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Abstract

People resonate more with music when exposed to visual information, and music

enhances their perception of video content. Cross-modal recommendation tech-

niques can be used to suggest appropriate background music for a given video.

However, there is not a simple correspondence between the different modal data.

Therefore, to explore the association between the two modalities of video and

music, we propose MFF-VBMR, a video background music recommendation

model based on multi-level fusion features. The model uses the cross-modal infor-

mation of static, dynamic and emotional content of video and music to realize

the task of matching and recommending suitable background music for a given

video. We propose a feature normalized convolutional similarity algorithm net-

work FNC, which takes into account the pairwise similarity of visual and acoustic

regions without losing region details. Experimental results show that the proposed

model outperforms other existing models in terms of performance and achieves

satisfactory results for video background music recommendation.

Keywords: cross-modal recommendation, music recommendation, deep learning,
convolutional neural network
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1 Introduction

With the rapid development of the Internet and self-media, various types of multimedia
information have proliferated and flooded people’s lives like a spring. Video and music
are two widely-watched media on the Internet, and people’s perceptions of them are
highly correlated. The stimulation of visual information resonates with people when
they listen to music, which echoes the video in visual perception and adds color to the
scene.

There are related studiesCowen et al (2020)-Sievers et al (2013) suggest that human
perception of music may have evolved from an ancient skill, namely the ability to inter-
pret emotions from movements. It has been found that when people pair an emotion
with a melody or a video animation, they choose combinations that have the same
temporal and spatial characteristics, such as the same tempo, rhythm and smooth-
ness, for the pairing. Surprisingly, this holds true for people from completely different
cultural backgrounds. In other words, although different cultures do not understand
music in exactly the same way, music is able to retain similar subjective experiences
and emotional arousal across culturesCowen et al (2020) . People’s response to audio-
visual stimuli not only exists in the cognitive level, but also is an involuntary and
natural state.

Therefore, the two modalities of video and music are not simply in correspondence,
but there are many correlations that make people unconsciously react in a similar
way. At the same time, short video platforms are becoming increasingly popular in
people’s lives, and finding a suitable soundtrack is a concern when sharing videos on
the web in order to increase the completeness of the video. Therefore, the topic of how
to obtain the deep connection between video and music and how to better match and
integrate video and music has great theoretical research value and social application
value, which has attracted the attention of many researchers from different angles.

Video and music are both widely used media, but the connections between them
have not been well explored. Currently, some studies have focused on analyzing the
underlying semantic features of both video and audio modalitiesKuo et al (2013)-Lin
and Shan (2017), but only on low-level features of video and music. These shallow
features are not closely enough connected to capture the key information of video and
music, resulting in a loose connection of multimodal features in the feature space and
poor retrieval results in cross-modal retrieval recommendation tasks. Another part of
the study focused on the emotional connection between video and music by construct-
ing a cross-modal neural network modelSharma et al (2021)-Tsai et al (2022)to build
a sentiment communal embedding space to bridge the heterogeneity gap between dif-
ferent data modalities. However, from a practical application point of view, the results
of recommendations are more or less unsatisfactory due to the different understanding
of video and music by each individual. Meanwhile, existing cross-modal recommenda-
tion methods mostly use the construction of a common subspaceSuŕıs et al (2018)-Jin
et al (2020)that rely on the mathematical relationship between the two feature vectors
to capture similarity, which tends to lead to too homogeneous multimodal information
and poor model results.

Therefore, in order to explore the association between the two modalities of video
and music, as well as the prevalence of people’s perception of multimodal information,
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this paper proposes a method for video background music recommendation based on
multi-level fusion features, which utilizes cross-modal information based on static,
dynamic and emotional content corresponding to the different levels generated by video
and music to achieve the task of matching and recommending appropriate background
music for a given video. Firstly, in order to obtain the deep correspondence between
video and music data, we make a comprehensive summary of the features of video and
audio, systematically and scientifically analyze the feature information of video at the
level of key frame, shot and scene, and the feature data of music at the level of audio
spectrum, note and melody. Secondly, this paper chooses HIMV-200K benchmark
datasetHong et al (2018), Pop music videos dataset Lin and Yang (2021) and self-built
dataset for experiments, and uses extended convolutional neural network and acoustic
feature processing tools respectively to extract features from videos and music. Finally,
we fed the fused multimodal features of video and music into our proposed feature-
normalized convolutional similarity algorithm network, which considers the pairwise
similarity of visual and acoustic regions without losing regional details.

Specifically, the contributions of this paper are divided into three areas.
1) Aiming at the task of recommending suitable background music for video, we

propose a video background music recommendation model MFF-VBMR based on
multi-level fusion features. The proposed model is able to synchronously process pre-
processed multimodal feature data and find key pairs of multimodal information by
exploiting the correlation framework of video and music.

2) In terms of feature selection, in order to explore the correlation between the
two modes of video and music, we summarized the similarities and differences between
the features of video and music, and extracted the features comprehensively. Instead
of analyzing the content semantically or emotionally, the features are extracted from
static, dynamic and emotional aspects of video and music respectively, which bet-
ter represent their deeper content and are complemented by contextual information,
making the cross-modal information more closely linked.

3) In the retrieval task, in order to make cross-modal information matching recom-
mendations more accurate, we abandon the traditional common subspace network and
improve the convolutional neural network algorithm. We propose a feature-normalized
convolutional similarity algorithm, FNC. To make each feature vector contribute
equally to the similarity calculation, the extracted feature vectors are L2 normalized;
and a self-attentiveness mechanism is introduced to weight the captured video and
music feature vectors according to them. We feed the feature matrix into a convolu-
tional neural network and use a mean-max filter in the last layer, which can suppress
possible spurious similarity results.

2 Related work

People can get information from images, sounds, text and so on. In other words, our
world is a multimodal world. When a research problem or dataset contains more than
one modality, it can be handled by multimodal techniques. Multimodal techniques
can be applied in a variety of fields. For example, one of the earliest applications of
multimodal research is audiovisual speech recognition (AVSR)Bourlard and Dupont
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(1996), which uses visual information to improve the accuracy of speech recognition.
Multimodal technology has also played an important role in such fields as emotion
recognitionValstar et al (2013), image descriptionHodosh et al (2015), VQAAntol et al
(2015) and traffic event detectionChen et al (2021).

Recommender systems are a tool to help users quickly discover useful information
and have been widely used in recent years in the study of cross-modal recommenda-
tions. Related work on cross-modal recommendation can be divided into: approaches
based on probabilistic graphical models, approaches based on matrix analysis, etc.
Probabilistic graph models have been widely used because of their good scalability
and theoretical foundation. RoyRoy et al (2012) proposed the OSLDA model for topic
modelling of Twitter streams and recommending videos based on the relevance of the
tags corresponding to the videos to these topics. The transmedia LDATan et al (2014)
model assumes that users and all media types are associated with the common topic
space, so the association between users and transmedia objects can be obtained by
comparing their distribution on the common topic. Kumar et al.Kumar et al (2014)
used WordNet ontologies to compare semantic correlations between words in differ-
ent domains. The clustered semantic dictionaries were then modelled using the PLDA
model to obtain the potential semantic space shared by multiple domains. In order
to model different media types on two different platforms, Min et al.Min et al (2015)
proposed a cross-platform multimodal topic pattern model. Unlike the other proba-
bilistic graph models mentioned above, this model modelled the relationship between
the two aspects simultaneously. Chen et al.Li et al (2013) implemented a matrix
decomposition-based system to provide a variety of recommendation results, includ-
ing item recommendations, friend recommendations and group recommendations. For
each type of recommendation, the system uses knowledge from the other two aspects
as a secondary knowledge source to improve system performance. In addition, other
work has implemented cross-modal recommendations. Chen et al.Chen et al (2013)
and Zhang et al.Jia et al (2014) use tensor decomposition to find the potential space
between different modalities. Hoxha et al.Hoxha (2014) modelled the semantic con-
tent and user browsing behavior between multi-modal objects and used support vector
machines to learn the correlation between recommended objects and decide whether
to recommend them. Wang et al.Wang et al (2015) used two CNNs (convolutional
neural networks) to learn potential feature representations for both text and image
modalities. A one-to-many learning framework was then used to learn the relationship
between the latent features of the two modalities. HeitmannHeitmann et al (2012)
proposed a semantic interest graph to model user preferences for multiple modalities
to enable cross-modal recommendations.

On the study of background music recommendation, Kuo et al.Kuo et al (2005)
proposed a framework to discover associations between sentiment and music features
for music recommendation. They investigated the extraction of music features and
suggested the use of affinity graphs to discover associations. Yu et al.Yi et al (2012)
used location information from UGV to map geotags to emotion tags by investigating
categories on the website and then comparing them to music emotions, but did not
consider the visual content of the videos. Shan et al.Shah et al (2014) improved the
system by using modelled scene emotions. A sequence of visual and geographic features

4



was trained to predict scene mood and compare it with the collected music mood.
Wang et al.Wang et al (2012) proposed an audiovisual emotion Gaussian modelling
algorithm to learn the relationship between video, music and emotion. The emotion
distribution of video and music was measured by KL scatter to measure similarity.
Lin et al.Lin et al (2015) proposed an EMV framework that uses an emotional time
course model to learn the relationship between temporal phase sequences of music or
video, and uses a Hidden Markov Model and an expectation maximization algorithm
to predict sequences and valence-evoking emotional quadrants, and then compares
temporal phase sequences and emotional quadrants by string matching.

Researchers have also made many improvements in the study of algorithms for
making matching recommendations. Cristani et al.Cristani et al (2010) proposed a
recommendation strategy when driving a car. Given a video of the driving scene,
and a matching audio is selected. They used Pearson’s correlation coefficient to cal-
culate the association between audio and video features. Kuo et al.Kuo et al (2013)
proposed a background music recommendation system that learns the relationship
between music and video by using multimodal latent semantic analysis and calculates
the alignment of the recommended music and the given video. Yet, the depth of indi-
vidual features used in the above methods is not sufficient, and the mapping relations
of the cosubspace network are somehow different. To address the limitations of single
feature and similarity algorithms, we use different levels of multimodal fusion infor-
mation and construct similarity learning networks to calculate the similarity between
video and music. The model takes into account the pairwise similarity between visual
and acoustic regions.

3 Method model

To achieve the task of video background music recommendation, this paper proposes
a video background music recommendation model (MFF-VBMR) based on multi-level
fused features. First, we perform feature extraction based on the deep-level feature
correspondence between video and music data. Second, we fuse multimodal features;
finally, we feed the fused multimodal features of video and music, into our proposed
feature normalized convolutional similarity algorithm network to obtain the optimal
solution for music recommendation, and the model framework is shown in Figure 1.

3.1 Multimodal feature analysis

When people watch a video with music playing in the background, they relate to the
video and the music, and this feeling of similarity is present not only in the video,
but also in the music. In order to match the recommended soundtrack to the video,
we explored the cross-modal alignment between video and music at three levels of
analysis: static, dynamic and emotional, as shown in Table 1.

3.1.1 Video features

In general, videos can be represented in a hierarchy: frames, shots and scenes. A shot
is a video segment consisting of consecutive actions, and a scene consists of one or

5



Fig. 1 MFF-VBMR model

more shots forming a semantic unit. The key frames of a video can be characterized by
color, texture and light, and shots can be represented by trajectories of motion, while
these factors can also have a strong impact on emotion, which is the most important
factor in representing a video scene. In the present work, we extract visual features
from the categories described above.

Color features Color symbolism varies from culture to culture, but in general,
warm tones help to intensify visual perceptions such as warmth, excitement and inten-
sity, while cool tones help to highlight effects such as serenity, depth and solitude. The
descriptors of color characteristics in this paper include color energy and saturation
ratioWang and Cheong (2006). The color energy is calculated based on color contrast
and angular distance to blue and red respectively, and the saturation ratio is based
on the proportion of low-saturation pixels.

Texture features Textures add depth to key frames and are an important element
of human visual perception. In this paper we extract one of the most widely used
texture features, the grey scale co-occurrence matrix (GLCM), whose descriptors are
shown in Table 1.

Light features The descriptors of light features adopted in this paper are median
light value and shadow ratioWang and Cheong (2006). The median light value is the
median value of brightness, and the shadow ratio is the proportion of the shaded area
measured in the frame.

Motion features Movement is a highly expressive element that triggers an
emotional response from the audience. We used the camera-level optical flow fea-
tureSimonyan and Zisserman (2014) as the motion feature of the entire video.

3.1.2 Music Features

The mood of the viewer is greatly influenced by sound effects and music. Music can
create a specific atmospheric tone (including temporal and spatial characteristics) for
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Table 1 Multimodal feature classification

modality species type feature

video

static

color

color energy

saturation ratio

texture

Angular second moment

Contrast ratio

correlation

Difference of phase

entropy

Property of homogeneity

Mean gray scale

Variance of gray scale

light

Median brightness value

Ratio of shadows

dynamic motion

Optical flow

Excitement of vision

emotional emotion Characteristics of emotion

music

static timbral texture

MFCC

Spectral center of mass

Attenuation of spectrum

Flux of spectrum

dynamic

rhythm Beat histogram

high level

Nature of dance

Duration of time

energy

key

loudness

model

rhythm

Characteristic of time

emotional emotion Characteristics of emotion

parts of a video or the whole, thus deepening the visual effect and enhancing the
impact of the picture. The musical features used in this paper are as follows.

Timbral Texture features In terms of musicality, five features widely used in
audio classification and speech recognition are used, namely zero-crossing rate, spectral
roll-off, spectral centroids, spectral flux and Mayer spectral coefficients.

Rhythm features The rhythm descriptor of music is the beat histogram proposed
inTzanetakis (2001), which is established by the autocorrelation function of the signal.
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High-Level features High-level descriptors of music include dance ability, dura-
tion, energy, key, loudness, pattern, rhythm and time features, and this paper uses the
rhythmic features and high-level features of music as its dynamic features.

Emotion features Emotional features are shared by video and music, and people
can feel the impact of emotions visually and audibly. Video and music are two differ-
ent types of media that show a strong connection and relevance to each other. Music
not only enhances our emotional response to video and images, but also improves
our understanding of visual effects, while video and images not only enrich our emo-
tional response to music but also convey and express the atmosphere of the song. In
this paper, emotional features are extracted based on video understanding and music
understanding respectively.

3.2 Feature extraction

3.2.1 Video feature extraction

Static features In this paper, static features are extracted from key frames of video
using Inception network, which can reduce the number of optimization parameters
in deep learning networks, greatly reduce the computational effort and optimize the
computational speed, and has been widely used for feature extraction in recent years.
In this paper, the pre-processed video data is fed into the Inception network, and
the output is a video feature vector for each frame. The model will decode the video,
and the decoded video data will be fed into the Inception network, followed by the
ReLU activation function for computation. The final output feature vector for each
video frame is quantified by principal component analysis and calculated to output a
1024-dimensional video frame-level feature vector.

Dynamic features This paper uses optical flow features as dynamic features of
video, which are useful tools for analyzing video motion. Generally speaking, optical
flow ft(x, y) ∈ R

H×W×2 is the measurement of two consecutive frames It , the It+1 ∈
R

H×W×3the displacement of a single pixel between them. Similar to distance and
velocity, we define the optical flow amplitude Ft as the average of the absolute optical
flow to measure the amplitude of motion in frame t.

Ft =

∑

x,y ft(x, y)

HW
(1)

The video is extracted with T key frames and the motion relationship between the
key frames is to be calculated. The motion saliency at frame t is calculated as the
average positive change in optical flow in all directions between two consecutive frames.
We then obtain a series of visual beats by selecting the frame with the maximum local
motion saliencyDavis and Agrawala (2018) When the key frame has a sudden visible
change, the saliency will have a larger value. The corresponding optical flow feature
vector is finally obtained.

Emotion features This paper uses a video shot boundary detection algorithmWei
et al (2021) that divides the video into multiple shots. A representative frame is
then randomly selected in each shot for sentiment saliency estimation, which not only
saves time but also avoids the appearance of redundant frames. In this paper, the
difference in color histogram between frames is used to detect video shot boundaries.
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The use of the histogram method is effective in avoiding differences caused by the
motion of objects in the footage, thus improving robustness. Typically, the inter-frame
variance in a shot is stable over a small range, and when a shot shift occurs, the inter-
frame variance is significantly larger than the mean. Therefore, frames with inter-frame
differences greater than the average should be identified as lens boundaries.

Deep visual features are widely used in feature extraction for sentiment recognition.
In this paper, a representative depth model is chosen to extract deep visual features
from video frames: ResNet-101He et al (2015). ResNet-101 consists of a convolutional
layer, 33 building blocks and a fully connected layer. The output of the average pooling
layer is used as a depth feature, which is recorded as an object feature. By extracting
key frames, each video can be represented as a key frame of length X. The frame-level
features extracted using the ResNet-101 model are represented as R, as follows.

R = (R1, R2, ...RX)T

=

















R1[1] · · · R1[k] · · · R1[2048]
...

...
...

Ri[1] · · · Ri[k] · · · Ri[2048]
...

...
...

RN [1] · · · RN [k] · · · RN [2048]

















.
(2)

Model SVM and RF are traditional models for recognizing video emotionsLy et al
(2019)-Samadiani et al (2019) . SVMCortes and Vapnik (1995) is a discriminative
method for learning boundaries between classes. It has been widely used in image
sentiment classification due to its good generalization ability. We use an RBF kernel
suitable for high-dimensional features. RFHo (1995) is an important integrated learn-
ing method based on Bagging, which consists of multiple basic learners. Randomness
provides RF with powerful preventive overfitting properties, so it is often used to con-
struct predictive models for classification and regression problems. Before using the
traditional model, a Max pool is used to convert the frame-level features to video-level
features and then perform feature normalization to obtain the corresponding video
sentiment feature vector.

3.2.2 Music feature extraction

Static, dynamic features This paper uses the audio feature extraction tool
liborsaMcFee et al (2015) to extract static and dynamic features from music. For
the spectral analysis of the music, the fast Fourier transform and discrete wavelet
transform are first applied to the windowed signal in each local frame. Based on the
results of the amplitude spectrum, features including spectral shape centers, spectral
bandwidth, and spectral roll-off are calculated. In order to extract more meaningful
features, the Mel-scale spectrogram and Mel frequency cepstrum coefficients are cal-
culated for each frame. To capture the change in timbre over time, incremental MFCC
features are used. The number of time-domain over-zero points is also extracted in
order to detect the amount of noise in the audio signal. Finally this paper calculates
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the mean and variance of each frame-level feature and the maximum top K-order
statistic, and concatenates all the static-level features. Also, liborsa can extract the
tempo and beat of the music, estimate the tempo and tune speed, and the beats per
minute are transformed into a matrix to calculate the beat histogram, which allows
the extraction of the high-level feature vectors in Table 1.

Emotion features This paper uses openSMILEEyben et al (2010) to extract
the emotional features of music. OpenSMILE is a command-line tool that extracts
audio features by configuring a config file. It is mainly used for speech recognition,
emotion computing and music information acquisition. OpenSMILE provides a variety
of standard feature sets for emotion recognition, in this paper we use “emobase2010”
with some adjustments to the normalization of duration and location features. This
feature set contains a significantly enhanced set of low-level descriptors (LLDs), as well
as a list of functions that are more finely selected than in ‘emobase’. It is recommended
that this feature set be used as a reference for comparing new emotion recognition
feature sets and methods, as it represents the most current state-of-the-art in emotion
and language recognition.

3.3 FNC Network

3.3.1 Similarity calculation

This paper presents the feature normalized convolutional similarity algorithm FNC,
a network consisting of two parts, the processing of representative video music fea-
tures and the calculation of similarity between video and music pairs. In this paper,
the extracted features are normalized and weighted based on an attention mechanism.
To estimate the similarity between video and music, the similarity matrices of the
video and music with similarity are fed into a CNN network that can perform simi-
larity learning to obtain the similarity of the video-music pairs, and then the chamfer
distance (CD)Zhang et al (2020) is used to calculate the final score. The chamfer sim-
ilarity (CS) is the similarity counterpart of the chamfer distance. Consider two sets of
items x and y, with a total number of items N and M respectively, and their similar-
ity matrices S ∈ R

N×M , CS is calculated as the average similarity of the most similar
items in set y for each item in set x.

In order to make each feature vector contribute equally to the similarity calculation
and to consider all feature vectors equally, this paper introduces L2 normalization for
the extracted feature vectors. However, there are some problems. In the video region,
different key frames or scenes produce different effects. Similarly, in music data, the
impact of a clip with sound should be different from that of a clip without sound.
Therefore, this paper invokes the attention mechanism to weight the feature vectors
of video and music.

The following attention mechanism is constructed in this paper: for the feature
vectors of video and music, respectively Vi,j and Mi,k , where i ∈ [1, 2, 3] , and j ∈
[1, X], k ∈ [1, Y ] . We introduce the contextual unit vector u and use it to measure the
importance of each region vector. To do this, we use the context vector u to calculate
the importance of each Vi,j and Mi,k dot product between the region vectors to obtain
a weight score aij that bik . Since all vectors are unit vectors after the normalization
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process, the aij , the bik will remain between [-1, 1]. To make the direction of the
region vectors consistent, we normalize the weight fraction aij ,bik divided by 2 and
added 0.5 to control within [0, 1].

aij =

3
∑

i=1

x
∑

j=1

Vi,jsoftmax(s(Vi1,j1, Vi2,j2)) (3)

bik =

3
∑

i=1

Y
∑

k=1

Mi,ksoftmax(s(Mi1,k1,Mi2,k2)) (4)

Where s(x, y) is the dot product model, s(x, y) = xT y .
Then, we connect the processed video and music feature vectors into a group

according to each feature level, and obtain the video feature vector group pj and
music feature vector group qk. The dot product calculation is carried out to obtain
the feature matrix Spq ∈ R

X×Y .

Spq = pj ⊙ qk (5)

The generated feature matrix is then Spq into a four-layer convolutional network
that has the ability to capture segment-level temporal patterns of video and music
similarities. Due to the fact that the convolution results in CNN networks can be
considered as the inner product of vectors composed of convolution kernels and con-
volution regions, and the inner product represents the similarity between two vectors,
the model can learn similar patterns in CNN subnets by manipulating the similarity
matrix between feature vectors. These similarity matrices containing all paired fea-
ture vectors are fed to a CNN for training a video music level similarity model. We
chose three commonly used 3×3 convolutional kernels, requiring significantly fewer
parameters than a 7×7 convolutional kernel, which definitely reduces the complex-
ity of the model, speeds up training and preserves as much detailed data as possible.
We replaced the fully-connected layer with a 1×1 convolution kernel, which does not
destroy the spatial structure of the feature matrix image and is no longer subject to
the requirement of a fully-connected layer with fixed inputs. The maximum pooling
layer we chose a 2×2 filter with a 2×2 stride, and the convolutional layer stride was
set to 1×1. The convolutional layer setup is shown in Figure 2.

Fig. 2 Structure of convolutional network for similarity calculation

In order to calculate the final similarity result of video music pairs, the output
value of the convolutional network will pass through the Htanh activation function,
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and the chamfered similarity CS is actually a mean-maximum filter processing on the
output value, so that the similarity score F can be obtained, as shown in the formula:

F = Score =
1

Xoutput

Xoutput
∑

j=1

max
k ∈ [1, Youtput]

Htanh(Spq(j, k))

(6)

3.3.2 Loss function

F , as the target music similarity score of the video, should be higher for relevant music
and lower for irrelevant music. Based on this objective, we used the most reasonable
triadic loss function Schroff et al (2015) that allows the network to match higher
scores to positive video music pairs and vice versa to match lower scores to negative
video music pairs. We use the input video data as the baseline (Anchor), music with
similarity as Positive music, and music that differs too much from the video as Negative
music. The loss function has the following equation, where α is the margin parameter.

L1 = max {F (A,P )− F (A,N) + α, 0} (7)

In addition, we introduce a similarity regularization loss function, which provides
significant performance improvement. The range of Hard tanh activation function is
[-1,1], and the mechanism of loss function can drive the network to generate output
matrix within this range. The sum of the values of all output similar matrices outside
this range is the regularization loss.

L2 =

Xoutput
∑

j=1

Youtput
∑

k=1

max{Spq(j, k)− 1, 0}

+min{Spq(j, k) + 1, 0}

(8)

The final loss function we define as:

L = L1 + βL2 (9)

Where β is the regularization hyperparameter that adjusts the contribution of the
similarity regularization to the total loss.

4 Experiment

4.1 Datasets

HIMV-200KHong et al (2018) , a dataset consisting of 200,500 video-music pairs.
These video-music pairs were obtained from YouTube-8M, a large-scale tagged video
dataset consisting of millions of YouTube video IDs and associated tags. Throughout
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the videos associated with thousands of entities, all videos tagged with “music video”
were downloaded and then divided into video and audio components using FFmpeg. A
total of 205,000 video-music pairs were obtained, of which 200K were used for training,
4K for validation and 1K for testing.

Pop music videos datasetLin and Yang (2021) , pop music videos have a large num-
ber of camera angles, shots and movements that help to learn the relationship between
the various videos and the corresponding music. 1280 music videos and correspond-
ing music were collected from YouTube channels and Warner Music. Segmenting each
video music pair, one can obtain 5120 samples, and we divide this dataset into: 3600
training video music pairs, 1320 validation video music pairs and 200 test video music
pairs.

The self-built dataset, in order to demonstrate the practical applicability of the
recommendation task, is collected from Tik Tok and PMEmoZhang et al (2018) respec-
tively, downloading the required video and music data. The music data contains 1794
songs with sentiment annotations and a corresponding collection of videos with simi-
lar category labels. Of these, 1600 data were used for training, 150 for validation and
44 for testing.

4.2 Parameter setting and evaluation criteria

Training the above architecture requires the organization of the dataset used for video
music triad training. Therefore, we extract video music pairs with relevant background
music content to be used as anchor positive pairs during training. We extract posi-
tive pairs from both the pop music video dataset and the Tik Tok video dataset by
selecting video music pairs whose distance between the video and music feature vec-
tors is less than a certain value. We then create video triples based on the positive
pairs by selecting videos that serve as hard negative examples.In other words, we
select the feature space where the Euclidean distance is less than the distance between
the anchored positive pairs plus the edge value d of all anchored negative pairs, i.e.
D(A,N) < D(A,P ) + d, where D(., .) denotes the Euclidean distance between any
pair of video music. d value is set to 0.15 based on experience. To train the data, we
can only supply the network with one video music triad at a time due to GPU memory
limitations. We used Adam optimization with the learning rate set to 1× 10−5 .

For each period, T=1000 triples were selected for each pool. The model was trained
for 100 periods, i.e. 200K iterations, and the best network was selected based on the
mean accuracy (mAP) on the validation set. Other parameters were set to α=0.5,
β=0.1 and W=64, and the weights of the feature extraction CNN and the whitening
layer were kept constant.

We refer to other methods, and finally choose Recall rate, Precision and Mean
Average Precision as the evaluation criteria.

1. Recall Rate is the proportion of correct predictions that are positive to all actual
positive predictions.

Recall =
TP

TP + FN
(10)
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Table 2 Experimental results of the model on
HIMV-200K dataset(%)

Modality R@1 R@10 R@25 mAP

Expected Value 0.1 1 2.5
SF 0.11 1.11 2.68 54.3
DF 0 1.08 2.59 53.5
EF 0.12 1.17 2.94 55.9
Ours(-L2-AT) 0.11 1.22 3.25 58.2
Ours(+L2+AT) 0.15 1.33 3.72 42.2

Table 3 Experimental results of the model on the
dataset of Pop music videos(%)

Modality R@1 R@10 R@25 mAP

Expected Value 0.5 5 12.5
SF 0.53 5.38 12.69 53.1
DF 0.59 5.84 13.94 55.7
EF 0.52 5.26 14.77 54.6
Ours(-L2-AT) 0.61 5.97 15.23 57.3
Ours(+L2+AT) 0.66 6.24 18.27 64.8

We applied the percentage recall at top K (Recall@K) metric, which is widely used
for cross-modal searches. For a given value of K, Recall@K represents the number
of relevant top-K ranked items divided by the total number of relevant items. From
this we can obtain a baseline data across different datasets as a way of judging the
performance of the model.

2. Precision, also known as the accuracy rate, is the proportion of positive correct
forecasts to all positive forecasts.

Precision =
TP

TP + FP
(11)

Accuracy represents the degree of predictive accuracy in positive sample results,
while precision represents the overall predictive accuracy, including both positive and
negative samples.

3. Mean Average Precision

AP =
1

R

∑

Precision(rank) = L1 + βL2 (12)

MAP =
1

C

∑

AP (13)

4.3 Experiment

4.3.1 Ablation experiments

In order to evaluate the performance of MFF-VBMR, a video background music rec-
ommendation model based on multi-layered fusion features proposed in this paper,
and to analyze the impact of each layer of features on the recommendation effect
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Table 4 Experimental results of the model on
self-built dataset(%)

Modality R@1 R@10 R@25 mAP

Expected Value 2.27 22.73 56.82
SF 2.35 24.05 62.39 54.2
DF 2.31 23.89 60.54 53.8
EF 2.47 25.95 65.71 58.6
Ours(-L2-AT) 2.82 28.66 68.51 59.5
Ours(+L2+AT) 3.22 32.77 74.56 63.9

of the model, we conducted ablation experiments on the HIMV-200K dataset, Pop
music videos dataset and self-built data respectively. The experiments were divided
into three groups as follows.

1. In the feature extraction stage, we extract only the static features, dynamic
features and emotion features of the video and music respectively. In other words, we
want to analyze the image features of the video key frames and the spectral features
of the music, the rhythm and tempo of the video and the music, and the emotional
state of the video and the emotion respectively. On the basis of these single features
obtained, they are fed into the FNC network, the similarity algorithm in this paper,
and the performance of the model is judged on the basis of recall and average precision
mean.

2. This set of experiments uses the method proposed in this paper for music rec-
ommendation based on multi-level fusion features. The complete set of three global
features is fed into the FNC network and compared with the above experiments to
judge the performance of the model and to evaluate the model in this paper.

3. Based on the second set of experiments, we no longer apply the feature
normalization and attention mechanisms to compare differences in model performance.

The results of the experiments are shown in Tables 2-4, where SF, DF and EF are
using only static features, for dynamic features and emotional features respectively,
and AT is the attention network.The expected values in the table refer to the the-
oretical value of R@K under this test dataset and are used to evaluate whether the
method achieves a passing score.

It is evident from the experimental results that, regardless of the dataset on which
the experiments were conducted, the recall and mean accuracy of the model using
multi-layered fusion features for recommendation were higher than those using only
single-layered features, and our proposed model performed well on the background
music recommendation task. This is because although single-layer features make con-
nections between the complex relationships between visual and auditory elements, only
local object features of video and music are captured, when other global contextual
information is particularly important and needs to complement the single features.

It is also experimentally demonstrated that the performance of the model improves
somewhat when the method in this paper is not subjected to L2 normalization and
attention mechanism, which is due to the fact that the multi-level features make the
connection between video and music closer, but the performance of the model is further
improved when L2 normalization and attention mechanism are added. This is because
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Table 5 Comparison results of different
models on HIMV-200K dataset(%)

Method R@1 R@10 R@25 mAP

Expected Value 0.1 1 2.5
DCCA 0.11 1.11 2.74 59.8
TBVMN 0.11 1.15 2.89 55.6
CBVMR 0.12 1.23 2.78 57.3
AVCA 0.14 1.25 3.09 58.4
EMVGAN 0.13 1.19 2.84 59.1
Ours 0.15 1.33 3.72 62.2

this feature processing method is equivalent to imposing a hard constraint on the
two branching features of video and music, resulting in an increase in the recognition
accuracy of the model.

The videos and songs in the Pop music videos dataset are highly correlated, and
in particular the dance moves and musical rhythms within the videos snap together
well, so the model performs slightly better than the HIMV-200K dataset and the
self-built dataset in this respect when using dynamic features alone for their music
recommendations.

4.3.2 Comparative experiments

In the comparison experiments, this paper selects some mainstream cross-modal rec-
ommendation modeling approaches to compare their effectiveness with the proposed
MFF-VBMR model. TBVMNJin et al (2020) and CBVMRHong et al (2018) both have
a two-branch structure, which enables video music retrieval function by constructing a
common subspace, while CBVMR also enables music-to-video inverse retrieval. EMV-
GAN Tsai et al (2022) achieves the task of music recommendation by constructing a
sentiment public embedding space to bridge the heterogeneity gap between different
data modalities. AVCALi et al (2019) extracts global and local features from visual
and audio signals, and then constructs a unified framework consisting of global and
local embedding networks for sentiment video content analysis. The DCCA Andrew
et al (2013) model is often used for the task of cross-modal graphical retrieval, using
this model also performs relatively well on the task of video background music recom-
mendation. In this paper, comparative experiments are conducted on the HIMV-200K
dataset, Pop music videos dataset and self-built dataset respectively.

Tables 5-7 respectively shows the recall rates and average accuracy averages of
different cross-modal recommendation methods in the three data sets. From the exper-
imental results, it can be seen that the values of Recall@K all exceed the desired data,
indicating that all these methods achieve the desired goals and are good at the task of
cross-modal retrieval and recommendation. Compared with other traditional methods,
the performance of the model designed in this paper is more superior.

The PR curves shown in Figures 3-5 visually show the performance of the six
methods on the three datasets, from which the performance differences between the
models can be clearly and intuitively seen. The model has achieved good results on
the three datasets.
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Table 6 Comparison results of different
models on Pop music videos dataset(%)

Method R@1 R@10 R@25 mAP

Expected Value 0.5 5 13.5
DCCA 0.56 5.54 15.92 55.8
TBVMN 0.57 5.77 14.46 59.6
CBVMR 0.61 5.6 16.79 57.4
AVCA 0.62 5.96 17.33 59.3
EMVGAN 0.63 5.86 16.2 60.2
Ours 0.66 6.24 18.27 64.8

Table 7 Comparison results of different
models on self-built dataset(%)

Method R@1 R@10 R@25 mAP

Expected Value 2.27 22.73 56.82
DCCA 2.46 25.32 65.71 57.5
TBVMN 2.5 27.88 67.89 56.9
CBVMR 2.67 28.34 69.15 57.8
AVCA 2.74 29.52 70.09 58.3
EMVGAN 2.81 30.07 69.83 60.4
Ours 3.22 32.77 74.56 63.9

Fig. 3 Model comparison results on HIMV-200K dataset

Fig. 4 Model comparison results on Pop music videos dataset
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Fig. 5 Model comparison results on self-built dataset

5 Conclusion

In this paper, we propose a video background music recommendation method based on
multi-level fusion features, and design a convolutional similarity calculation network.
This approach exploits the multimodal information of video and music to achieve the
task of matching appropriate background music recommendations for a given video.
Experimental results show that the proposed model improves the recommendation
performance and achieves higher accuracy. This method has a certain reference value
for the future cross-mode recommendation application. In the future, our study will
further investigate other more cross-modal recommendation scenarios and consider
improving the algorithm to improve computational efficiency based on large amounts
of data information.
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