset, with data for



Class # Annotations | % of Total
“On-blocks” 2,344 10%
Diving 1,124 5%
Swimming 13,009 53%
Underwater 2,997 12%
Turning 1,558 6%
Finishing 3,534 14%
Total 24,566 100%

Table 1: The amount of collected data for each class.

swimmer detection and stroke rate estimation, has been pro-
vided alongside a custom annotation softwareﬂ The dataset
consists of YouTube ORV clips and manually generated la-
bels that can be used to train machine learning models.

3.1. Swimmer Detection Dataset

To our knowledge, no public dataset currently exists for
swimmer detection in the general broadcast-style ORV. The
authors of [1]] created their own dataset annotating the heads
of swimmers from nine different venues, using video from
a static camera. In contrast, our dataset consists of 35
broadcast-style ORV videos containing three camera views
with over 50% non-static footage, all taken from a single pool.
In addition, the annotations outline the entire body of a swim-
mer rather than just the head. Such data can be used to train
popular object detectors [[7, |8, 9} [10]] for detecting swimmers
in a racing environment.

The ground truth was collected from videos following the
definitions in [[L1]] using custom software mentioned. We uti-
lize videos of swimmers collected from a competition posted
on Swim USA’s YouTube page [12]. This competition is
from the 2019 TYR Pro Swim Series, and we refer to it as
the Bloomington competition. The videos had resolutions of
720x 1280 and 1080x 1920, respectively, and were taken at
30 frames per second (fps). In addition, we also included the
lane number of the swimmer in the venue. We annotated ev-
ery third frame of the video except for videos capturing the
diving class, in which every frame was annotated. This re-
sulted in roughly 3,000 annotated frames. Swimmers’ poses
were annotated in six classes (“on-blocks”, diving, swim-
ming, underwater, turning, and finishing), and the proportion
of each class in the dataset is shown in Table [[l This data
was used as the training set. The test set consisted of roughly
250 frames from a different race, which was not used in the
training.

3.2. Stroke Rate Estimation Dataset

The stroke rate estimation dataset was also created from the
Bloomington competition, but the races were chosen to be

'https://github.com/t jwoinosk/swim_annotator

Swimmer Detection
and Classification

Swimmer
Tracking

Race Footage

74|
Swimmer X g E
Detection N'Sub-Videos @
Information ==
Sub-Video

Swimmer detection

. Information
Information

Specific
Analytics Using
Deep Learning

Other Specific
Analytics

Stroke Analytics

Breath
Detection

Fig. 1: The envisioned analytics system.

different in terms of event and swimmers from those used for
the detection dataset described above. First, each race video
was split into sub-videos, each sub-video containing only one
swimmer, using our tracking system described in Section [4]
Then, for each sub-video, we assigned a stroke value, called
s-value, for every frame in that video. This was done by fitting
a sinusoidal curve with range [0, 1] to every stroke cycle in
any given sub-video. An s-value of 1 signifies the top of a
stroke, while an s-value of 0 indicates the bottom of a stroke.
In addition to this, for every frame, a flag is given detailing if
the swimmer in the frame was in the swimming class. If the
swimmer was not swimming (e.g., if turning) their s-value
was set to 0.5. With this procedure, data from 346 sub-videos
containing roughly 188,000 s-values was created.

4. METHODS

The envisioned swimming analytics system is shown in
Fig. m In this section, we describe swimmer detection, classi-
fication, tracking, and stroke rate estimation. Other analytics
systems shown in Fig.[I] such as breath detection, can be built
on the foundation presented here, but are left for future work.

4.1. Swimmer Detection

We selected the YOLOvV3 [13| [14] model architecture for
swimmer detection and classification. YOLOv3 was chosen
for its inference speed while offering competitive accuracy.
Both a YOLOV3-416-tiny, with a Darknet15 backbone, and
the YOLOvV3-416, with a Darknet53 backbone, were used
for swimmer detection. Transfer learning from the COCO-
dataset pre-trained weights was used to train detectors on the
swimmer detection dataset described in Section[3:1] The hy-
perparameters for training, such as the number of epochs,
learning rate, burn-in, batch size, and model anchors were
kept at default values. Each model was trained to 12,000
epochs, as suggested in [15)]. The trained models output a
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bounding box for each detected swimmer, along with the class
(Table[I) with the highest confidence value.

4.2. Swimmer Tracking

For swimmer tracking, we adopted the Simple Online and Re-
altime Tracking (SORT) [16]] approach, which consists of de-
tection, tracking, and data association. In our case, swim-
mer detections are provided by the re-trained YOLOV3, as
described above; tracking is accomplished via Kalman fil-
tering [17], and data association using the Hungarian Algo-
rithm [[18]]. The Kalman filter uses a linear constant-velocity
model. The state vector at time k is given by [16]:

N
Xk: = [u7v7 S,T,U7U7 S] ) (1)

where v and v represent the horizontal and vertical coordi-
nates of the centroid of the swimmer’s bounding box. For a
bounding box of width w and height h, s and r are defined as
s =w-handr = w/h. Finally, @, 0, $ are the time derivatives
of u, v, and s. Note that the time derivative of r is not part of
the state vector, because it is assumed that the bounding box’s
aspect ratio w/h does not change [[16]. The prediction step
consists of state prediction and error covariance prediction:

X, = AXj_q, 2)
P, = AP, AT +Q, 3)

where A € R7*7 is a matrix with all zeros except ones on the
main diagonal and the sixth diagonal (so that u, = up_1 +
U1, etc.), Pj, € R™7 is the error covariance matrix at step
k, and Q € R7*7 is the process noise convariance matrix.
The Kalman gain matrix at time k is computed as

K, =P, (P, +R)"}, @)

where R € R7*7 is the measurement noise covariance ma-
trix. Finally, the update step consists of updating the error
covariance matrix and the state estimate using the detected
swimmers at time k:

Py =I-Ky)Py, ®

Xp =X, + Ki(zp — X)), (6)

where zj, corresponds to the detected swimmer at time k.
Associations between detected bounding boxes produced by
YOLOV3 and predicted boxes produced in (2)) are made us-
ing the Hungarian Algorithm [18]. For initialization, we used
Pp=Q=10"2Tand R = 107'L.

Using the tracked bounding boxes for each swimmer, a
sub-video corresponding to each swimmer in the ORV can be
created. Then these sub-videos are input to the stroke rate
estimation module, described in the next section.

4.3. Stroke Rate Estimation

Stroke rate estimation is performed by feeding the frames of
a sub-video tracking a single swimmer into a convolutional
neural network (CNN), whose task is to predict the s-value
(Section [3.2) of a stroke in the input frame. The produced se-
quence of s-values is smoothed using a low-pass Butterworth
filter of order 8 with the cut-off (—3dB) frequency of 3Hz,
which corresponds to 180 half-strokes per minute. The ratio-
nale is that no swimmer can achieve a higher stroke rate. The
smoothed signal is then transformed into a square wave func-
tion with range [0, 1] by thresholding at the mean value of the
smoothed output signal. Using this square wave, the mean
position in time of each sequential string of 1’s was assigned
as the predicted position of the top of a stroke (s-value of 1).

Three CNN models for predicting s-values were explored
in the experiments. One of them, which is referred to as
“Victor”, was proposed in [5] and contains 16.9 million pa-
rameters. The other two are shown in Fig. 2] The model
shown in Fig. [2a is referred to as “small”. It consists of a
sequence of convolutional and max-pooling layers, followed
by a 1000-unit dense layer, a single output unit with a sig-
moid activation. Overall, it contains 1.0 million parameters.
All convolutional layers consist of 3 x 3 filters, with a stride
of 1, and Rectified Linear Unit (ReLU) activation. The num-
ber of filters in each layer is shown in the figure (referred to
as “Maps”’). Max-pooling operates on windows of size 2 x 2
with a stride of 2.

The model shown in Fig. 2b]is based on the VGG 16 archi-
tecture and uses the pre-trained VGG16 backbone. It consists
of convolution-pooling blocks, where each block is built up of
two or three convolutional layers followed by a max-pooling
layer. Overall, it contains 16.7 million parameters. As in the
“small” model, convolutional layers consist of 3 x 3 filters,
with a stride of 1, and ReLLU activation. The number of filters
in each layer is shown in the figure. Max-pooling operates on
windows of size 2 x 2 with a stride of 2. The weights of the
first four layers of the backbone were frozen during training.

4.4. Training

Training was conducted in Keras [19] using the RMSprop op-
timizer with a learning rate of 10~#. The models were trained
to output the s-value (Section [3.2)) for each input frame. The
loss function was the mean absolute error (MAE) between the
model output and the ground-truth s-values. Training image
pixel values were first scaled to values in the range [1/255, 1].
Training images were augmented by rotations, width/height
shifts, shears, zooms, and horizontal flips, and the models
were trained for 35 epochs.
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Fig. 2: Two of the models used for stroke recognition in the proposed system.

5. EXPERIMENTS

5.1. Swimmer Detection and Classification

An examination of the dataset, where every third frame out
of 30fps videos was annotated, suggests that there is a lot of
redundancy in the data. We, therefore, wanted to examine the
behavior of detection models, developed based on YOLOvV3
and YOLOV3-tiny architectures, as a function of the amount
of data they were trained on. Specifically, we randomly se-
lected subsets of various sizes from the training set, trained
models on them, and then tested them on the test set to assess
their performance.

Five models with YOLOv3-416 architecture and five
models with YOLOv3-tiny-416 architecture were trained on
the following eleven training subset sizes: 1%, 2%, 5%,
10%, 15%, 20%, 25%, 30%, 50%, 75% ,and 100% of the
training set. In total, 110 different models were trained and
tested, 55 for each of the YOLOv3-416 and YOLOV3-tiny-
416 model architectures. Each of the models had the same
training parameters and hyper-parameters; the only way they
differed was in the (amount of) data they were trained on. The
mean average precision (AP) with Intersection-over-Union
(IoU) threshold of 25% (AP-25) of each model was evalu-
ated against the test set to examine the resulting accuracy
and variability as a function of the training set size. We re-
port the average precision (AP-25) on the “swimming” class,
which contains detections of swimmers while swimming, and
on “not swimming”, which is the mean AP of the other five
classes shown in Table[I] Finally, the mean AP (mAP) of all
classes is also reported.

The results are shown in Fig. 3] Since five models were
trained for each training (sub)set size, we show their average
AP-25 scores as well as the 95% confidence interval around
the average, in the form of a shaded band. The horizontal
axis is labeled “% Training Data” and means the percentage
of the training set used for training the particular set of mod-
els. The results indicate that the model with the YOLOv3-416
architecture (Fig.[3p) is more accurate than the smaller model
based on the YOLOv3-416-tiny architecture (Fig.[3p). In both
cases, the “swimming” class is detected more accurately than
“not swimming” classes, presumably because “swimming”
class is the most represented in the dataset (Table [I)) and the
model was exposed to more samples of this class than any
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Fig. 3: Detection accuracy vs. percentage of the training set

other. Another conclusion from these results is that 10-20%
of the training data seems sufficient to reach a reasonable de-
tection accuracy, because of the redundancy in the data. A
recommendation for future swimming video annotation is that
for the less-represented classes such as “diving” and “turn-
ing”, each frame may be necessary, but for the “swimming”
class, it is likely sufficient to annotate only one in 15 frames
(i.e., 2 frames per second). Based on these results, we used a
model with YOLOv3-416 architecture trained on 20% of the
training data for subsequent experiments.
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Sequences | IDF1 | IDP | IDR | MOTA | MOTP

Training | 82.13 | 85.07 | 79.38 | 89.34 | 74.51
Test 39.21 | 42.25 | 36.59 | 11.21 61.71

Table 2: Tracking results based on metrics from [20} 22].

Sequences | GT | MT | PT | ML
Training | 199 | 164 | 35 0
Test 48 9 31 8

Table 3: Tracking results based on metrics from [20} 22].

5.2. Swimmer Tracking

To test swimmer tracking, ground truth data that encodes the
trajectory of swimmers, annotated frame by frame, and as-
signed unique ID numbers, are required. We created such
ground truth tracking data from the annotations described in
Section [3] Specifically, the detection annotations were lin-
early interpolated through all frames using the swimmer lane
number provided in the dataset. This created 32 sequences
to be used for testing the tracker. Of the 32 sequences, 6
contained frames that were not seen by the detection model,
while the other 26 sequences were used in training the de-
tection model. Although the Kalman-based tracker does not
require training, we felt that the detector’s performance (and
therefore the tracker’s performance as well) would be quite
different on these two sets of sequences, so we report two
tracking scores: “training” (on the 26 sequences seen by the
detector) and “test” (on the 6 sequences not seen by the de-
tector). Tracking performance was measured using the MOT
metrics dev kit [20]], with a variety of tracking metrics whose
definitions can be found in [20, 21} 22].

The results are shown in Tables Q—El As expected, on
the sequences the detector has seen before (“training”) the
tracking accuracy is higher across all metrics compared to the
sequences not seen by the detector (“test”). A closer exam-
ination of the “test” results showed that of the 48 trajecto-
ries present in this set, 40 were tracked to some degree. The

Model | Fl-score | ASD | SDSTD | A

Victor 0.866 2.05 3.87 0.157*
Small 0.859 2.18 4.75 0.149*
VGGIl6 0.794 2.64 4.42 0.178*

Table 4: Stroke position estimation results. *In the version of
the paper on IEEEXplore, the values of A are incorrect; these
are the correct values.

tracker performed much better on the portion of the footage
that contained the “swimming” class, while it had problems
with the footage containing other classes. This could be be-
cause other classes were less represented in detector training,
so the detector’s accuracy was lower here, which negatively
affected the tracker. Another issue for tracking failures was
occlusions, which may occur for a variety of reasons such as
water refraction, opaque water, the race venue, camera field
of view, and people on the side of the pool.

5.3. Stroke Rate Estimation

Stroke rate estimation was performed on the 346 sub-videos,
created from a set of videos different from those used for de-
tection, using the tracking system explained in Section 4.2}
This data was split into training, validation, and test sets of
roughly 80%, 10%, and 10% respectively, of the total amount
of data, and three models (Victor, Small, and VGG16) were
trained on the test data, as described in Section 4.3 Fig. [
shows samples of the raw model output (green), Butterworth-
smoothed output (yellow), and the top of a stroke (red x).

To quantify the accuracy, we used metrics defined in [5],
and the results are shown in Tabled] For the Fl-score, a pre-
dicted stroke peak is considered correct if it is within three
frames of a ground-truth stroke peak. The average stroke dis-
tance (ASD, in frames) and stroke distance standard devia-
tion (SDSTD, in frames) are measures of the absolute dis-
tance from a predicted stroke peak to the nearest ground-truth
stroke peak. A is the average difference between the pre-
dicted s-values and the ground truth. All these metrics mea-



sure stroke position accuracy. Stroke rate is the inverse of the
time difference between neighboring stroke peaks.

As seen in Table[d] Victor and Small models produce more
accurate results than the VGG16-based model. The reason
for the somewhat weaker performance of the VGG16-based
model is likely that part of the backbone was frozen during
training, and may therefore not be well-tuned for extracting
features necessary for this particular task. All three models
achieve reasonable accuracy and can identify a stroke peak to
within 2-3 frames, on average, from its ground-truth position.
However, the standard deviation of these predictions is around
4 frames, which should be reduced for highly accurate stroke
rate estimation.

6. CONCLUSION

In this work, we presented a swimming analytics system
based on unconstrained overhead race video (ORV), as well
as a dataset used for training and testing various modules in
the system: swimmer detection, classification, tracking, and
stroke rate estimation. The proposed system provides a solid
basis to build upon and for developing methods for extracting
additional analytics from swimming ORV.
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