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Abstract—Semantic segmentation in rainy scenes is a challeng-
ing task due to the complex environment, class distribution imbal-
ance, and limited annotated data. To address these challenges, we
propose a novel framework that utilizes semi-supervised learn-
ing and pre-trained segmentation foundation model to achieve
superior performance. Specifically, our framework leverages the
semi-supervised model as the basis for generating raw semantic
segmentation results, while also serving as a guiding force to
prompt pre-trained foundation model to compensate for knowl-
edge gaps with entropy-based anchors. In addition, to minimize
the impact of irrelevant segmentation masks generated by the
pre-trained foundation model, we also propose a mask filtering
and fusion mechanism that optimizes raw semantic segmentation
results based on the principle of minimum risk. The proposed
framework achieves superior segmentation performance on the
Rainy WCity dataset and is awarded the first prize in the sub-
track of STRAIN in ICME 2023 Grand Challenges.

Index Terms—semantic segmentation, real-world rainy scenes,
semi-supervised learning, foundation model

I. INTRODUCTION

Semantic segmentation is a critical task in computer vision
that involves assigning a class label to each pixel in an image.
Semantic segmentation has numerous applications, including
autonomous driving [1], surveillance [2], and robotics [3].
Despite significant advancements in semantic segmentation,
accurately segmenting images in complex scenarios, such as
rainy scenes [4], [5], remains a formidable challenge. In
general, rainy scenes introduce significant complexities due to
factors such as environmental variability, class distribution im-
balance, and the scarcity of annotated data. These challenges
frequently result in a decline in segmentation performance,
underscoring the need for enhanced methods capable of effec-
tively addressing such specific scenarios.

Recent developments in foundation segmentation models,
such as Segment Anything Model (SAM) [6] and SegGPT [7],
have demonstrated impressive results on a wide range of
segmentation tasks in zero-shot scenarios. However, these
models do not perform up to expectations when it comes to
semantic segmentation in rainy scenes (as shown in Fig. 1).
These limitations prompt the necessity for a novel framework
that can harness the power of pre-trained foundation models
without retraining while addressing the unique challenges
posed by rainy scenes.

In this paper, we devise an innovative framework that
combines semi-supervised techniques with pre-trained foun-

This research was supported in part by the National Natural Science
Foundation of China (NSFC) under Grant 61906014 and 61976017.

Xiang Wei is the corresponding author.

(a) Input Image (b) Segment Anything Model

Fig. 1. Demonstration of SAM. In sub-figure (b), the performance of SAM is
influenced by environmental factors, particularly reflections in rainy scenes.
Additionally, the segmentation results generated by SAM may not fully adapt
to specific tasks and may also potentially ignore small entities.

dation models to effectively tackle semantic segmentation in
rainy scenes with limited labeled training data. In brief, our
framework consists of the following three steps:

• We first leverage semi-supervised base model U2PL [8]
to provide guidance information, as it is capable of
utilizing unreliable pixels for representation learning by
contrastive learning. This is suitable for handling uncer-
tainty caused by environment interference.

• We further propose to use the high-entropy regions cal-
culated from U2PL’s predictions to generate anchors for
prompting SAM. This strategy enables the identification
of entities heavily impacted by rainy scenes, which tend
to be more challenging to classify accurately.

• Finally, we put forward a filtering and fusion mechanism
that carefully utilizes the segmentation masks generated
by SAM to refine the predictions made by U2PL.

The proposed framework achieves superior segmentation
performance on the Rainy WCity dataset and is awarded the
first prize in the Seeing Through the Rain (STRAIN) – Track
1: Semantic Segmentation under Real Rain Scene, which
is part of Grand Challenges in the International Conference
of Multimedia and Expo 2023. Furthermore, our framework
also provides insights and inspiration for active prompting in
promptable foundation models.

II. RELATED WORK

Real-world semantic segmentation in rainy scenes presents
several challenges. To solve the challenges, we provide a brief
overview of semi-supervised learning in semantic segmenta-
tion and foundation models for computer vision.

A. Semi-Supervised Semantic Segmentation

Semi-supervised learning [9], [10] has been widely adopted
to overcome the challenge of limited labeled data. Early
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methods such as those proposed in [11] leverage generative
adversarial networks to train on unlabeled data using an
adversarial loss, thereby reducing the gap between predictions
on labeled and unlabeled data. In recent years, consistency reg-
ularization [12], self-training [13], [14], and their combinations
[9], [15]–[17] have become the mainstream in semi-supervised
semantic segmentation. These methods aim to use unlabeled
data to improve model performance while reducing the impact
of label noise, such as weak and strong augmentations of the
same sample. Improving the quality of trusted pseudo-labels
is crucial for self-training and enhancing model performance
[18]. Additionally, contrastive learning has shown promising
results in semi-supervised feature extraction [19], [20]. U2PL
[8] uses the value of entropy for filtering reliable pixel-wise
pseudo-labels and pushes the remaining unreliable pixels to a
category-wise memory bank for contrastive learning, resulting
in improved segmentation performance.

Unlike existing semi-supervised learning approaches, our
framework exclusively relies on the semi-supervised model
as the base model. The base model guides a pre-trained
segmentation foundation model to bridge the knowledge gaps
between the two models, leading to improved accuracy of the
segmentation outcomes.

B. Foundation Model for Computer Vision

The field of natural language processing (NLP) is being rev-
olutionized by large language models pre-trained on web-scale
datasets, e.g., ChatGPT. These models, commonly referred
to as ”foundation models” [21], are capable of strong zero-
shot and few-shot generalization, extending their capabilities
to tasks and data distributions beyond those seen during
training. Similarly, beyond NLP, foundation models in the field
of computer vision are also becoming increasingly popular.
CLIP [22] and ALIGN [23] are examples of foundation models
that adopted contrastive learning to train text and image
encoders, enabling zero-shot generalization to novel visual
concepts and data distributions using text prompts. While
much progress has been made in vision and language encoders,
many computer vision problems lack abundant training data.
Recently, SAM [6] and SegGPT [7] are proposed for image
segmentation, both SAM and SegGPT are promptable model
and have been pre-trained on a broad dataset using a task
that enables powerful generalization. Nevertheless, both SAM
and SegGPT require manual examples to achieve the expected
results and struggle to maintain good performance in semantic
segmentation for rainy scenes, as illustrated in Fig. 1b.

Different from existing prompt methods for pre-trained
segmentation foundation models, we leverage the uncertainty
regions in the predictions of the semi-supervised base model
to generate anchors. These anchors accurately identify the
weaknesses of the semi-supervised base model and enable
more effective utilization of the pre-trained foundation model’s
knowledge. Specifically, we use SAM in our framework.

III. METHODOLOGY

In this section, we detail our three-stage framework for
semantic segmentation in rainy scenes.

A. Overall Architecture

As depicted in Figure 2, our framework comprises three
main steps. First, to overcome the challenge of limited an-
notated data, we employ semi-supervised learning to train
the base model for semantic segmentation. Next, given the
difficulty in establishing accurate semantics in areas affected
by rainy environments in the existing dataset, we identify the
image regions affected by interference by computing the en-
tropy values of the semi-supervised base model’s predictions.
We then generate anchors in these image regions and use
them to prompt the SAM to make predictions, resulting in a
set of predicted segmentation masks. Finally, we meticulously
leverage the segmentation masks generated by SAM to refine
the original predictions.

B. Semi-supervised Base Model Learning

Since only one out of five of the training data has an-
notated labels, we suggest using a semi-supervised semantic
segmentation model for initial training. For semi-supervised
semantic segmentation, generating pixel-wise pseudo-labels in
rainy scenes can be highly uncertain due to the environmental
interference. In the semi-supervised learning step, we follow
the U2PL [8] and make suitable settings to it to adapt to
semantic segmentation in rainy scenes. For annotated data, we
adapt OHEM [24], which is responsible for mining difficult
pixels and forces the model to focus on image regions that
are affected by environmental interference, and this manner is
effective for semantic segmentation in rainy scenes.

C. Anchor-based Prompting

Considering that SAM can generate more accurate semantic
segmentation results leveraging coordinate points as guidance.
Furthermore, from our attempts, we have discovered that
identifying the coordinate points according to the weakness
of semi-supervised base model is crucial while using SAM
to compensate for knowledge gaps. To pinpoint the model’s
weakness, we utilize the entropy values of predictions, which
can be formalized by Equation (1):

Entij = −
N∑
k=1

pijk log pijk (1)

where N denotes the number of classes, and pijk stands for
the k-th softmax score of the pixel in the i-th row and j-th
column. By examining the entropy map displayed in Fig. 3b,
we can discern that the boundaries of segmentation possess
larger entropy values. The high entropy distribution caused by
segmentation boundaries makes it difficult for us to pinpoint
the image regions where the model is truly confused.

To reduce the interference caused by segmentation bound-
aries, we design a region filter, which can also be interpreted
as a w × w 2-D kernel with a fixed value 1 of weights



Step 1: Semi-supervised Learning Step 2: Anchor-based Prompting Step 3: Segmentation Refinement

Labeled DataUnlabeled Data

ResNet101

DeepLabV3+

Supervision
Self-training on
Reliable Pixels

Contrastive on
Unreliable Pixels

Segment Anything

Entropy of Prediction

Prompted Segmentation

High Entropy Region

Region Filter

Generated  Anchors

Prediction

Fuse

Refined Prediction

Fig. 2. The overall process of our framework. The framework consists of three main steps. In step 1, we leverage semi-supervised learning to train a
base model. In step 2, based on the predictions of the semi-supervised model, we calculate the entropy values of the predictions and remove the impact of
segmentation boundaries to generate high-entropy regions, which are then treated as anchors. SAM generates semantic segmentation masks according to the
generated anchors. In step 3, we optimize the predictions of the base model using the masks generated by SAM.

then attached with a binarized activator. Besides, w is an odd
number to guarantee a explicit center. Equation (2) details the
operations of the region filter:

Regij = f(Entij) = 1τ (
1

w2

w∑
m=−w

w∑
n=−w

Enti+m,j+n).

(2)
Here, the function f(·) serves as a region filter, which converts
the entropy map into a 0-1 mask with 1 indicating the high-
entropy regions. Regij = f(Entij) is the entropy value of
the i-th row and j-th column pixel after being filtered and
binarized. The binarized activator function with a threshold of
τ is denoted by 1τ (·). If the input is greater than or equal to
τ , 1τ (·) returns 1; otherwise, it returns 0. The term 1/w2 is
used for normalization.

As illustrated in Fig. 3b and 3c, the filtered entropy map
includes almost no finer segmentation boundaries, which only
caused by intermediate pixels between different categories.
Specifically, Fig. 3b displays the entropy map derived from the
semi-supervised base model. As shown in Fig. 3c, undergoing
the region filter, entropy values previously displayed by finer
segmentation boundaries are no longer presented. On the con-
trary, regional high entropy values are retained with difficulty
in classification caused by environmental interference and
imbalanced class distribution.

Based on the acquired high-entropy regions, we randomly
sample coordinate points as anchors for prompting SAM to
compensate for the lack of knowledge in the base model. The
anchors generated by our method revealed in Fig. 3d. Then, we
obtain corresponding segmentation results from SAM, which
are binary masks for segmented entities.

D. Segmentation Refinement

Once the segmentation masks have been obtained from the
SAM, they are supplemented to refine the predictions made

(a) Original Input (b) Entropy

(c) High-entropy Region (d) Anchors

Fig. 3. The procedure of entropy-based anchor generation. Sub-figure (a)
displays the original input image, while sub-figure (b) shows the entropy map
produced by the semi-supervised base model. Sub-figure (c) highlights the
regions of the image with high uncertainty after filtering using region filter
and sub-figure (d) displays the sampled anchors marked with stars.

by the semi-supervised base model. However, it is important
to note that not all segmentation masks generated by the
SAM from the anchors are reliable, so the key issue is how
to extract useful knowledge from numerous masks to refine
the predictions of the semi-supervised base model. Namely,
we want to minimize the risk of reducing the accuracy of
the existing segmentation results made by the semi-supervised
base model when using the supplementary masks.

The principle of minimum risk: Go back to Fig. 1b,
the segmentation masks generated by SAM contain a lot
of interference information, such as incorrect entities and
errors caused by environmental factors. To improve the quality
of the masks during fusion, we propose to use two hyper-
parameters to filter the masks. One is the softmax score α,
which filters low confidence segmentation masks; the other is a



considerably small area β, which ensures the entity segmented
by SAM is part of the target category, e.g., in Fig. 1b, the
”umbrella”, ”pants”, and ”shirt” are entities that segmented by
SAM, but they belong to the ”person” category. Furthermore,
in case of a conflict, the priority of smaller segmented entities
should be higher than that of larger entities. For instance, SAM
may segment a ”person” and a ”bicycle” as a single entity
based on some anchors, and we can correct this error by using
the ”person” entities segmented based on other anchors.

Algorithm 1 Segmentation Enhancement
Require: Prediction y and softmax score p, kernel size w,

threshold of binarization τ , threshold of softmax score α,
and threshold of area β

Ensure: Enhanced prediction y
1: function SEGENHANCE(y, p, w, τ , α, β)
2: Ent← computeEntropy(p) . Eq.1
3: Reg ← getHighEntropyRegions(Ent, τ , w) . Eq.2
4: Anc← generateAnchors(Reg)
5: for Anci in Anc do
6: Mi ← segmentBySAM(Anci)
7: end for
8: M ← filterByScoreAndArea(M , α, β)
9: for Mi in M do

10: cls← getModeOfIntersaction(Mi, y)
11: Assign cls to Mi

12: end for
13: M ← sortByAreaFromHighToLow(M )
14: for Mi in M do
15: Overwrite y according to Mi with class cls
16: end for
17: return Enhanced prediction y
18: end function

Algorithm 1 outlines the overall process of our framework.
The algorithm mainly takes two inputs, namely the prediction
y and the corresponding softmax score p from the semi-
supervised base model. Additionally, four hyper-parameters
are provided: w represents the kernel size, and τ represents
the binarization threshold in Equation (2). Furthermore, α
and β denote the thresholds for the softmax score and area,
respectively, which are utilized to ensure the quality of the
segmentation masks produced by the SAM.

To be specific, in Algorithm 1, we first calculate the entropy
values based on the softmax score p by ”computeEntropy”
according to Equation (1). Next, we call ”getHighEntropy-
Regions” to apply a region filter based on Equation (2),
using hyperparameters w and τ , to eliminate the influence
of segmentation boundaries and retain high-entropy regions.
After obtaining the high-entropy regions, we adopt ”gener-
ateAnchors” to perform sampling and generate anchor points.
With the help of anchors to prompt SAM, we then obtain
the corresponding segmentation masks by ”segmentBySAM”.
Once we obtain the segmentation masks M generated by
SAM, we retain the low risk masks M by their softmax
score and area using the function ”filterByScoreAndArea”,

specifically, we aim to obtain entities that are segmented by
SAM and have small area and high confidence. Then, for each
mask Mi in M , we find the mode of intersection between Mi

and y by the function ”getModeOfIntersection”, which serves
as the class for refining y according to Mi. Next, we sort the
remaining masks M by their area from high to low using the
function ”sortByAreaFromHighToLow”, this ensures that the
results of smaller entities are not covered. At last, we let Mi to
determine the region that needs to be overwritten in prediction
y, and write the corresponding class cls to that region.

IV. EXPERIMENTS

In this section, we report the experimental results of the
proposed framework for semantic segmentation in rainy scenes
on the Rainy WCity dataset.

A. Experimental Setup

Datasets: We conduct our experiments on the Rainy WCity
dataset, which consists of 500 images for training and 100
images for evaluation, all with a resolution of 1920×1080. Out
of the 500 images, only 100 have pixel-wise annotations, while
the remaining images are unannotated. Specifically, there are
240 raindrop images, 40 of which are annotated, 130 reflection
images with 30 annotated, and 130 wiper images with 30
annotated. The dataset includes pixel-level labels for a total
of 18 classes, including the background.

Implementation details: For semi-supervised base model
(U2PL), the experiment runs for 200 epochs, and we choose
the checkpoint of the last epoch for evaluation. The network
is based on the ResNet101 and Deeplabv3+ for encoder and
decoder, respectively. We dynamically drop 20% to 0% of
high-entropy pixels due to the unreliability while self-training.
During training, we set the batch size to 2 for each of GPU.
For anchor-based prompting, we set w to 5 and τ to 1.0. We
sample 1,000 anchors for each of prediction from the semi-
supervised base model. For segmentation refinement, we set
the threshold of softmax score α to 0.7 and threshold of area β
to 20,000, respectively. The experiments were conducted using
Pytorch 1.12.0 and the entire training process was completed
on 8 NVIDIA 3090 GPUs.

B. Results

Table I presents the evaluation results of the top 5 teams
on the Grand Challenge Proposal of the IEEE International
Conference on Multimedia and Expo 2023: Seeing Through
the Rain (STRAIN) - Track 1 - Semantic Segmentation under
Real Rain Scene. The table displays the performance of each
category, measured using the Intersection over Union (IoU)
metric, as well as the overall performance for all categories,
measured using the mean Intersection over Union (mIoU)
metric. The results indicate that our framework has achieved
state-of-the-art (SOTA) results. The ground truth of test dataset
only released after finishing evaluation. Notably, the IoU value
of our framework for the ”person” class far exceed those
of the other methods. This is mainly because SAM provide
informative segmentation masks. As shown in Fig. 4b, SAM
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THE TOP 5 TEAMS’ EVALUATION RESULTS FOR THE SEEING THROUGH THE RAIN: TRACK 1 - SEMANTIC SEGMENTATION UNDER REAL RAIN SCENE,
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Rank 5 87.08 38.99 65.55 69.92 28.08 16.52 6.30 35.55 73.83 85.83 28.99 3.04 64.24 4.57 18.07 6.60 26.44 38.80
Rank 4 86.29 14.46 72.63 69.72 69.36 19.82 14.25 43.89 65.62 95.14 37.28 8.34 69.17 2.66 20.56 6.48 33.81 42.91
Rank 3 84.94 24.04 75.90 47.01 68.22 27.66 40.50 51.25 83.82 94.67 41.76 0.17 78.89 0.00 70.27 27.92 36.06 50.18
Rank 2 94.62 61.13 84.76 84.19 78.94 39.24 58.68 80.36 86.46 96.36 24.95 18.49 85.26 9.10 70.33 29.86 48.78 61.85

Rank 1 (Ours) 94.64 53.88 85.94 87.05 78.52 46.86 62.96 79.58 88.75 96.51 54.83 6.63 87.14 7.77 83.64 26.72 50.69 64.24

(a) Without Filtering

(b) Filtered by Softmax Score and Area

Fig. 4. Segmentation by anchor-based prompting. The yellow region repre-
sents segmented entities by SAM. Sub-figure (a) shows the entities segmented
without filtering, while sub-figure (b) shows the entities filtered based on both
softmax score and area. The filtering function ”filterByScoreAndArea” can be
find on line 8 of Algorithm 1.

has strong segmentation capability for ”person”, and this
advantage has been passed on to our framework. In addition,
Fig. 5 visualizes part of segmentation results on test dataset.

C. Ablation Study

Table II presents the results of our ablation study, which
was conducted using the ground truth provided by the official
test set. Specifically, the use of SAM for enhancing the
segmentation results without filtering and sorting is indicated
by ”ENHANCE”. Additionally, the use of filtering and sorting
to process segmented entities is denoted by ”w/ filter” and
”w/ sort”, respectively, which can be found on line 8 and
13 in Algorithm 1. The results in Table II demonstrate the
effectiveness of our proposed components. Moreover, we also
visualize the segmentation masks generated by SAM with
anchor-based prompting in Fig. 4 and make comparisons.
Fig. 4b shows that anchor-based prompting can capture small
and difficult-to-segment entities.

V. CONCLUSION

In conclusion, this paper presents an innovative framework
for addressing the challenges of semantic segmentation in
rainy scenes. Our approach successfully harnesses the power
of pre-trained foundation models without retraining by utiliz-
ing the entropy-based anchors generated by a semi-supervised

TABLE II
THE EXPERIMENTAL RESULTS OF ABLATION STUDY

Method ENHANCE w/ filter w/ sort mIoU

Ours

63.11
X 62.72
X X 62.83
X X X 64.24

base model. Our experiments, conducted on the Rainy WCity
dataset, demonstrate that the proposed framework effectively
leverages the pre-trained segmentation foundation model,
leading to superior segmentation accuracy. Furthermore, our
framework also provides insights and inspiration for active
prompting in promptable foundation models.

However, there are still limitations to our framework. The
accuracy of refinement essentially depends on the correctness
of the guidance information provided by the semi-supervised
base model, and our method relies on an additional model
during inference, which limits its applicability to certain sce-
narios. In future work, we plan to investigate how to transfer
knowledge from pre-trained segmentation foundation models
to models in specific domains.
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