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Abstract—Image dehazing is a meaningful low-level computer
vision task and can be applied to a variety of contexts. In
our industrial deployment scenario based on remote sensing
(RS) images, the quality of image dehazing directly affects the
grade of our crop identification and growth monitoring products.
However, the widely used peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) provide ambiguous visual
interpretation. In this paper, we design a new objective metric for
RS image dehazing evaluation. Our proposed metric leverages
a ground-based phenology observation resource to calculate
the vegetation index error between RS and ground images at
a hazy date. Extensive experiments validate that our metric
appropriately evaluates different dehazing models and is in line
with human visual perception.

Index Terms—dehazing, evaluation metric, remote sensing,
satellite-to-ground

I. INTRODUCTION

As an integral part of low-level computer vision (CV) tasks,
image dehazing is utilized to remove the influence of weather
factors and improve the visual effects of the images. Image
dehazing can be applied to a wide range of scenarios, including
game production and vision systems for autonomous driving,
video surveillance, military reconnaissance, etc. Another major
dehazing scenario is in the field of remote sensing (RS)
imagery, with both government-level and commercial-level
applications, such as change detection and crop identification.

In our industrial scenario, our customers’ demands are crop
identification and growth monitoring using RS images [1]–
[3]. These demands heavily rely on the calculation of the
Normalized Difference Vegetation Index (NDVI) [4], a widely
used RS index to assess vegetation growth. However, RS
images with fog and haze can cause significant errors in NDVI
calculation, leading to the unsatisfactory results we deliver
to our customers. Therefore, image dehazing assessment is
essential to convey the proper RS image product to our clients.
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In order to evaluate the dehazing effects, a dehazed image
and a clear ground truth image are required to estimate
their similarity. This can be easily achieved in the natural
image domain, because many dehazing datasets employ clear
images to artificially generate the corresponding hazy images.
However in the RS domain, a hazy image does not have a clear
counterpart at the same time stamp. Although haze synthesis
on a clear RS image is passable, our model trained with artifi-
cial hazy images suffers from unsatisfying performance on real
haze. Alternatively, recent studies provide a new perspective
that jointly employs ground-level and satellite images for
various satellite-to-ground cross-reference applications when
either image source is insufficient [5], [6].

Peak Signal-to-Noise Ratio (PSNR) and Structural Similar-
ity Index (SSIM) are two commonly used metrics for dehazing
evaluation [8]–[10], however, they are hardly interpreted or
deployed in practice as an indicator of the dehazing model
upgrade. Our clients’ feedback indicates that the increment
in the value of PSNR or SSIM does not necessarily bring
out quality improvement in human perception. Recent studies
also confirm this misalignment in evaluating low-level CV
tasks such as the super-resolution task [11], [12]. Therefore,
designing a stereotype-breaking metric is necessary [13]–[15].

To address the pain points in terms of the data and metrics
above, we propose a new evaluation metric for RS image
dehazing assessment based on satellite-to-ground multimedia
image sources, called “SAtellite-to-Ground Error of NDVI”
(SAGE-NDVI). Our key contributions are listed as follows.

• To tackle the unavailability of a clear ground truth
RS image, we leverage a sharp ground image dataset
of vegetation phenology, which daily monitors multiple
crop types worldwide using outdoor cameras. The error
between the NDVI values of this clear ground image
source and the dehazed RS image source contributes to
the proposed SAGE-NDVI.

• Extensive experiments demonstrate that our objective
SAGE-NDVI is capable of appropriately evaluating dif-
ferent dehazing models and more consistent with human
perception than the conventional PSNR metric.
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(a) Location (cyan) (b) 06.22.2021 (RGB) (c) 06.29.2021 (RGB) (d) 07.13.2021 (RGB) (e) 07.13.2021 (NIR) (f) Refined mask
Fig. 1. (a): Geographic location (cyan dot) of the PhenoCam observation site bouldinalfalfa [7] on an S2 image. (b)-(d): Example
images of the ground-based imagery source, showing the visual appearance changes within only a one-month span. (e): Example near-infrared
image on the same date of (d). (f): Refined mask based on the given one.

II. RELATED WORK

Natural Image and Remote Sensing Image Dehazing.
For natural images, traditional methods mainly utilized dif-
ferent priors for image restoration and improve the image
contrast and saturation [16]–[18]. Recently deep learning-
based methods aimed to generate a dehazed image from a hazy
one [9], [10], [19]. FFA-Net [9] exploited channel and pixel
attention modules to incorporate features on different channels
to accomplish robust dehazing performance. DehazeFormer
[10] adopted reflection padding and modified normalization
layers built upon Swin Transformer [20] to achieve state-of-
the-art performance on various datasets. For RS scenarios,
image dehazing is a rigid demand for various civilian purposes,
like land planning and crop yield surveys [8], [21], [22].

Evaluation Metrics. Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) are the two main
objective metrics to evaluate the dehazing effects [8]–[10],
[19]. The former gauges the pixel-wise error using Mean
Squared Error (MSE), and the latter measures the structural
similarity of pictures to estimate the quality of pictures after
compression [23]. However, they are not entirely consistent
with human perception [12] or even interpretable for clients
who lack domain knowledge. In the context of our deployment
scenario using RS imagery, our design of the proposed objec-
tive evaluation metric SAGE-NDVI benefits from the satellite-
to-ground multimedia image reference sources and breaks the
stereotype of the difficulty to measure low-level image tasks
in RS images.

III. MATERIALS AND METHODS

A. Data Acquisition and Pre-Processing

Satellite Image Data. Instead of using Google Earth or
other sources that are limited to academic use only, we
utilize the Sentinel-2 (S2) satellite imagery with a 10m spatial
resolution [24], which is commercial use free, to construct our
satellite image database. It is worth noting that our database
pipeline prioritizes the clients’ demands rather than this spe-
cific evaluation metric design. As required by our clients, the
production of S2 images for a given time interval (e.g. every
8 days) must be guaranteed. However, the original revisiting
period of S2 satellites (around 4-5 days) is not fixed and an
S2 image for each period is sometimes corrupted or defective,
definitely conflicting with the clients’ requirements. To this
end, we exploit temporally adjacent images to composite
an S2 image with a fixed time interval of every 8 days.
Fig. 1a provides an S2 image example from our satellite

image database with the pinned geographic location of the
observation site.

Ground Image Data. We leverage the PhenoCam database
as our ground data source [25]. This database of monitoring
vegetation phenology covers over 800 global observation loca-
tions using outdoor ground-based cameras. Due to the impact
of diverse climates across worldwide locations on camera
image availability, especially in rainy and snowy seasons, our
focus is the cropland areas in the middle Central Valley of
California, USA. The reasons are twofold: 1) this area enjoys
a hot Mediterranean climate that rarely has snowy days; 2) the
long-running camera deployment acquires abundant images.
Specifically, we select an observation site that grows alfalfa at
Bouldin Island, CA [7], where the image data is available from
2016 to the present. Since alfalfa is harvested several times a
year, its vegetation appearance can change more frequently
than other plants. This property is challenging but beneficial
to our metric design and evaluation. Fig. 1b-1d exemplify the
images captured at this site, showing the visual changes within
only one month.

The deployed camera contains four RGBN channels: red,
green, blue, and near-infrared (NIR) (shown in Fig. 1e). The
frequency of image production of a camera is around every
30 minutes in the daytime every day. We refine the originally
given binary mask to eliminate the region of the camera stand
and the sky (shown in Fig. 1f). Thanks to our careful selection
of the observation site and time span, the masked regions can
be regarded as cloud-free and haze-free image sources, serving
as a reliable reference for S2 image counterparts.

B. Design of SAGE-NDVI

Background of NDVI. The Normalized Difference Vege-
tation Index (NDVI) [4] is an technique to assess vegetation
growth and condition by measuring the difference between
NIR and red channels of an image, calculated as NDVI =
(NIR − Red)/(NIR + Red). NDVI values range from -1
to +1. The higher values indicate more green and healthy
vegetation and negative values often indicate water bodies.
NDVI is widely used in environmental monitoring to assess
vegetation cover, monitor changes in land use and land cover,
and track the effects of climate change on ecosystems.

Algorithm Details. Alg. 1 reveals our algorithm design of
SAGE-NDVI. Let I = [I1, I2, . . . , In] denote the n-length
sequence of 8-day composite S2 satellite images in one year,
where n is the number of valid satellite images. The ground
image year-round sequence is G = [G1,1,G1,2, . . . ,Gl,tl ],



Algorithm 1: SAGE-NDVI
Input: Satellite imgs: I = [I1, I2, . . . , In];

Ground imgs: G = [G1,1,G1,2, . . . ,Gl,tl ];
NDVI threshold: h.

Funcs: ➊ ψ: Cloud detector; ➋ ϕ: Dehazing;
➌ λI: NDVI for I; ➍ λ̃G: NDVI and post-proc
for G; ➎ d: DTW.

Output: e ∈ R, eϕ ∈ R.
1 for i← 1 to n do
2 Mψ

i ← ψ(Ii);
3 Iψi ← Ii & (1−Mψ

i );
4 Iϕi ← ϕ(Iψi );
5 end
6 u← λI(Iψ); uϕ ← λI(Iϕ); v← λ̃G(G);
7 Normalize u ∈ Rn, uϕ ∈ Rn, and v ∈ Rm;
8 A← d(u,v) ∈ {0, 1}(n×m);
9 Aϕ ← d(uϕ,v) ∈ {0, 1}(n×m);

10 Initialize e, eϕ, and k with 0s;
11 for i← 1 to n do
12 if |ui − uϕi | > h then
13 q← {j|Aij == 1; j ∈ {1, . . . ,m}};
14 qϕ ← {j|Aϕij == 1; j ∈ {1, . . . ,m}};
15 e← e + 1

|q|
∑
q∈q |ui − vq|;

16 eϕ ← eϕ + 1
|qϕ|

∑
qϕ∈qϕ |uϕi − vqϕ |;

17 k ← k + 1;
18 end
19 end
20 e = e/k; eϕ = eϕ/k;

where l refers to the number of valid days and tl is the number
of available images on the l-th day. For each Ii, i ∈ {1, . . . , n},
a cloud detector ψ(·) is first used to void pixels occluded by
cloud, and the remaining valid pixels are then dehazed by a
dehazing model ϕ(·). The corresponding NDVI sequences (u
and uϕ) of the cloud-cropped hazy satellite images Iψ and the
dehazed satellite images Iϕ are next calculated, respectively.

Note that the original NDVI values of ground images have a
length of l, since they are calculated on a daily average basis.
We then denoise them and conduct peak detection to remove
minor fluctuation and maintain the key patterns, consequently
achieving an m-length NDVI sequence v for ground images
G, where m is the number of detected peaks and troughs.

Due to the inherent distance in the color space between
the satellite imaging sensors and the ground camera sensors,
we normalize the three NDVI sequences using a min-max
scaling strategy. Note that a hazy NDVI value can be a salient
outlier of a regular figure, hence applying the min-max scaling
scheme on such time series data can cause serious offset errors.
Those inappropriate offsets further damage the real relative
distances between hazy u and dehazed uϕ. We normalize u
using the parameters of uϕ instead.

Next, we measure the similarity between the NDVI temporal
sequences of satellite images and ground images. Owing to the
different lengths (n vs. m) of NDVI values, the dynamic time

TABLE I
SAGE-NDVI RESULTS AT THE OBSERVATION SITE

BOULDINALFALFA [7] FROM 2018 TO 2022. Green: DIFFERENCE
BETWEEN e AND eϕ . Bold: THE BETTER DEHAZING PERFORMANCE

BETWEEN FFA-NET AND DEHAZEFORMER.

Alfalfa e (↓) eϕ (↓) (FFANet [9]) eϕ (↓) (DehazeFormer [10])

2018 0.4457 0.2312 (−0.2145) 0.1865 (−0.2592)
2019 0.3259 0.3181 (−0.0077) 0.3032 (−0.0227)
2020 0.3190 0.2351 (−0.0839) 0.2259 (−0.0931)
2021 0.4385 0.2773 (−0.1612) 0.2243 (−0.2142)
2022 0.4370 0.2140 (−0.2230) 0.1696 (−0.2674)

Mean 0.3764 0.2719 (−0.1045) 0.2219 (−0.1545)

warping (DTW) algorithm [26] is exploited to dynamically
associate similar values of two time series with different
temporal resolutions. We let A denote the binary adjacency
matrix to present the DTW path. For the i-th of n time stamps,
we compare the difference between hazy ui and dehazed uϕi .
If the difference is greater than a given threshold, the dehazing
effect is significant at this time spot. We define e and eϕ as the
mean errors for hazy and dehazed NDVI values at all these
significant time stamps, respectively.

C. Use Description of SAGE-NDVI

For the use of SAGE-NDVI, the hazy images of the
PhenoCam observation site are provided as the gold standard
reference dataset. To evaluate a dehazing model, we run the
model on those hazy images and generate the dehazed ones.
The dehazed images are used to calculate the values of eϕ.

IV. PERFORMANCE EVALUATION

A. Implementation Details

For the satellite side, we collect 18,776 S2 image pairs of
a hazy and a clean image at the proximate date. The Dark
Channel Prior (DCP) [16] is used to determine whether one
image is hazy or not. The default DCP threshold is set to
20. We choose the FFA-Net [9] and the DehazeFormer-B
[10] since they demonstrated superior performance on various
datasets in [10] and they are deployed in our production
environment. The images were cropped into patches with
a size of 1024×1024 and equipped with rotation and flip
augmentations. We keep the default setting of both FFA-Net
and Dehazeformer-B, respectively trained for 300 epochs. The
threshold of NDVI difference h is set to 0.1 by default.

For the ground side, we download the image data of this
observation site spanning from 2018 to 2022. To avoid the
camera being affected by the sunrise and sunset, we use the
images from 11:00 to 13:00 when the sun is not in camera
images, collecting approximately 4 images per day.

B. Experiment Results

Evaluation of Dehazing Models Using SAGE-NDVI.
Table I lists the evaluation results of dehazing models using
SAGE-NDVI at the alfalfa observation site from 2018 to 2022.
The significantly decreased error values eϕ compared with
e demonstrate the usability of our newly designed metric.
Furthermore, the bold results indicate the stable superiority



TABLE II
AVERAGED SAGE-NDVI ON OTHER OBSERVATION SITES [7].

Green: DIFFERENCE BETWEEN e AND eϕ .

Mean e (↓) eϕ (↓) (FFANet [9]) eϕ (↓) (DehazeFormer [10])

Corn 0.3085 0.2374 (−0.0711) 0.2285 (−0.0837)
Rice 0.1602 0.1232 (−0.0370) 0.1157 (−0.0445)

of DehazeFormer-B over FFA-Net. This observation is con-
sistent with the results in [10] that DehazeFormer-B overall
outperformed FFA-Net on a remote sensing dataset and other
datasets using the traditional PSNR and SSIM metrics.

Comparison of SAGE-NDVI and PSNR. Although the
general conclusions drawn from evaluating the dehazing mod-
els using either SAGE-NDVI or PSNR seem aligned as
aforementioned, we next illustrate the shortcomings of PSNR.
Fig. 2 depicts the NDVI errors (the second addend on Line 15
and 16 in Alg. 1) and the PSNR values calculated at the alfalfa
observation site on a hazy date. Aside from the obviously poor
PSNR value and large NDVI error of the original hazy image,
we observe that even though PSNR values of FFA-Net are
higher than those of DehazeFormer-B, the visualized results
are not quite in accordance with the human perception. The
image’s color and texture reconstructed by DehazeFormer-B
from the original hazy image are better. Instead, our objective
NDVI error is able to match the subjective visual consistency
better. We also conduct preliminary subjective evaluation from
both our technical and client sides, and the results align with
the SAGE-NDVI.
SAGE-NDVI at Other PhenoCam Locations. We also test

SAGE-NDVI at different PhenoCam locations, focusing on the
crop types with few phenological periods than alfalfa, such as
corn and rice [7]. The NDVI values at those locations do not
have dramatic changes throughout the year. Table II shows
similar observed relationships among e and two eϕ values.
However, due to the few phenological periods and available
hazy dates, the differences in NDVI values are not noticeable
as those at the alfalfa observation site.

V. CONCLUSIONS

In this paper, we leverage the satellite-to-ground philosophy
to propose a new objective metric, SAGE-NDVI, for RS
image dehazing evaluation. A public phenology observation
resource containing ground images is exploited to calculate
the vegetation index error between RS and ground images at
a hazy date. Our metric’s capability of appropriately evaluating
various dehazing models and conforming to human visual
perception is demonstrated by extensive experiments.
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