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Abstract—In this work, we present an efficient and
quantization-aware panoptic driving perception model (Q-
YOLOP) for object detection, drivable area segmentation, and
lane line segmentation, in the context of autonomous driving.
Our model employs the Efficient Layer Aggregation Network
(ELAN) as its backbone and task-specific heads for each task. We
employ a four-stage training process that includes pretraining on
the BDD100K dataset, finetuning on both the BDD100K and iVS
datasets, and quantization-aware training (QAT) on BDD100K.
During the training process, we use powerful data augmentation
techniques, such as random perspective and mosaic, and train the
model on a combination of the BDD100K and iVS datasets. Both
strategies enhance the model’s generalization capabilities. The
proposed model achieves state-of-the-art performance with an
mAP@0.5 of 0.622 for object detection and an mIoU of 0.612 for
segmentation, while maintaining low computational and memory
requirements.

Index Terms—QObject detection, semantic
quantization-aware training, autonomous driving

segmentation,

I. INTRODUCTION

Panoptic perception systems are critical components of au-
tonomous cars, enabling them to perceive and understand their
environment comprehensively. These systems solve multiple
vision tasks simultaneously, including object detection, lane
line segmentation, drivable area segmentation, and generate a
rich understanding of the road scene.

In order to solve the multi-task problem for panoptic driv-
ing perception, we develop a low-power, multi-task model
tailored for traffic scenarios, addressing the challenges of
object detection and semantic segmentation. The aim is to
create efficient algorithms capable of accurately recognizing
objects and segmenting both lane line and drivable area while
maintaining minimal computational cost, rendering them ideal
for deployment in resource-constrained environments such as
mobile devices, 10T devices, and embedded systems.

To achieve low-power consumption, we adopt a neural
network architectures optimized for energy efficiency. The de-
velopment process involves reducing the size and complexity
of the models used for object detection and segmentation, as
well as quantizing the model to minimize energy consumption.

Our panoptic driving perception system reaches 93.46 FPS
on NVIDIA V100 and 3.68 FPS on MediaTek Dimensity 9200
Series Platform. Meanwhile, it attains 0.622 mAP and 0.612
mloU on the object detection and segmentation tasks of the
competition iVS dataset.

Fig. 1: Our model is designed to simultaneously process
object detection, drivable area segmentation, and lane line
segmentation on a single input image. The bounding boxes
indicate the location of traffic objects, the green areas represent
the main lane of drivable areas, the red areas represent the
alternate lane of drivable areas, the light blue areas represent
single lines, and the pink-purple areas represent dashed lines.

II. METHOD

Our model, derived from YOLOPv2 and YOLOV7 [2],
is specifically designed to address both object detection and
segmentation tasks. It comprises five main components: the
backbone, the neck, the detection head, drivable area segmen-
tation head, and lane line segmentation head. The backbone is
Efficient Layer Aggregation Network (ELAN) [3]l, optimized
for rapid and efficient feature extraction.

The neck of our model is a Spatial Pyramid Pooling
(SPP) network [4], which facilitates the handling of objects
with varying scales and sizes by pooling features at multiple
resolutions. This enhancement improves the accuracy and
robustness of object detection. The detection head is based on
RepConv [3], an innovative neural network architecture that
merges the efficiency of mobile networks with the accuracy
of more complex models. Subsequently, a non-maximum
suppression is applied to the output of object detection process
to generate the final predictions. Consequently, our model
is capable of accurately detecting objects in images while
managing computation and memory requirements.

Furthermore, in addition to object detection, our neural
network also encompasses task-specific heads for drivable
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Fig. 2: The proposed model architecture and post-processing
flow. First, a non-maximum suppression (NMS) technique is
applied to the output of the object detection head in order
to refine the predictions. Moreover, the prediction of lane line
segmentation is allowed to overwrite the prediction of drivable
area segmentation in regions where both predictions overlap.

area segmentation and lane line segmentation. These dedicated
heads possess distinct network structures that are optimized for
their respective tasks. As drivable area segmentation and lane
line segmentation generate separate predictions, we allow the
result of lane line segmentation to overlap with the result of
drivable area segmentation.

In summary, our model is engineered to optimize efficiency
and accuracy while also addressing the challenges associated
with multi-task. Its unique combination of components and
specialized task heads make it ideal for real-world applica-
tions such as autonomous driving and object recognition in
resource-constrained environments. A visual representation of
our model architecture is presented in Figure [2]

A. Loss Function

As we modify the head of YOLOPv2 [1]] to support multi-
label prediction, we introduce the loss function derived from
HybridNets [[6] to enhance the performance of our approach.
The loss function for objection detection task consists of three
components,

Lget = o1 Lejass + CV2Lobj + azLpor (D

Specifically, for Lg.;, focal loss is used in both L 4ss
and L,y;. The classification loss, L.qss, is Tesponsible for
penalizing classification errors, while Ly; is used for predict-
ing object confidence. Both terms are implemented by focal
loss [7]. The term Ly,, represents the similarity between the
predicted results and ground truth by considering the overlap

rate, aspect ratio, and scale. We implement L, using the
smooth L1 loss function. The coefficient o1, o, and a3 are
hyperparameters used to balance the detection losses.

The objective for lane line segmentation task combines three
components,

Lseg_ll = BILTversky + B2LFocal + 53LJaccard (2)

The first term Tversky loss [8[l, L7yersky, i used to address
the issue of data imbalance and achieve much better trade-
off between precision and recall, and the second term Lp,cq;
aims to minimize the classification error between pixels and
focuses on hard labels. The third term, L j,ccard, 1S utilized
to measure the similarity between prediction and ground-
truth segmentation masks. The coefficient 31, S2 and (3 are
hyperparameters used to balance losses.

On the other hand, the objective for drivable area segmen-
tation task only combines two components:

Lseg_da =N LTversky + '72LFocal (3)

The coefficient y; and ~5 are hyperparameters used to
balance the losses.

The overall objective, L, for our final model combines
the object detection loss Lg.; and the segmentation loss Lcq
to learn both tasks at the same time:

Loy = 61Ldet + 62Lseg_da + 63Lseg_ll (4)

The coefficient §1, d2 and &3 are hyperparameters used to
balance the detection loss and segmentation losses.

B. Quantization

Quantization-Aware Training (QAT) is a technique aimed at
making neural networks more amenable to quantization. Dur-
ing QAT, we introduce the quantization error during training
by sequentially applying quantize and dequantize operations.
This enables the network to learn more robust representations
that can be efficiently quantized during inference. We employ
the Straight-Through Estimator (STE) [9] algorithm for QAT,
which offers a simple and efficient approach. With STE, we
round the weights and activations to the nearest quantization
level during forward propagation, while utilizing the gradients
of the unquantized values during backward propagation. In this
manner, the network can backpropagate the gradients through
the quantization operation, which is not differentiable in its
original form. By simulating the quantization error during
training, we can ensure that the network learns robust features
that are less sensitive to quantization.

III. IMPLEMENTATION DETAIL
A. Data Preparation

As the organizers of the contest provided only a portion
of the BDD100K [10] dataset, we opted to use the complete
BDDI100K dataset to augment the training data. In previous
works that used the BDD100K dataset for semantic segmenta-
tion, the focus was typically on segmenting only the drivable



areas and lane lines. There were no attempts to further classify
the drivable areas or lane lines into multiple categories.

However, our semantic segmentation task involves catego-
rizing images into six classes: background, main lane, alter-
native lane, single line, double line, and dashed line. This is
different from previous works, which only segmented images
into two classes: line and lane. Therefore, we re-generate the
six classes of segmentation labels for the BDD100K dataset.

For the object detection task, the objective is to detect four
types of objects: pedestrian, vehicle, scooter, and bicycle. In
the case of scooters and bicycles, both the rider and the respec-
tive vehicle are included within the bounding box. However,
the BDD100OK dataset labels riders, scooters, and bicycles
as distinct entities, as depicted in the following figure. To
comply with the task requirements, we employ the Hungarian
algorithm [11] to pair riders with their corresponding scooters
or bicycles and label them within the same bounding box.

B. Training Process

In our experiments, the training process consists of several
stages: 1) initial pretraining on the BDD100K [10] dataset,
then 2) pretraining on the BDD100K with mosaic augmenta-
tion [12]], 3) finetuning on both BDD100K and iVS datasets,
4) quantization-aware training (QAT) on the integrated iVS
and BDD100OK datasets. Initially, we train our model on the
BDDI100K dataset without mosaic for 300 epochs, then turning
on mosaic augmentation for 150 epochs. Subsequently, we
jointly train the model on both the BDD100K and iVS datasets
for an additional 150 epochs. Finally, we apply QAT [9] for
an extra 20 epochs for quantization.

Data Augmentation Techniques. To enhance the model’s
generalization capabilities, we apply several data augmentation
techniques during the training process. These techniques in-
clude normalization, random perspective transformation, HSV
color space augmentation, horizontal flipping, and mosaic. By
simulating variations that may occur in real-world scenarios,
these techniques improve the model’s ability to adapt to new
data. The mosaic technique turns on in the second and third
stages, and it is turned off for the last 10 epochs of third stage.

In detail, all images is normalized with mean
(0.485,0.456,0.406) and std (0.229,0.224,0.225), random
perspective transforming with scale factor 0.25, and translation
factor 0.1. For HSV color space augmentation, the factor
of Hue augmentation is 0.015, the factor of Saturation
augmentation is 0.7, and the factor of Value augmentation is
0.4.

Weight Initialization. The weight of the backbone and
detection head of our model is initialized from YOLOvV7 [2]
pretrained weight, while the other parameters are all random
initialized.

Implementation Details. We resize all images to 384 x 640
of both BDD10OK [[10] and iVS datasets. The Adam optimizer
is used for optimization. Different batch sizes are used for
different stages, with 32 during first and second pretraining, 32
during finetuning, and 16 during quantization-aware training
(QAT). The default anchor sizes are set as (12,16), (19,36),

(40,28), (36,75), (76,55), (72,146), (142,110), (192,243), and
(459,401). The learning rate scheduler employed is cosine
annealing with a warm-up phase, and the initial learning rates
are set to le-2 during first pretraining, 5e-3 during second
pretraining, Se-4 during finetuning, and 5Se-5 during QAT. The
minimum learning rates are set to le-5 during first pretraining,
5e-6 during second pretraining, Se-7 during finetuning, and Se-
8 during QAT. The warm-up phase is set to 5 epochs during
pretraining and O epochs during finetuning and QAT. The
values of the coefficients for the losses are reported as follows:
a1 = 0.5, Qg = 1.0, Qg = 0.05, 51 = 1.0, ﬂg = 1.0, ﬂd = 1.0,
01 = 1.0, 05 = 1.0, 3 = 0.2, 72 = 0.2, and 3 = 0.2. These
coefficients are used in the computation of the loss function,
which is a crucial component of our proposed method.

C. Inference Process

The inference process involves pre-processing the in-
put images, which includes resizing from 1080 x 1920
to 384 x 640. Following this, images are normalized
with mean (0.485,0.456,0.406) and standard deviation
(0.229,0.224,0.225). The post-processing steps for the de-
tection and segmentation parts are carried out. In the de-
tection part, the intersection over union (IoU) threshold of
non-maximum suppression (NMS) is set to 0.25, and the
confidence threshold is set to 0.05. In the segmentation part,
the results from the two segmentation heads are merged, and
the output is upsampled from 384 x 640 to 1080 x 1920.

IV. EXPERIMENTAL RESULTS
A. Environment Setup

We conducted our experiments using 8 Nvidia V100 GPUs
for training. PyTorch 1.10 [[13]] and TensorFlow 2.8.0 [[14] were
used to implement our models and training pipeline, while
OpenCV 4.6.0 [[15] was used for image pre-processing.

Our model architecture was based on the publicly available
PyTorch implementations of YOLOP [[16] and YOLOvV7 [2].
To migrate the model from PyTorch to TensorFlow, we first
translated the PyTorch model into ONN format, and then
used the onnx2tflitd?] toolkit to convert ONNX into TensorFlow
(.h5) and TFLite model (.tflite).

B. Main Results

We present the performance of our model on the final
testing dataset provided by the contest organizer at different
training stages. Initially, we trained the model only on the
BDDI100OK [10] dataset. However, due to the variation in the
data distribution between BDD100K and the target task, the
model may not be able to generalize well on the target task.

To address this issue, we added the iVS dataset to the
training process and performed mix data finetuning (i.e. the
third stage). This approach enabled the model to adapt itself to
better fit the target task, as the iVS dataset provided additional
data with a similar data distribution to the target task. By

Thttps://onnx.ai/
Zhttps://github.com/MPolaris/onnx2tflite



training on this diverse dataset, the model was able to learn
more effectively from the data and improve its performance
on the target task.

The performance of our proposed model is evaluated
through various training stages. In the pretraining without
mosaic stage, as depicted in Table [} the model is trained on
BDDI100K dataset, which effectively boosts the performance
of all.

Based on YOLOv4 [12]], we integrate mosaic technology
in our model training. However, in the pretraining stage with
mosaic shown in Table[l} we notice a decrease in performance
across all tasks. The implementation of the mosaic technique
does not yield improved performance, which could potentially
be attributed to its training exclusively on the BDD100K
dataset. As a result, the model may be more suited to the
BDDI100K dataset, leading to a slight decline in performance
when applied to the iVS dataset. Nevertheless, further finetun-
ing on the iVS dataset enables the model to achieve enhanced
performance.

In the third stage, the model is finetuned using a mix of the
BDD100K and iVS datasets with mosaic augmentation, which
resulted in a significant improvement in object detection and
lane line segmentation performance. Additionally, in the last
10 epochs, the mosaic augmentation was turned off to allow
the model to recover its adaptability to normal images.

TABLE I: The test performance on the iVS dataset provided
by the contest organizer.

Object Drivable Area lane Line
Model Detection Segmentation ~ Segmentation
(mAP@0.5) (mloU) (mloU)
Pretraining w/o mosaic 0.445 0.837 0.433
Pretraining w/ mosaic 0.417 0.852 0.379
Finetuning 0.531 0.841 0.435

C. Testing Results in the Competition

Table [lI| shows the testing results of public dataset in the
competition provided by the contest organizer. Our approach
is effective for both object detection and segmentation tasks,
achieving 0.495 mAP and 0.401 mIoU on pretraining with mo-
saic stage. Finetuning the model on the mix dataset improved
the performance to 0.540 mAP and 0.615 mloU, demonstrating
the importance of the mix dataset in overcoming domain shift.
Applying QAT to the finetuned model not only maintained
the model’s performance but also improved the detection task,
which achieved 0.622 mAP and 0.612 mloU.

TABLE II: The test performance on the final public testing
dataset provided by the contest organizer.

Object Detection ~ Segmentation
Model (MAP@0.5) (mloU)
Pretraining w/ mosaic 0.495 0.401
Finetuning 0.540 0.615
QAT 0.622 0.612

The testing results of private dataset in the competition
provided by the contest organizer is shown in Table Our
approach achieves state-of-the-art performance in both object
detection and segmentation tasks, with 0.421 mAP and 0.612
mloU.

TABLE III: The test performance on the final private testing
dataset provided by the contest organizer.

Object Detection | Segmentation
(mAP@0.5) (mloU)
0.421 | 0612

Moreover, Table shows that our quantization strategy
effectively reduced the model size by 4 times and improved
inference speed by 3 times. These results demonstrate the
effectiveness of our quantization strategy not only in improv-
ing model performance but also in reducing computational
cost and memory footprint, which is important for real-world
deployment of deep learning models.

TABLE IV: The comparison of 8-bits integer (INT8) weights
and 32-bits floating (FP32) point weights. The model ef-
ficiency is conducted on MediaTek Dimensity 9200 Series
Platform.

Model ‘ Mode Size (M) Power (mW) Speed (us)
FP32 130.55 2279.0 87644.3
INTS8 31.79 2041.0 27086.1

D. Quantization Strategy

The performance of the quantized network using different
quantization paradigms is presented in Table [V] We first
observe that Post-Training Quantization led to a significant
performance drop in the segmentation tasks, with only 0.285
and 0.248 mloU achieved for drivable area and lane line
segmentation, respectively.

However, this performance drop can be mitigated by adopt-
ing a Quantization-Aware Training (QAT) strategy. Our experi-
mental results demonstrate the effectiveness of QAT in mitigat-
ing the performance drop caused by quantization. Specifically,
the quantized network achieved an 0.569 mAP for object
detection and 0.852 mloU for drivable area segmentation and
0.402 mloU for lane line segmentation.

These findings demonstrate the effectiveness of the QAT
strategy in boosting the performance of quantized network, as
compared to the Post-Training Quantization strategy.

TABLE V: The test performance of model after three-stage

training with different quantization paradigms on the iVS
dataset provided by the contest organizer.

Object Drivable Area lane Line
Model Detection Segmentation ~ Segmentation
(mAP@0.5) (mloU) (mIoU)
original (fp32) 0.582 0.842 0.397
PTQ (int8) 0.557 0.285 0.248
QAT (int8) 0.569 0.852 0.402




V. CONCLUSION

In this work, we have successfully implemented a light-
weighted object detection and segmentation model. To im-
prove its efficiency, we explored the effectiveness of two tech-
niques: quantization-aware training and mix data finetuning

(i.e.

the third stage). Through extensive experimentation, we

have demonstrated the effectiveness of these techniques in
improving the accuracy and efficiency of our model. Our final
model has achieved competitive results on the target dataset,
demonstrating its potential for real-world applications.
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