
Abstract

In a multimodal human-machine conversation, user
inputs are often abbreviated or imprecise. Sometimes,
only fusing multimodal inputs together cannot derive a
complete understanding. To address these inadequacies,
we are building a semantics-based multimodal interpre-
tation framework called MIND (Multimodal Interpreta-
tion for Natural Dialog). The unique feature of MIND is
the use of a variety of contexts (e.g., domain context and
conversation context) to enhance multimodal fusion. In
this paper, we present a semantic rich modeling scheme
and a context-based approach that enable MIND to gain
a full understanding of user inputs, including those
ambiguous and incomplete ones.

1. Introduction

Multimodal interfaces allow human to interact with
machines through multiple modalities such as speech,
gesture, and gaze. Studies showed that these interfaces
support a more effective human-computer interaction, for
example, by reducing task completion time and task
errors rate [11]. Inspired by the earlier work (e.g., [2, 4, 8,
13]), we are building an intelligent infrastructure, called
Responsive Information Architect (RIA), which can
engage users in a multimodal conversation. Currently,
RIA is embodied in a testbed, called Real HunterTM, a
real-estate application for helping users find residential
properties.

Figure 1 shows RIA’s main components. A user can
interact with RIA using multiple input channels, such as
speech and gesture. First, a multimodal interpreter
exploits various contexts (e.g., conversation history) to

produce an interpretation frame that captures the mean-
ings of user inputs. Based on the interpretation frame, a
conversation facilitator decides how RIA should act by
generating a set of conversation acts (e.g., Describe infor-
mation to the user). Upon receiving the conversation acts,
a presentation broker sketches a presentation draft that
expresses the outline of a multimedia presentation. Based
on this draft, a language designer and a visual designer
work together to author a multimedia blueprint that con-
tains fully coordinated and detailed multimedia presenta-
tion. The blueprint is then sent to a producer to be
realized. To support all components described above, an
information server supplies various contextual informa-
tion, including domain data (e.g., houses and cities for a
real-estate application), a conversation history (e.g.,
detailed conversation exchanges between RIA and a
user), a user model (e.g., user profiles), and an environ-
ment model (e.g., device capabilities).

Our focus in this paper is on the interpretation of
multimodal user inputs. Specifically, we are developing a
semantics-based multimodal interpretation framework
called MIND (Multimodal Interpreter for Natural Dia-
log). Most existing works on multimodal interpretation
focus on interpreting user inputs through modality inte-
gration (e.g., merging speech with gesture) (e.g.,[2, 4, 8])
without considering interaction contexts (although they
have been used extensively in spoken dialog systems [1,
14]). In a conversation setting, user inputs are often
imprecise or abbreviated. Only integrating meanings
from individual modalities together sometimes cannot
reach a full understanding of those inputs. Therefore,
MIND applies a context-based approach that uses a vari-
ety of contexts (e.g., domain context and conversation
context) to enhance multimodal fusion.

Specifically, MIND supports three major processes:
unimodal understanding, multimodal understanding, and
discourse understanding (Figure 2). First, in unimodal
understanding, an array of recognizers (e.g., a speech rec-
ognizer) convert input signals (e.g., speech signals) to
modality-specific outputs (e.g., text). These outputs are
then processed by modality-specific interpreters (e.g., a
natural language interpreter). As a result, the meanings of
each unimodal input are captured by a unimodal interpre-
tation frame†. Based on these meanings, during the multi-
modal understanding process, a multimodal integrator
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uses proper contextual information to infer and create an
integrated interpretation frame. This frame captures the
overall meanings of the multimodal inputs. In addition to
understanding each user input, MIND also captures the
overall progress of a conversation and thus establishes a
rich conversation context through discourse understand-
ing. Based on earlier works on discourse interpretation
([10, 12]), MIND captures how a particular user input is
related to the whole conversation, for example, whether
the current input contributes to an existing conversation
topic or it initiates a new one.

In this paper, we focus on the multimodal understand-
ing process. In particular, we present two aspects of
MIND. The first is a fine-grained semantic model that
characterizes the meanings of user inputs and the overall
conversation. The second is an integrated interpretation
approach that identifies the semantics of user inputs using
a wide variety of contexts (e.g., conversation history and
domain knowledge). We first start with an example sce-
nario to better explain the functions of MIND.

2. Example Scenario

Table 1 logs a conversation fragment between a user
Joe and RIA. Joe initiates the conversation by asking for

houses in Irvington (U1), and RIA replies by showing a
group of desired houses (R1). Based on the generated
visual display, Joe points to the screen (a position between
two houses) and asks for the price (U2). In this case, it is
not clear which object Joe is pointing at. There are three
candidates: two houses nearby and the town of Irvington†.
Using our domain knowledge, MIND can rule out the
town of Irvington, since Joe is asking for a price. How-
ever, MIND still can not determine which of the two house
candidates is the desired one. To clarify this ambiguity,
RIA highlights both houses and asks Joe to pinpoint the
house of interest (R2).

Again, Joe’s reply (U3) alone would be ambiguous,
since there are multiple red objects on the screen. How-
ever, using the conversation history (R2) and the visual
properties (Figure 3), MIND is able to infer that Joe is
referring to the highlighted red house. Joe continues on to
ask for the size (U4). This request by itself is incomplete,
since Joe did not explicitly specify the object of interest
(house). Nevertheless, MIND understands that Joe is ask-
ing for the size of the same red house based on the conver-
sation history (U2–3). Joe moves on to inquire about
another house (U5). This input by itself does not indicate
exactly what Joe wants. Again, using the conversation his-
tory (U4), MIND recognizes that Joe is most likely asking
for the size of another house. Next Joe switches to asking
for the location of a train station (U6). According to our
domain knowledge, train stations are always related to
towns. Although Joe did not specify the town at this turn,
MIND is able to conclude that the relevant town is Irving-
ton using the conversation history (U1). Finally Joe asks
about the number of bedrooms (U7). Based on the current
visual context (one house still being highlighted from U5),
MIND infers that Joe now returns to the previously
explored house.

3. Semantics-based Modeling

To enable a full understanding of user multimodal
inputs, we use a set of semantic features to model not only
semantic aspects of user inputs at each turn of a conversa-
tion, but also the overall progress of the conversation.

3.1 Modeling User inputs

In support of multimodal conversation, MIND has
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Table 1. A conversation fragment.

Joe: Speech: Show me houses in Irvington. (U1)

RIA: Speech: Here are the houses you requested.
Graphics: Show a collection of houses on the map (R1)

Joe: Speech: What’s the cost?
Gesture: Point to the screen (U2)

RIA: Speech: Which house are you interested in?
Graphics: Highlight two candidate houses (R2)

Joe: Speech: The red one (U3)

RIA: Speech: The asking price of this red house is 350,000 dollars.
Graphics: Highlight the red house and show the price (R3)

Joe: Speech: And the size? (U4)

RIA: Speech: The size of this house is 2000 square feet (R4)

Joe: Speech: This one?
Gesture: Put a question mark on top of a house icon (U5)

RIA: Speech: The size of this house is 2200 square feet. (R5)
Graphics: Highlight the house icon

Joe: Speech: By the way, where is the train station? (U6)

RIA: Speech: Here is the train station in Irvington.
Graphics: Indicate the train station on the map (R6)

Joe: Speech: OK.Then...how many bedrooms does it have? (U7)

RIA: Speech: This house has four bedrooms.(R7)

† The generated display has multiple layers, where the house icons are
on top of the Irvington town map. Thus this deictic gesture could either
refer to the town of Irvington or houses.

Figure 3. A snapshot of graphics output
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two goals. First, MIND must understand the meanings of
user inputs precisely so that the conversation facilitator
(Figure 1) can decide how the system should act. Second,
MIND needs to capture the user input styles (e.g., using a
particular verbal expression or gesturing in a particular
way) or user communicative preferences (e.g., preferring a
verbal vs. a visual presentation). The captured information
helps the multimedia generation components (visual or
language designers in Figure 1) create more effective and
tailored system responses. To accomplish both goals,
MIND characterizes five aspects of a user input: intention,
attention, interpretation status, presentation preference,
and modality decomposition.

3.1.1. Intention. Intention describes the purpose of a user
input [6]. We characterize three aspects of intention: Motiva-
tor, Act, and Type. Motivator captures the purpose of an inter-
action. Since we focus on information-seeking
applications, MIND currently distinguishes three top-level
purposes: DataPresentation, DataAnalysis (e.g., comparison),
and ExceptionHandling (e.g., disambiguation). Act indicates
one of the three user actions: request, reply, and inform.
Request specifies that a user is making an information
request (e.g., asking for a collection of houses in U1 Table
1). Reply indicates that the user is responding to a previous
RIA request (e.g., confirming the house of interest in U3).
Unlike Request or Reply, Inform states that a user is simply
providing RIA with specific information, such as personal
profiles or interests. Furthermore, MIND also distin-
guishes different types of Request. For example, one user
may request RIA to Describe the desired information, such
as the price of a house, while the other may request RIA
simply to Identify the desired information (e.g., show a train
station on the screen). Intention is modeled not only to
support conversation, but also to facilitate multimedia gen-
eration. Specifically, Motivator and Type together direct RIA
in its response generation. For example, RIA would con-
sider Describe and Identify two different data presentation
directives [15]. Figure 4(a) shows the Intention identified
from the user input U2 (Table 1). It indicates that the user is
asking RIA to present him with some information. The
information to be presented is captured in Attention.

3.1.2. Attention. While Intention indicates the purpose of a
user input, Attention captures the content of a user input

with six features. Base specifies the semantic category of
the content (e.g., all houses in our application belong to the
House category). Topic indicates whether the user is con-
cerned with a concept, a relation, an instance, or a collec-
tion of instances. For example, in U1 (Table 1) the user is
interested in a collection of House, while in U2 he is inter-
ested in a specific instance. Focus further narrows down the
scope of the content to distinguish whether the user is
interested in a topic as a whole or just specific aspects of
the topic. For example, in U2 the user focuses only on one
specific aspect (price) of a house instance. Aspect enumer-
ates the actual topical features that the user is interested in
(e.g., the price in U2). Constraint holds the user constraints
or preferences placed on the topic. For example, in U1 the
user is only interested in the houses (Topic) located in Irv-
ington (Constraint). Content points to the actual data in our
database. Figure 4(b) shows the Attention identified for the
user input U2. It states that the user is interested in the price
of a house instance, MLS0187652 or MLS0889234 (house ids
from the Multiple Listing Service). As discussed later, our
fine-grained modeling of Attention provides MIND the abil-
ity to discern subtle changes in user interaction (e.g., a user
may focus on one topic but explore different aspects of the
topic). This in turn helps MIND assess the overall progress
of a conversation.

3.1.3. Interpretation Status. InterpretationStatus provides an
overall assessment on how well MIND understands an
input. This information is particularly helpful in guiding
RIA’s next move. Currently, it includes two features. Syn-
tacticCompleteness assesses whether there is any unknown or
ambiguous information in the interpretation result. Seman-
ticCompleteness indicates whether the interpretation result
makes sense. Using the status, MIND can inform other
RIA components whether a certain exception has risen.
For example, SyntacticCompleteness in Figure 4c indicates
that there is an ambiguity concerning Content in Attention,
since MIND cannot determine whether the user is inter-
ested in MLS0187652 or MLS0889234. Based on this status,
RIA would ask a clarification question to disambiguate the
two houses (e.g., R2 in Table 1).

3.1.4. Presentation Preference. During a human-com-
puter interaction, a user may indicate what type of
responses she prefers. Currently, MIND captures user pref-
erences along four dimensions. Directive specifies the high-
level presentation goal (e.g., preferring a summary to
details). Media indicates the preferred presentation medium
(e.g., verbal vs. visual). Style describes what general for-
mats should be used (e.g., using a chart vs. a diagram to
illustrate information). Device states what devices would be
used in the presentation (e.g., phone or PDA). Using the
captured presentation preferences, RIA can generate mul-
timedia presentations that are tailored to individual users
and their goals. For example, Figure 4(e) records the user
preferences from U2. Since the user did not explicitly spec-
ify any preferences, MIND uses the default values to rep-
resent those preferences. Presentation preferences can
either directly derived from user inputs or inferred based
on user and environment contexts.

3.1.5. Modality Decomposition. ModalityDecomposition
(Figure 4d) maintains a reference to the interpretation

(a) Intention
Act: Request
Motivator: DataPresentation
Type: Describe

(d) Modality Decomposition
Modality: ^SpeechInput
Modality: ^GestureInput

(b) Attention
Base: House
Topic: Instance
Focus: SpecificAspect (^Topic)
Aspect: Price
Constraint: < >
Content: [MLS0187652 |
MLS0889234]

(e) Presentation Preference
Directive: <Summary>
Media: <Multimedia>
Device: <Desktop>
Style: < >

(c) Interpretation Status
SyntacticComplete: Attentional-
ContentAmbiguity
SemanticComplete: TRUE

Figure 4. The interpretation of a multimodal input U21

1. Symbol ^ indicates a pointer and < > indicates no information conc
ing this parameter has been identified from the user input.



result for each unimodal input, such as the gesture input in
Figure 5(a–d) and the speech input in Figure 5(e–f). In
addition to the meanings of each unimodal input (Intention
and Attention), MIND also captures modality-specific char-
acteristics from the inputs such as time intervals during
which the actions take place. In particular, MIND uses Sur-
faceAct to distinguish different types of gesture/speech acts.
For example, there is an Inquire speech act (Figure 5e) and
a Point gesture act (Figure 5a). Furthermore, MIND cap-
tures the syntactic form of a speech input, including the
syntactic category (SynCat) and the actual language realiza-
tion (Realization) of important concepts (e.g., Topic and
Aspect). For example, Aspect price is realized using a noun
cost (Figure 5f). Using such information, RIA can adapt
itself to user input styles (e.g., using similar vocabulary).

3.2 Discourse-level Modeling.

In addition to modeling user inputs at each conversa-
tion turn, we also model the entire progress of a conversa-
tion to provide a rich conversation context based on Grosz
and Synder’s conversation theory [1986].

3.2.1. Conversation Unit and Segment. Our conversa-
tion history has two main elements: conversation units and
conversation segments. A conversation unit records user
or RIA actions at a single turn of a conversation. These
units can be grouped together to form a segment (e.g.,
based on their intentions and sub-intentions). Figure 6
depicts the hierarchical conversation history that outlines
the first eight turns of the conversation in Table 1. This
structure contains eight units (rectangles U1–4 for the user,
R1–4 for RIA) and three segments (ovals DS1–3)

Specifically, a user conversation unit contains the

interpretation result of a user input discussed in the last
section. A RIA unit contains the automatically generated
multimedia response, including the semantic and syntactic
structures of a multimedia presentation [15]. A segment
has five features: Intention, Attention, Initiator, Addressee, and
State. The Intention and Attention are similar to those modeled
in the turns (see DS1, U1 and R1 in Figure 6). In addition, Ini-
tiator indicates the conversation initiating participant (e.g.,
Initiator is User in DS1). Addressee indicates the recipient of
the conversation (e.g., Addressee is RIA in DS1). Finally,
State reflects the current state of a segment: active, accom-
plished or suspended. For example, after U3 DS1 is still active,
but DS3 is already accomplished since its purpose of disam-
biguating the content has been fulfilled.

3.2.2. Discourse Relations. To model the progress in a
conversation, MIND captures two types of relations in the
discourse: structural relations and transitional relations.
Structural relations reveal the intention/sub-intention
structure between the purposes of conversation segments.
For example, in Figure 6, DS3 is a sub-intention of DS2,
since ExceptionHandling (Motivator of DS3) is for the purpose
of DataPresentation (Motivator of DS2) of a particular house.
Transitional relations specify transitions between conver-
sation segments and between conversation units as the
conversation unfolds. Currently, two types of relations are
identified between segments: intention switch and atten-
tion switch. The attention switch is further categorized by
eight types of data transitional relations such as Collection-
to-Instance and Instance-to-Aspect. For example, the attention
is switched from a collection of houses in DS1 to a specific
house in DS2 (Figure 6) through Collection-to-Instance. Data
transitional relations allow MIND to capture user data
exploration patterns. Such patterns in turn can help RIA
decide potential data navigation paths and provide users
with an efficient information-seeking environment. In
addition to segment relations, there is also a temporal-pre-
cedence relation between conversation units that preserves
the sequence of conversation.

4. Context-based Multimodal Understanding

Based on the semantic model described above, MIND
uses a wide variety of contexts to interpret the rich seman-
tics of user inputs. In a conversation setting, users often
give partial information at a particular turn. Traditional
multimodal understanding that focuses on multimodal
integration is often inadequate to achieve a full under-
standing of those inputs. For example, in U5 (Table 1) it is
not clear what exactly the user wants by just merging the
two inputs together. To address these inadequacies, MIND
adds context-based inference on top of multimodal fusion.

Gesture Input (a) (b) (c) (d) Speech Input (e) (f)

Intention
Act: < >
Motivator: < >
Type: Refer
SurfaceAct: Point
TimeInterval: [..]

Attention (A1)
Base: House
Topic: Instance
Focus: < >
Aspect: < >
Constraint: < >
Content:
[MLS0187652]

(A2)
Base: House
Topic: Instance
Focus:< >
Aspect: < >
Constraint: < >
Content:
[MLS0889234]

(A3)
Base: City
Topic: Instance
Focus: < >
Aspect: < >
Constraint: < >
Content: [Irvington]

Intention
Act: Request
Motivator: DataPresen-
tation
Type: Describe
SurfaceAct: Inquire
TimeInterval: [..]

Attention
Base: < >
Topic: Instance
Focus: SpecificAspect(^Topic)
Aspect: Price {

<SynCat: Noun>
<Realization: “cost”>}

Constraint: [ReferredBy THIS]
Content: < >

Figure 5. Separate interpretation of two unimodal inputs in U2.

Figure 6. Fragment of a discourse structure
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Our approach allows MIND to use rich contextual infor-
mation to infer the unspecified information (e.g., the exact
intention in U5) and resolve ambiguities from the user
input (e.g., the gestural ambiguities in U2). In particular,
MIND applies two operations: fusion and inference to
achieve multimodal understanding.

4.1 Fusion

Fusion creates an integrated representation by com-
bining multiple unimodal inputs. In this process, MIND
first merges intention structures using a set of rules. For
example, one rule asserts that when combining two inten-
tions together, if one is only for referral purpose (e.g., the
gesture of U2 in Figure 5a), then the other (e.g., the speech
of U2 in Figure 5e) serves as the combined intention (e.g.,
the integrated Intention of U2 in Figure 4a). The rational
behind this rule is that a referral action without any overall
purpose most likely complements another action that car-
ries a main communicative intention. Thus, this communi-
cative intention is the intention after fusion. Once
intentions are merged, MIND uses unification to merge
the corresponding attention structures. For example, in U2
MIND produces two combined attention structures by uni-
fying the Attention from the speech (Figure 5f) with each
Attention from the gesture (Figure 5b-d). The result of
fusion is shown in Figure 7. In this combined representa-
tion, there is an ambiguity about which of the two atten-
tion structures is the true interpretation (Figure 7b, c).
Furthermore, within the attention structure for House, there
is an additional ambiguity on the exact object (Content in
Figure 7b). This example shows that integration resulting
from unification based multimodal fusion is not adequate
to resolve ambiguities. We will show later that some ambi-
guities can be resolved based on contexts.

For simple user inputs, attention fusion is straightfor-
ward. However, it may become complicated when multi-
ple attentions from one input need to be unified with
multiple attentions from another input. To fuse these
inputs, MIND first applies temporal constraints to align
the attentions identified from each modality. This align-
ment can be easily performed when there is an overlap-
ping or a clear temporal binding between a gesture and a
particular phrase in the speech. However, in a situation
where a gesture is followed (preceded) by a phrase with-
out an obvious temporal association as in “tell me more about
the red house (deictic gesture 1) this house (deictic gesture 2) the
blue house,” MIND uses contexts to determine which two
of the three objects (the red house, this house, and the blue
house) mentioned in the speech should be unified with the
attentions from the gesture.

Modality integration in most existing multimodal sys-
tems is speech driven and relies on the assumption that

speech always carries the main act, and others are comple-
mentary [2, 3]. In contrast, our modality integration is
based on the semantic contents of inputs rather than their
forms of modalities. Thus, as Quickset [8], MIND sup-
ports all modalities equally. For example, the gesture input
in U5 is the main act, while the speech input is the comple-
mentary act for reference.

4.2 Inference

Inference identifies user unspecified information and
resolves input ambiguities using contexts. In a conversa-
tion, users often supply abbreviated or imprecise inputs at
a particular turn, e.g., abbreviated inputs given in U3, U4,
U5, and the imprecise gesture input in U2 (Table 1). More-
over, the abbreviated inputs often foster ambiguities in
interpretation. To derive a thorough understanding from
the partial user inputs and resolve ambiguities, MIND
exploits various contexts.

The domain context provides domain knowledge and
is particularly useful in resolving input ambiguities. For
example, fusion inputs in U2 which has imprecise gesture
results in ambiguities (Figure 7). To resolve the ambiguity
whether the attention is a city object or a house object,
MIND uses the domain context. In this case, MIND elimi-
nates the city candidate, since cities cannot have an
attribute of price. As a result, MIND understands that the
user is asking about the House.

In addition to the domain context, the conversation
context also provides MIND with a useful context to
derive the information not specified in the user inputs. In
an information seeking environment, users tend to only
explicitly or implicitly specify the new or changed aspects
of their information of interest without repeating those that
have been mentioned earlier in the conversation. There-
fore, some required but unspecified information in a par-
ticular user input can be inferred from the conversation
context. For example, the user did not explicitly specify
the object of interest in U4 since he has provided such
information in U3. However, MIND uses the conversation
context and infers that the missing object in U4 is the
house mentioned in U3. In another example U5, the user
specified another house but did not mention the interested
aspect of this new house. Again, based on the conversation
context, MIND recognizes that the user is interested in the
size aspect of the new house.

RIA’s conversation history is inherently a complex
structure with fine-grained information (e.g., Figure 6).
However, with our hierarchical structure of conversation
units and segments, MIND is able to traverse the conver-
sation history efficiently. In our example scenario, the
conversation between U1 and R5 contributes to exploring
houses in Irvington. U6 starts a new segment, in which the
user asked for the location of a train station, but did not
specify the relevant town name. However, MIND is able
to infer that the relevant town is Irvington directly from
DS1, since DS1 captures the town name Irvington. Without
the segment structure, MIND would have to traverse all
previous 10 turns to resolve the town reference.

As RIA provides a rich visual environment for users
to interact with, users may refer to objects on the screen by
their spatial (e.g., the house at the left corner) or percep-

(a) (b) (c)

Intention
Motivator:
DataPresentation
Act: Request
Type: Describe

Attention
Base: House
Topic: Instance
Focus: SpecificAspect
Aspect: Price
Content: [MLS0187652 |
MLS0889234]

Attention
Base: City
Topic: Instance
Focus: SpecificAspect
Aspect: Price
Content: [Irvington]

Figure 7. Combined interpretation as a result of multimo-
dal fusion in U2.



tual attributes (e.g., the red house). To resolve these spa-
tial/perceptual references, MIND exploits the visual
context, which provides the detailed semantic and syntac-
tic structures of visual objects and their relations. More
specifically, visual encoding automatically generated for
each object is maintained as a part of the system conversa-
tion unit in the conversation history. During reference res-
olution, MIND would identify potential candidates by
mapping the referring expressions with the internal visual
representation. For example, the object which is high-
lighted on the screen (R5) has an internal representation
that associates the visual property Highlight with the object
identifier. This allows MIND to correctly resolve referents
for it in U7. In this reference resolution process, based on
the Centering Theory [5], MIND first identifies the refer-
ent most likely to be the train station since it is the preferred
center in the previous utterance. However, according to
the domain knowledge, such a referent is ruled out since
the train station does not have the attribute of bedrooms.
Nevertheless, based on the visual context, MIND recog-
nizes a highlighted house on the screen. An earlier study
indicates that objects in the visual focus are often referred
by pronouns, rather than by full noun phrases or deictic
gestures [9]. Therefore, MIND considers the object in the
visual focus (i.e., the highlighted house) as a potential ref-
erent. In this case, since the highlighted house is the only
candidate that satisfies the domain constraint, MIND
resolves the pronoun it in U7 to be that house. Without the
visual context, the referent in U7 would not be resolved.

5. Implementation and Evaluation

We have developed MIND as a research prototype.
The modeling scheme and the context-based interpretation
approach are implemented in Java. The prototype is cur-
rently running on Linux.

Our initial semantic models and interpretation algo-
rithms were driven by a user study we conducted. In this
study, one of our colleagues acted as RIA and interacted
with users to help them find real estate in Westchester
county. The analysis of the content and the flow of the
interaction indicates that our semantic models and inter-
pretation approaches are adequate to support these interac-
tions. After MIND was implemented, we conducted a
series of testing on multimodal fusion and context-based
inference (focusing on domain and conversation contexts).
Half of the trials were specifically designed to contain
ambiguous or abbreviated inputs. Since the focus of the
testing was not on our language model, we designed the
speech inputs so that they could be parsed successfully by
our language understanding components. The testing
showed that once the user speech input was correctly rec-
ognized and parsed, 90% of trials were correctly inter-
preted based on our multimodal interpretation approach.
However, speech recognition is a bottleneck in MIND. To
improve the robustness of MIND, we need to enhance the
accuracy of speech recognition and improve the coverage
of the language model. We plan to do more vigorous eval-
uations in the future.

6. Conclusions and Future Work

In a multimodal conversation, user inputs could be

ambiguous or abbreviated. Only fusing multimodal inputs
together sometimes cannot reach a full understanding.
Therefore, we have built a context based multimodal inter-
preter MIND that applies rich contexts to enhance multi-
modal fusion. In particular, MIND has two unique
features. The first is a fine-grained semantic model that
characterizes the meanings of user inputs and the overall
conversation from multiple dimensions. The second is an
integrated interpretation approach that identifies the
semantics of user inputs using a wide variety of contexts.
These features enable MIND to achieve a deep under-
standing of user inputs. Our future work includes explor-
ing learning techniques to incorporate confidence factors
to further enhance input interpretation.
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