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ABSTRACT
AI Generated Content (AIGC) has gained widespread atten-
tion with the increasing efficiency of deep learning in content
creation. AIGC, created with the assistance of artificial
intelligence technology, includes various forms of content,
among which the AI-generated images (AGIs) have brought
significant impact to society and have been applied to
various fields such as entertainment, education, social media,
etc. However, due to hardware limitations and technical
proficiency, the quality of AIGC images (AGIs) varies,
necessitating refinement and filtering before practical use.
Consequently, there is an urgent need for developing objec-
tive models to assess the quality of AGIs. Unfortunately, no
research has been carried out to investigate the perceptual
quality assessment for AGIs specifically. Therefore, in this
paper, we first discuss the major evaluation aspects such as
technical issues, AI artifacts, unnaturalness, discrepancy, and
aesthetics for AGI quality assessment. Then we present the
first perceptual AGI quality assessment database, AGIQA-
1K, which consists of 1,080 AGIs generated from diffusion
models. A well-organized subjective experiment is followed
to collect the quality labels of the AGIs. Finally, we conduct
a benchmark experiment to evaluate the performance of
current image quality assessment (IQA) models.

Index Terms— AI-generated content (AIGC), AGI, qual-
ity assessment, subjective experiment

I. INTRODUCTION

AI Generated Content (AIGC) refers to any form of
content, such as text, images, audio, or video, that is created
with the help of artificial intelligence technology. With the
flourishing development of deep learning, the efficiency of
AIGC generation has increased, and AIGC Images (AGIs)
are becoming more prevalent in areas such as culture, enter-
tainment, education, social media, etc. Unlike natural scene
images (NSIs) that are captured from the natural scenes,
AGIs are directly generated from AI models as shown in Fig
1. Namely, diffusion models [1] and generative adversarial
networks [2] are capable of generating a great number of
images according to our needs. However, due to the hardware
limitations and technical proficiency, the quality of AGIs is

*These authors contributed equally to this work.

AI generating images

Human capturing images

AGIs

NSIs

Fig. 1. Illustration of the generation process of AGIs and
NSIs, where NSIs are captured from the natural scenes and
AGIs are directly generated from AI models.

inconsistent and various, which often requires refinement and
filtering before exhibition and being put into practical use.
Thus, objective models for evaluating the quality of AGIs
are urgently needed.

During the last decade, large amounts of effort have
been put into constructing image quality assessment (IQA)
databases and proposing IQA methods for common image
contents, such as NSIs [3], JPEG2000-compressed [4], car-
toon [5], computer-generated [6], contrast-changed [7], high
dynamic range (HDR) [8], in-the-wild [9], screen content
[10], and omnidirectional [11] images. All these kinds of
images can share some common technical quality assessment
dimensions such as illumination, blur, contrast, texture, etc.
AGIs obtain some unique quality characteristics and viewers
tend to evaluate the quality of AGIs from some different
aspects although AGIs are generated under restrictions to be
similar to the training images such as NSIs. We summarize
some major quality assessment aspects for AGIs here: a)
Technical issues, which refer to the common distortions that
affect the visibility of the image content; b) AI artifacts,
which indicates the confusing and unexpected components
appeared in the images; c) Unnaturalness, which stands for
the unnaturalness that goes against common sense and the
discomfort during the viewing experience; d) Discrepancy,
which denotes the mismatch extent between the AGIs and
our expectation; e) Aesthetics, which refers to the overall
visual appeal and beauty of the images.

However, there has been no scientific research specifically
targeted on the perceptual quality of AGIs currently. There-
fore, in this paper, we embark on a certain exploration to
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Fig. 2. Sample images from the AGIQA-1k database, where the first to sixth rows show AGIs with (bird, cat, batman, kid,
man, woman) as the main objects respectively.

Table I. Illustration of text keywords for generating the
AGIs. All the keywords mentioned in the table are used for
the stable-diffusion-v2 while the keywords marked with *
are excluded for the stable-inpainting-v1.

Keywords Content

Main
Objects

Bird, Cat, Dog, Batman,
Snoppy, Teddy bear, Kid*, Man,
Woman, Alien, Demon*, Witch*

Second
Objects

Driving Aircraft*/Bike*/Car*,
Having Hamburger*/Ice-cream*/Pizza,

Playing Baseball/Football/Yoga,
Using CD/Laptop/Phone,
Wearing Coat/Hat/Shirt

Places City, Wild
Styles Anime Style, Realistic Style

address the challenge of evaluating the quality of AIGC by
carrying out a first-of-a-kind perceptual quality assessment
database for AGIs, named AGIQA-1K. Specifically, we
employ two latent text-to-image diffusion models [1] stable-
inpainting-v1 and stable-diffusion-v2 as the AGI models.
Then we choose several most popular text keywords from
the Internet for AGI generation and a total of 1,080 AGIs
are obtained. Afterward, we carry out a subjective experi-

ment in a well-controlled laboratory environment, where the
subjects are asked to perceptually evaluate the quality of
AGIs following the major quality aspects discussed above.
Finally, a benchmark experiment is conducted to evaluate the
performance of current IQA models and in-depth discussions
are given as well. Our contributions are proposed as follows:

● We propose a thorough quality assessment guideline for
AGIs, the major evaluation aspects include technical
issues, AI artifacts, unnaturalness, discrepancy, and
aesthetics.

● We are the first to carry out a perceptual AGI qual-
ity assessment database (AGIQA-1K), which provides
1,080 AGIs along with quality labels.

● A benchmark experiment is conducted to evaluate the
performance of current IQA models.

II. DATABASE CONSTRUCTION
II-A. AGIs Collection

Considering the success of stable diffusion models, we
select two text-to-image diffusion models stable-inpainting-
v1 and stable-diffusion-v2 (sub-models derived from [1]) as
the AGI models. To ensure content diversity and catch up
with the popular trends, we use the hot keywords from the
PNGIMG website 1 for AGIs generation, and the employed

1https://pngimg.com/
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(b) AGI distributions

Fig. 3. The normalized probability distributions of the
quality-related attributes for NSIs and AGIs. The distribu-
tions are obtained from 10,073 NSIs in the KonIQ-10k IQA
database [12] and 1,080 AGIs in the proposed AGIQA-1k
database respectively. The ’color’ indicates the colorfulness
of the images and the ’SI’ (spatial information) stands for
the content diversity of the images.

keywords are exhibited in Table I, which contains the main
objects, the second objects, places, and styles. Some sample
AGIs are further illustrated in Fig. 2.

In order to evaluate the statistical discrepancy between
NSIs and AGIs, we present the distributions of five quality-
related attributes for comparison. The NSIs are sourced
from the in-the-wild KonIQ-10k IQA database [12], while
the AGIs are collected through the proposed AGIQA-1K
database. The quality-related attributes under consideration
are light, contrast, colorfulness, blur, and spatial information
(SI). Detailed descriptions of these attributes can be found
in [13]. As shown in Fig. 3, the quality-related attribute
distributions of NSIs and AGIs are quite similar and tend
to be Gaussian-like. Specifically, AGIs are relatively blurrier
and contain more spatial information than NSIs.

II-B. Subjective Experiment
To evaluate the quality of AGIs, a subjective experiment

is conducted following the guidelines of ITU-R BT.500-13
[14]. The subjects are asked to rate the overall quality levels
of exhibited AGIs from the technical issues, AI artifacts,
unnaturalness, discrepancy, and aesthetic aspects. Some typ-
ical distortion examples are shown in Fig. 4. The AGIs
are presented in random order on an iMac monitor with a

(a) Blur (b) Unexpected artifact

(c) Unnaturalness (d) Simple and Text unmatch

Fig. 4. Exhibition for some common AGI distortions, where
the generation keywords are marked in the top right. The
content of (a) is poorly visible due to the blur and inexplicit
texture. Unexpected artifacts are introduced to the bottom
left of (b). (c) contains unnatural content such as the hands
of the woman do not cope with common sense. (d) is too
simple and does not fit the text keyword of “Wearing Coat”.

resolution of up to 4096 × 2304, using an interface designed
with Python Tkinter, as shown in Fig. 5. The interface allows
viewers to browse the previous and next AGIs and rate them
using a quality scale that ranges from 0 to 5, with a minimum
interval of 0.1. A total of 22 graduate students (10 males and
12 females) participate in the experiment, and they are seated
at a distance of around 1.5 times the screen height (45cm)
in a laboratory with normal indoor lighting.

To limit the experiment time for each session to less
than half an hour, the experiment is split into 5 sessions,
each of which includes the subjective quality evaluation for
about 200 AGIs. This results in more than 22×1,080=23,760
quality ratings.

II-C. Subjective Data Analysis

After the subjective experiment, all quality ratings from
the subjects are collected. The raw rating judged by the i-th
subject on the j-th image is denoted by rij . Z-scores are
obtained from the raw ratings using the following formula:

zij = rij − µi
σi

, (1)



Fig. 5. An example of the quality assessment interface,
where the AGI and corresponding keywords are shown at
the same time. The subject can then evaluate the quality of
AGIs and record the quality scores with the scroll bar on the
right.

where µi = 1
Ni
∑Ni

j=1 rij , σi =
√

1
Ni−1 ∑

Ni

j=1(rij − µi)2, and
Ni is the number of images judged by subject i. Next, ratings
from unreliable subjects are removed using the subject
rejection procedure recommended by ITU-R BT.500-13 [14].
The mean opinion score (MOS) of image j is computed by
averaging the rescaled z-scores:

MOSj = 1

M

M

∑
i=1
z
′

ij , (2)

where MOSj indicates the MOS for the j-th AGI, M is the
number of valid subjects, and z

′

ij are the rescaled z-scores.
The corresponding MOS distribution in Fig. 6 is consistent
with previous works [15] [16] about subjective diversity.

III. EXPERIMENT
III-A. Benchmark Models

Due to the absence of pristine reference images in the
proposed AGIQA-1k database, only no-reference (NR) IQA
models are selected for comparison. The selected models can
be classified into three groups:

● Handcrafted-based models: This group includes BMPRI
[17], CEIQ [18], DSIQA [19], NIQE [20], and SIS-
BLIM [21]. These models extract handcrafted features
based on prior knowledge about image quality.

● Handcrafted &SVR-based models: This group includes
friquee [22], GMLF [23], HIGRADE [24], NFERM
[25], and NFSDM [26]. These models combine hand-
crafted features from a Support Vector Regression
(SVR) to represent perceptual quality.

● Deep learning-based models: This group includes
ResNet50 [27], StairIQA [28], and MGQA [29]. These
models characterize quality-aware information by train-
ing deep neural networks from labeled data.

Notably, the models mentioned above have exhibited strong
performance in previous IQA tasks for natural scenes.
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Fig. 6. Illustration of the MOS probability distribution.

III-B. Evaluation Criteria
In this study, three primary metrics are utilized to evaluate

the consistency between the predicted scores and Mean
Opinion Scores (MOSs): Spearman Rank Correlation Co-
efficient (SRoCC), Pearson Linear Correlation Coefficient
(PLCC), Kendall’s Rank Correlation Coefficient (KRoCC).
The SRoCC metric measures the similarity between two sets
of rankings, while the PLCC metric computes the linear
correlation between two groups of rankings. The KRoCC
metric, on the other hand, estimates the ordinal relationship
between two measured quantities.

To map the predicted scores to MOSs, a five-parameter
logistic function is applied, which is a standard practice
suggested in [30]:

X̂ = α1 (0.5 − 1

1 + eα2(X−α3) ) + α4X + α5, (3)

where {αi ∣ i = 1,2, . . . ,5} represent the parameters to
be fitted, y and ŷ stand for predicted and mapped scores,
respectively.

III-C. Experimental Setup
All the benchmark models in III-A are validated on

the proposed AGIQA-1k database. The database is split
randomly in an 80/20 ratio for training/testing while ensuring
the image with the same object label falls into the same
set. The partitioning and evaluation process is repeated
several times for a fair comparison while considering the
computational complexity, and the average result is reported
as the final performance. For &SVR-based models, the
repeating time is 1,000, implemented by LIBSVM [31] with
radial basis function (RBF) kernel. For deep learning-based
models, the repeating time is 10, using ResNet50 [27] as
the network backbone. The Adam optimizer [32] (with an
initial learning rate of 0.00001 and batch size 40) is used
for 100-epochs training on an NVIDIA GTX 4090Ti GPU.

III-D. Performance Discussion
The performance results on the proposed AGIQA-1K

database and corresponding two different generative model



Table II. Performance results on the AGIQA-1k database and two different generative model subsets. The best performance
results are marked in RED and the second performance results are marked in BLUE.

Metric Database All stable-inpainting-v1 stable-diffusion-v2
Corr SRoCC KRoCC PLCC SRoCC KRoCC PLCC SRoCC KRoCC PLCC

Hand
crafted-
based

BMPRI [17] 0.0651 0.0400 0.1646 0.3746 0.2643 0.4094 -0.0158 -0.0112 -0.0111
CEIQ [18] 0.3069 0.2097 0.2836 0.2348 0.1607 0.2000 0.1314 0.0898 0.1392
DSIQA [19] -0.3047 -0.2148 -0.0559 0.0428 0.0241 0.4106 0.0046 0.0041 0.0184
NIQE [20] -0.5490 -0.3824 -0.5048 0.0414 0.0240 0.0712 -0.2275 -0.1564 -0.2392
SISBLIM [21] -0.1309 -0.0889 -0.3575 -0.2410 -0.1666 -0.4802 0.0541 0.0371 0.0305

Hand
crafted
&SVR-
based

friquee [20] 0.4938 0.3469 0.4192 0.4231 0.3024 0.3989 0.1783 0.1244 0.2069
GMLF [23] 0.5575 0.4052 0.6356 0.5062 0.3649 0.6167 0.1501 0.1039 0.1713
HIGRADE [24] 0.4056 0.2860 0.4425 0.2493 0.1732 0.2886 0.1358 0.0943 0.1308
NFERM [25] 0.4540 0.3224 0.5396 0.3874 0.2743 0.4901 0.1193 0.0817 0.1474
NFSDM [26] 0.4314 0.3055 0.4714 0.3840 0.2743 0.4576 0.1002 0.0690 0.0911

Deep
learning-
based

ResNet50 [27] 0.6365 0.4777 0.7323 0.6000 0.4485 0.7728 0.3961 0.2785 0.4739
StairIQA [28] 0.5504 0.4039 0.6088 0.4669 0.2519 0.5050 0.3486 0.2519 0.4186
MGQA [29] 0.6011 0.4456 0.6760 0.5618 0.4250 0.7206 0.3715 0.2584 0.3593

subsets are exhibited in Table II, from which we can
make several conclusions. 1) The handcrafted-based methods
achieve poor performance on the whole database and two
subsets, which indicates the extracted handcrafted features
are not effective for modeling the quality representation of
AGIs. This is because most employed handcrafted features of
these methods are based on the prior knowledge learned from
NSIs, which apparently do not hold for the AGIs. 2) The
deep learning-based methods achieve relatively more com-
petitive performance results on the whole database and two
subsets. However, they are still far away from satisfactory.
3) Nearly all the IQA models achieve the best performance
on the whole database and undergo significant performance
drops on the stable-diffusion-v2 subsets. We attempt to give
the reasons for such a phenomenon. More keywords are
utilized for the stable-diffusion-v2 model, therefore making
the AGIs generated by a such model more diverse and
complicated. This makes it more challenging for the IQA
models to extract quality-aware features from AGIs, which
inevitably leads to performance drops.

We further validate the performance of the IQA models on
the AGIQA-1K database with the anime and realistic styles.
The experimental results are listed in Table III. It seems that
the IQA models gain similar performance across different
styles, which suggests that the styles have a limited impact
on the performance of current IQA models.

IV. CONCLUSION
AIGC has become increasingly popular as deep learning

techniques keep improving. However, due to hardware con-
straints and technical limitations, the quality of AGIs can
vary, necessitating refinement and filtering prior to practical
usage. Therefore, there is a critical need for developing
objective models to assess the quality of AGIs. In this
paper, we first discuss significant evaluation aspects, such as
technical issues, AI artifacts, unnaturalness, discrepancy, and

Table III. Performance results on the AGIQA-1K database
with different styles. The best performance results are
marked in RED and the second performance results are
marked in BLUE.

Metric Database Anime Realistic
Corr SRoCC PLCC SRoCC PLCC

Hand
crafted-
based

BMPRI [17] 0.1029 0.2452 0.0257 0.1001
CEIQ [18] 0.2948 0.2746 0.3143 0.2873
DSIQA [19] -0.3282 -0.0741 -0.3372 -0.0857
NIQE [20] -0.5256 -0.4901 -0.5853 -0.5423
SISBLIM [21] -0.3133 -0.4331 -0.0135 -0.3009

Hand
crafted
&SVR-
based

friquee [22] 0.4654 0.3752 0.5165 0.4153
GMLF [23] 0.5200 0.6338 0.5946 0.6356
HIGRADE [24] 0.4244 0.4895 0.4561 0.4858
NFERM [25] 0.4778 0.5618 0.4834 0.5480
NFSDM [26] 0.4270 0.4768 0.3728 0.4134

Deep
learning-
based

ResNet50 [27] 0.5769 0.6769 0.6686 0.7577
StairIQA [28] 0.5947 0.6385 0.5007 0.5879
MGQA [29] 0.6138 0.6876 0.5734 0.6613

aesthetics for AGI quality assessment. Then, we carry out the
first perceptual AGI quality assessment database, AGIQA-
1K, containing 1,080 AGIs generated from diffusion models.
A well-organized subjective experiment is conducted to col-
lect quality labels for the AGIs. Subsequently, a benchmark
experiment is carried out to evaluate the performance of
current IQA models. The experimental results reveal that
the current IQA models are not well qualified to deal with
AGIQA task and there is still a long way to go.
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