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Abstract— AdaBoost rarely suffers from overfitting problems
in low noise data cases. However, recent studies with highly
noisy patterns clearly showed that overfitting can occur. A
natural strategy to alleviate the problem is to penalize the
distribution skewness in the learning process to prevent several
hardest examples from spoiling decision boundaries. In this
paper, we describe in detail how a penalty scheme can be
pursued in the mathematical programming setting as well as
in the Boosting setting. By using two smooth convex penalty
functions, two new soft margin concepts are defined and two new
regularized AdaBoost algorithms are proposed. The effectiveness
of the proposed algorithms is demonstrated through a large
scale experiment. Compared with other regularized AdaBoost
algorithms, our methods can achieve at least the same or much
better performances.

I. INTRODUCTION

The adaptive boosting (AdaBoost) algorithm is considered
one of the most important developments in the classification
methodologies in recent years and has been used with great
success in many applications [1],[2],[3]. It has been shown
that in the low noise regime AdaBoost rarely suffers from
overfitting problems. However, recent studies [4],[5],[6] with
highly noisy patterns clearly showed that overfitting can occur
and several regularized boosting algorithms [6],[7],[8] have
been proposed to extend the applicability of AdaBoost to
noisy data. AdaBoostReg [6] is one of the first boosting-
like algorithms that achieved the state-of-the-art generalization
results on noisy data. It implemented an intuitive idea of
controlling the tradeoff between the margin and the sample
influences to achieve a soft margin. In their experimental
evaluations, it was found to be among the best performing
ones. However, the problem with AdaBoostReg is that it is
difficult to analyze the underlying optimization scheme since
the modification is done on the algorithm level [1],[5].

In this paper, we study the regularized AdaBoost algorithms
from the viewpoint of mathematical programming and propose
two regularization schemes to improve the robustness of Ad-
aBoost against noisy data. By studying the connection between
the minimax optimization problem and AdaBoost, we show
that the good generalization performance of AdaBoost can be
explained by the fact that the classification performance in the
worst case is optimized, which also explains that in noise data
cases AdaBoost will eventually lead to overfitting since the

data samples can be highly overlapped and even mislabelled.
Therefore some forms of regularization are mandatory. A
natural regularization strategy is to use the concept of soft
margin, i.e., the algorithm does not attempt to classify all of
the training samples according to their labels but allows for
some errors. One typical example is LPreg-AdaBoost which
introduces slack variables into an optimization problem in the
primal domain. It is equivalent to constraining the distributions
into a box in the dual domain, which can be understood as
adding a penalty of 0 within the box and ∞ outside the box.
Therefore, this scheme is somewhat heuristic and may be too
restrictive [10]. In this paper, we instead consider controlling
the distribution skewness by adding a convex penalty function
to the objective function in a minimax problem formulation,
which leads to a piecewise convex optimization problem.
Through a linear approximation, this problem can be solved
in both the dual and primal domains. In particular, two
algorithms based on the different penalty functions, referred to
as AdaBoostKL and AdaBoostNorm2, are proposed. These two
algorithms can be considered as an extension of AdaBoostReg
in term of pursuing a soft margin. However, they can achieve
better performances than AdaBoostReg. In particular, the per-
formance of AdaBoostKL is the best among the regularized
AdaBoost algorithms we test in this paper.

The rest of the paper is organized as follows. First, in
Section II we present a brief review of AdaBoost. In Section
III we study the connection between the minimax optimization
problem and AdaBoost. Based on these discussions, two
new algorithms, namely AdaBoostKL and AdaBoostNorm2, are
proposed. In Section IV a large scale experiment based on
several artificial and real world datasets are performed. The
results are compared with those of the AdaBoostReg, ν-Arc [8]
and C-Barrier [5] algorithms. We finally conclude the paper
in Section V. Throughout this paper, we use a bold lowcase
letter to denote a vector and a bold uppercase letter to denote
a matrix. The ijth entry of a matrix Z is written as zij . z.i and
zj. are the ith column and jth row of Z, respectively. We also
use ã to denote the unnormalized vector of a, i.e., a = ã

‖ã‖1 ,
where ‖ · ‖p is the p-norm.

II. ADABOOST

We begin with some notations. Suppose we have a training
data set D = {(xn, yn)}N

n=1 ∈ Rl × {±1}. Given a class of
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hypothesis functions H = {h(x) : x → ±1}, called weak
learners, we are interested in finding an ensemble function
F (x) which is constructed as follows: F (x) =

∑
t α̃tht(x)

and f(x) = F (x)/
∑

t α̃t such that a cost function is mini-
mized. Both the combination coefficients α̃ and the hypothesis
functions ht(x) are learned in the learning process. Toward
this end, in the past several years, several ensemble methods
[3],[11],[12] have been developed. Among them, adaptive
boosting (AdaBoost) is the most popular one and is generally
considered as a first step towards more practical Boosting
algorithm development. (See, for example, a good tutorial
paper [1] for more detailed discussions.) The pseudocode of
AdaBoost is presented as follows:

AdaBoost
Initialization: D = {(xn, yn)}N

n=1, Maximum iteration num-
ber T , d(1)(n) = 1/N

for t = 1 : T
1. Train weak learner with respect to distribution d(t)

and get hypothesis ht(x) : x → {±1}.
2. Calculate the weighted training error εt of ht:

εt =
N∑

n=1

d(t)(n)I(yn 6= ht(xn))

where I(·) is the indicator function.
3. Compute the combination coefficient:

α̃t =
1
2

ln
(

1− εt

εt

)

4. Update weights:

d(t+1)(n) = d(t)(n) exp (−α̃tynht(xn)) /Ct

where Ct is the normalization constant such that∑N
n=1 d(t+1)(n) = 1.

end
Output : F (x) =

∑T
t=1 α̃tht(x)

In [13], an interesting interpretation of AdaBoost as an
algorithm performing the stage-wise gradient descent proce-
dure in the sample average of a cost function of the margin
distributions was provided. In particular, the cost function is
defined as:

G =
1
N

N∑
n=1

exp (−ynF (xn)) =
1
N

N∑
n=1

exp

(
−ρ(xn)

∑
t

α̃t

)

where ρ(xn) = ynf(xn) is the margin of the sample xn

with respect to the classifier f(xn). At the tth iteration, a
hypothesis ht(x) is trained to minimize the weighted error
and then the associated combination coefficient α̃t is found
by a line search to minimize the intermediate cost function:
Gt = 1

N

∑N
n=1 exp

(
−yn(

∑t−1
i=1 α̃ihi(xn) + α̃tht(xn))

)
. In

the binary classification case α̃t can be computed analytically
as a solution to ∂Gt/∂α̃t = 0 which gives the closed form in
the pseudocode. Another similar interpretation of AdaBoost as
a gradient descent method in a hypothesis space H presented
in [6],[14] is to consider the updating of the distribution

d(t)(n) as to normalizing the gradient of Gt with respect to
ρ(xn): d(t)(n) = ∂Gt−1/∂ρ(xn)/

∑
j ∂Gt−1/∂ρ(xj), which

provides the answers to the question of which pattern should
increase the margin most strongly in order to decrease G
maximally.

All of the above discussions greatly facilitate our under-
standing of the impressive generalization capability of Ad-
aBoost. Although the strict proofs are still missing, it is widely
believed by many researchers that AdaBoost asymptotically
approximates the solution to the following linear programming
(LP) problem [6],[8],[14],[15]:

max(ρ,α) ρ
subject to ρ(xn) ≥ ρ, n = 1, · · · , N∑

t αt = 1,α ≥ 0
(1)

This observation has also motivated many researchers to
design new ensemble classifiers directly in the mathematical
optimization setting and introduce new ideas into the Boosting
setting for new AdaBoost-like algorithms [4],[5],[6],[8],[16].
This is also the main strategy of this paper.

III. REGULARIZED ADABOOST

We start with the minimax problem. The connection be-
tween the well-known minimax problem [17] and the Ad-
aBoost algorithm was first noted in [14],[18] and was used
to determine the maximum margin that one can achieve given
a hypothesis class by exploiting the dual relationship in linear
programming. For the sake of simplicity, at the moment, we
assume that the cardinality of the hypothesis function set
is finite and is equal to T . Define a gain matrix Z where
znt = ynht(xn) is the margin of the sample xn with respect to
the tth hypothesis function ht. Now let us look at the following
minimax optimization problem:

max
α∈ΓT

min
d∈ΓN

dT Zα (2)

where ΓT is the distribution simplex defined as ΓT = {α :
α ∈ RT ,

∑T
t=1 αt = 1, α ≥ 0}. The optimization scheme

can be simply understood as finding a set of combination
coefficients α ∈ ΓT , such that the performance of the
ensemble classifier in the worst case is maximized. It is easy to
show that this classification scheme will lead to the maximum
margin scheme in (1). In the separable case, a large margin
is usually conducive to good generalization in the sense that
if a large margin can be achieved with respect to the data,
an upper bound on the generalization error is small. However,
in the noisy data case where the data distribution is highly
overlapped and some data samples can even be mislabelled,
the maximum margin scheme can be easily misled by the
outlier data. Consequently it will lead to a classifier with a
suboptimal performance. Note that in the minimax problem,
the minimization takes place over the entire probability space,
which is not sufficiently restrictive. A natural strategy is
to constrain the distribution or add a penalty term to the
cost function to control the distribution skewness so that the
algorithm is not allowed to use all of its resources to deal with
several hard-to-learn samples. In the following subsection, we
will present three regularized AdaBoost algorithms that fall in
this framework.
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A. LPreg-AdaBoost

By constraining the distribution to a box 0 ≤ d ≤ c, we
get the following optimization problem:

max
α∈ΓT

min
{d∈ΓN ,d≤c}

dT Zα (3)

where c is a constant vector and usually takes a form of
c = C1 with C being a predefined parameter and 1 ∈ RN

being a vector of all ones. The physical meaning of (3) can
be understood as to finding a set of combination coefficients
α such that the classification performance in the worst case
within the distribution box is maximized. The LP equivalent
to (3) is:

max(ρ,λ,α∈ΓT ) ρ−∑N
n=1 cnλn

subject to
∑T

t=1 αtznt ≥ ρ− λn, n = 1, · · · , N
λn ≥ 0, n = 1, · · · , N

(4)
LPreg-AdaBoost [6] is a special case of (4) obtained by setting
c1 = c2 = · · · = cN = C. A similar scheme is also used
in Support Vector Machine (SVM) [9] for nonseparable data
cases. The scheme (4) introduces a nonnegative slack variable
λn into the optimization problem to achieve a soft margin
for a pattern: ρs(xn) = ρ(xn) + λn. The relaxation of the
hard margin allows some patterns to have a smaller margin
than ρ and the algorithm does not classify all of the patterns
according to their associated class labels.

For the convenience of the following discussions, we refor-
mulate (3) slightly as maxα∈ΓT mind∈ΓN dT Zα + β(‖d‖∞)
where β(P ) is a function defined by: β(P ) = 0 if P ≤ C and
∞ if P > C. Note that the box defined by {d : ‖d‖∞ ≤
C,d ∈ ΓN} is centered on the distribution center d0 =
[1/N, · · · , 1/N ] and the parameter C reflects to some extent
the distribution skewness between the box boundary and d0.
It shows that LPreg-AdaBoost can be considered as a penalty
scheme with a penalty of 0 within the box and ∞ outside the
box. Therefore, this scheme is somewhat heuristic and may
be too restrictive. Some other smooth penalty functions can
be considered.

We make a brief discussion on the implementation of LPreg-
AdaBoost. In practical applications, the cardinality of the
hypothesis function set can be infinite and thus the gain matrix
Z does not exist in an explicit form. As a result, the linear pro-
gramming cannot be implemented directly. To overcome the
problem, several algorithms have been proposed. Two typical
examples are the ν-Arc [8] and C-Barrier algorithms [5]. We
will compare these methods with our proposed algorithms in
Section IV. From now on we use |H| to denote the cardinality
of the hypothesis function set and reserve T as the iteration
number of the AdaBoost algorithm.

B. AdaBoostKL

To control the skewness of the distribution, one strategy is
to add a penalty term P (d), which measures the distances
between the query distributions and the distribution center, to
the cost function of (2). It leads to the following optimization
problem:

max
α∈Γ|H|

min
d∈ΓN

dT Zα + βP (d) (5)

where β > 0 is a predefined parameter controlling the
distribution skewness and the training performance. With a
mild assumption of P (d) being a convex function of d, we
have the following lemma:

Lemma 1: If P (d) is a convex function of d, the following
optimization schemes are equivalent:

maxα∈Γ|H| mind∈ΓN dT Zα + βP (d)
= mind∈ΓN γ + βP (d)

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H|
(6)

Proof: Lemma 1 can be proved by interchanging the max and
min on the left side of (6) since the function dT Zα+βP (d)
is convex in d and concave in α, and the sets ΓN and ΓT are
convex and compact (Generalized Minimax Theorem [19]).
Lemma 1 tells us that if we use a convex penalty function of
d, the regularization scheme can be pursued directly in the
dual domain.

One commonly used metric for the discrete distribution is
the Kullback-Leibler distance which is given as: KL(d,d0) =∑N

n=1 dn ln dn

1/N . KL(d,d0) is convex over the region d > 0
since the Hessian matrix is positive definite. Following Lemma
1, the regularized scheme in the dual domain can be written
as:

min(γ,d∈ΓN ) γ + β
∑N

n=1 dn ln dn

1/N

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| (7)

This scheme is also suggested in [20] from the viewpoint of
the Total Corrective Algorithm [21]. The problem (7) can be
reformulated as:
min(γ,d∈ΓN ) γ

subject to sj(d) =
∑N

n=1 dnznj + β
∑N

n=1 dn ln dn

1/N ≤ γ

j = 1, · · · , |H|
(8)

Define s(d) = max1≤j≤|H| sj(d). Note that s(d) is also
a convex function. Suppose now we have a set of query
distributions S = {d(t)}T

t=1. For each query distribution
d(t), we can find a supporting hyperplane to the epigraph of
s(d). The equation of the supporting hyperplane is given by:
γ = s(d(t)) + ζs

t (d − d(t)) where ζs
t is an element of the

subdifferential ∂s(d(t)) of s at d(t). Due to the convexity of
s(d), a supporting hyperplane gives an underestimate of s.
More precisely, the equation of a supporting hyperplane can
be written as:

γ = max
1≤j≤|H|

sj(d(t)) + ζs
t (d− d(t))

= zT
.td

(t) + β

N∑
n=1

d(t)
n ln

d
(t)
n

1/N

+


z.t + β




ln d
(t)
1

1/N + 1
...

ln d
(t)
N

1/N + 1







T

(d− d(t))

=
(
z.t + β ln

d(t)

1/N

)T

d (9)

where
z.t = [y1ht(x1), · · · , yNht(xN )]T



INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, DECEMBER 16-18 2004, LOUSVILLE, KY 4

and

ht = arg max
h∈H

N∑
n=1

d(t)
n h(xn)yn.

Define Z̃ = Z + β
[
ln d(1)

1/N , · · · , ln d(T )

1/N

]
. Note that Z̃ can be

interpreted as a new gain matrix and it means that adding a
penalty function to (2) ends up with a modification of the
gain matrix which encodes the distribution information in the
hypothesis decisions. Now the optimization problem (7) can
be approximated as:

min
(γ,d∈ΓN )

γ subject to z̃T
.td ≤ γ, t = 1, · · · , T (10)

It is a linear programming that is easier to deal with than the
original problem. However, this is only a linear approximation
that gets better as more constraints are added. The query
distributions can be obtained through the column generation
technique and the finite convergence of the optimization
problem (7) can be guaranteed. However, column generation
usually shows a pattern of slow convergence due to the
degeneracy of (10) and produces many unnecessary query
distributions or columns. In [16] column generation was used
for implementing LPreg-AdaBoost. The problem of the slow
convergence was alleviated by setting a lower bound for each
query distribution, i.e., Cl1 ≤ d(t) ≤ C1 with Cl ¿ C and
consequently the possible query distributions are constrained
into an even smaller area. In our case of d ∈ ΓN , other more
sophisticated stabilized column generation techniques may be
needed and this topic should be the subject of our future
research. In this paper, we only focus on forming a regularized
AdaBoost classifier to approximately solve (10).

The dual form of (10) is:

max(ρ,α) ρ

subject to
∑T

t=1 αtznt + β
∑T

t=1 αt ln d(t)
n

1/N = ρs(xn) ≥ ρ

n = 1, · · · , N
α ∈ ΓT

(11)
The soft margin of a pattern xn can be defined as: ρs(xn) =∑T

t=1 αtznt + β
∑T

t=1 αt ln d(t)
n

1/N . The term β
∑T

t=1 αt ln d(t)
n

1/N
can be understood as a “mistrust” in examples. The rationale
is: a pattern which is often misclassified (i.e., hard to classify
correctly) will have a high average distribution and should
have less influence on the outcome of the final classifier. Note
also that the mistrust is calculated with respect to the center
distribution. For example, if the query distribution d

(t)
n ≤

1/N, t = 1, · · · , T , the “mistrust” can take a negative value.
As a result, the soft margin penalizes some hard examples and
at the same time rewards some easy examples. In [6],[22],
it was experimentally observed that AdaBoost increases the
margin of the most hard-to-learn examples at the cost of
reducing the margins of the rest of the data. Therefore, defining
a soft margin as above can be understood as reversing the
AdaBoost process with the strength being controlled by β.

Now with a soft margin defined as above and following the
same strategy as that used in deriving AdaBoostReg [5] where
AdaBoost is used as a general machine for solving minimax
problems, a new AdaBoost-like algorithm, which we refer to

as AdaBoostKL, can be formulated. Specifically, we define a
new cost function:

GKL =
N∑

n=1

exp{−ρs(xn)
∑

t

α̃t} (12)

=
N∑

n=1

exp

{
−

∑
t

α̃tznt − β
∑

t

α̃t ln
d
(t)
n

1/N

}

where α̃ is the unnormalized version of α. The combination
coefficient α̃t for the tth hypothesis ht is computed as:

α̃t = arg min
α̃t≥0

G
(t)
KL (13)

= arg min
α̃t≥0

N∑
n=1

exp



−

t∑

j=1

α̃jznj − β

t∑

j=1

α̃j ln
d
(j)
n

1/N





It is difficult to compute α̃t analytically. However, we can get
α̃t efficiently by a line search since ∂2GKL/∂2α̃t ≥ 0. The
updated distribution d

(t+1)
n is computed as the derivative of

GKL with respect to ρs(xn):

d(t+1)
n =

∂GKL/∂ρs(xn)∑
j ∂GKL/∂ρs(xj)

(14)

= d(t)
n exp

{
−α̃tht(xn)yn − βα̃t ln

d
(t)
n

1/N

}
/Ct

where Ct is the normalization constant such that∑N
n=1 d

(t+1)
n = 1. AdaBoostKL is summarized as follows:

AdaBoostKL
Initialization: D = {(xn, yn)}N

n=1, Maximum iteration num-
ber T , d

(1)
n = 1/N , parameter β

for t = 1 : T
1. Train weak learner with respect to distribution d(t)

and get hypothesis ht(x) : x → {±1}.
2. Calculate the coefficient α̃t of ht as (13).
4. Update weights as (14).

end
Output : F (x) =

∑T
t=1 α̃tht(x)

It is clear that if β = 0, we retreat to the original AdaBoost
algorithm and if β →∞, it is not difficult to prove that only
the first classifier h1 is kept, i.e., αt = 0, for t ≥ 2, which
corresponds to the single classifier design. It means that by
varying the parameter β we are able to control the boosting
strength of the learning process to alleviate the overfitting
problem.

C. AdaBoostnorm2

We can also consider using an lp norm function as the
penalty function. It is easy to show that ‖d−d0‖p is a convex
function of d and following Lemma 1, we get the following
regularized scheme in the dual domain:

min(γ,d∈ΓN ) γ + β‖d− d0‖p

subject to
∑N

n=1 dnznj ≤ γ, j = 1, · · · , |H| (15)
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Particularly, we only focus on the case of l2 in this paper. The
optimization problem can be reformulated as:

min(γ,d∈ΓN ) γ

subject to sj(d) =
∑N

n=1 dnznj + β‖d− d0‖2 ≤ γ,
j = 1, · · · , |H|

(16)
Define s(d) = max1≤j≤|H| sj(d). Suppose now we have a
set of query distributions S = {d(t)}T

t=1. For each query
distribution d(t), we can find one supporting hyperplane whose
equation is given by:

γ = s(d(t)) + ζs
t (d− d(t))

= zT
.td

(t) + β‖d(t) − d0‖2

+
(
z.t + β

d(t) − d0

‖d(t) − d0‖2

)T

(d− d(t))

=
(
z.t + β

d(t) − d0

‖d(t) − d0‖2

)T

d (17)

Define Z̃ = Z + β
[

d(1)−d0
‖d(1)−d0‖2 , · · · , d(T )−d0

‖d(T )−d0‖2

]
. Now the

optimization problem (16) can be linearly approximated as:

min(γ,d∈ΓN ) γ
subject to z̃T

.td ≤ γ t = 1, · · · , T
(18)

The dual form of (18) is:

max(ρ,α∈ΓT ) ρ

subject to
∑T

t=1 αtznt + β
∑T

t=1 αt
d(t)

n −1/N

‖d(t)−d0‖2 ≥ ρ

n = 1, · · · , N
(19)

The soft margin of a pattern xn can be defined as:
ρs(xn) =

∑T
t=1 αtznt+β

∑T
t=1 αt

d(t)
n −1/N

‖d(t)−d0‖2 . Again the term

β
∑T

t=1 αt
d(t)

n −1/N

‖d(t)−d0‖2 can be understood as a “mistrust” in
examples with respect to the center distribution. The parameter
β controls the tradeoff between margin and “mistrust”. It
is interesting to note that our soft margin definition is very
similar to that in AdaBoostReg, which is defined as: ρReg(xn) =∑T

t=1 αtznt + β
∑T

t=1 αtd
(t)
n . The main difference is that our

soft margin is calculated with respect to the center distribution
and the term ‖d(t) − d0‖2 can be roughly understood as fol-
lows: the closer the query distribution to the center distribution,
the more trust the outcome of the hypothesis deserves. Now
following the same strategy used in deriving AdaBoostKL,
the optimization problem can be easily reformulated into an
AdaBoost-like algorithm, which we call AdaBoostnorm2. We
can define a new cost function:

Gnorm2 =
N∑

n=1

exp

{
−

∑
t

α̃tznt − β
∑

t

α̃t
d
(t)
n − 1/N

‖d(t) − d0‖2

}

(20)
The combination coefficient α̃t is computed as:

α̃t = arg min
α̃t≥0

G
(t)
norm2 (21)

Again we can get α̃t efficiently by a line search since
∂2Gnorm2/∂2α̃t ≥ 0. The updated distribution d

(t+1)
n is com-

puted as the derivative of Gnorm2 with respect to ρs(xn):

d
(t+1)
n = ∂G/∂ρs(xn)P

j ∂G/∂ρs(xj)

= d
(t)
n exp

{
−α̃tht(xn)yn − βα̃t

d(t)
n −1/N

‖d(t)−d0‖2

}
/Ct

(22)
where Ct is the normalization constant such that∑N

n=1 d
(t+1)
n = 1. AdaBoostnorm2 is summarized as follows:

AdaBoostnorm2
Initialization: D = {(xn, yn)}N

n=1, Maximum iteration
number T , d

(1)
n = 1/N , parameter β

for t = 1 : T
1. Train weak learner with respect to distri-
bution d(t) and get hypothesis ht(x) : x →
{±1}.
2. Calculate the coefficient α̃t of ht as (21).
4. Update weights as (22).

end
Output : F (x) =

∑T
t=1 α̃tht(x)

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the two newly proposed
algorithms, a large scale experiment is conducted and the
results are compared with the AdaBoostReg, ν-Arc and C-
Barrier algorithms.

For the fairness of comparison, the experimental setup
herein is the same as those used in [6]. Thanks to
Rätsch’s effort, the detailed information about the experimen-
tal setup as well as the benchmark dataset can be found
at http://mlg.anu.edu.au/raetsch/data/index.html. We use 13
artificial and real-world data sets originally from the UCI,
DELVE and STATLOG benchmark repositions. Each dataset
is partitioned into 100 realizations of training and testing
data (splice and image have only 20 realizations). For each
partition, a classifier is trained and the test error is computed.
The RBF (radial basis function) net is used as the weak learner.
All of the RBF parameters are the same as those used in [6].
We use the cross-validation method based on the first five
realizations of each dataset to estimate the parameter β of
the regularized AdaBoost algorithms. The maximum iteration
number T is chosen to be 200.

As an example, in Figure 1 we present some training and
testing results and margin plots of three methods: AdaBoost,
AdaBoostnorm2 and AdaBoostKL based on one realization of
the waveform data. AdaBoost tries to maximize the margin
of each pattern and hence it can reduce the training error to
zero effectively. However it quickly leads to overfitting. In
contrast, AdaBoostnorm2 and AdaBoostKL try to maximize the
soft margin and allow some hardest examples to have a small
margin. The two regularized methods can effectively alleviate
the overfitting problem. To provide a more comprehensive
comparison, in Table I, the average classification results (stan-
dard deviations) over the 100 realizations of the 13 datasets
are presented.
• AdaBoost performs worse than a single RBF classifier

in almost all cases. It is clearly due to the overfitting
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Fig. 1. Training and testing results, and margin plots of three methods:
AdaBoost, AdaBoostnorm2 and AdaBoostKL based on the waveform data. Ad-
aBoost quickly leads to overfitting while the regularized methods effectively
alleviate this problem.

of AdaBoost. In ten (out of 13) cases AdaBoostReg
performs significantly better than AdaBoost and in ten
cases AdaBoostReg performs better than a single RBF
classifier.

• The results of AdaBoostnorm2 are slightly better than
those of AdaBoostReg in eight cases, and except for two
cases (heart and image), the results of AdaBoostKL are
better than those of AdaBoostReg. For a more rigorous
comparison, a 90% significant test is reported in Table II.
For some data sets the performance differences are small
(e.g. titanic). This is because AdaBoostReg is already a
good classifier which was reported to be slightly better
than SVM (RBF kernel) [6]. Nevertheless, significant im-
provements are observed for AdaBoostKL in five datasets
(out of 13) (Table II).

• In Table I, we also compare our algorithms with other
regularized boosting algorithms, including ν-Arc and C-
Barrier. Again, our algorithms perform better in most
cases, which may be explained as due to a hard limited
penalty function used in the supporting optimization
scheme for the ν-Arc and C-Barrier algorithms.

• An interesting observation is that although AdaBoost is
useful for the low noise data case, the results of ring-
norm, thyroid and twonorm suggest that the regularized
AdaBoost are effective even in the low noise regime.

Moreover, in almost all cases, the standard deviations
of our regularized AdaBoost algorithms are smaller than
those of the single RBF and AdaBoost classifiers.

V. CONCLUSIONS

We have made a detailed study on AdaBoost and its reg-
ularization variations. Two regularized AdaBoost algorithms
have been proposed. By studying the connection between the
minimax optimization problem with the maximum margin
classification scheme, we have shown that the impressive gen-
eralization capability of AdaBoost in the low noise data cases
may stem from the fact that the classification performance
in the worst case is maximized. It also explained that the
overfitting of AdaBoost is inevitable. It is natural to control
the distribution skewness in the learning process to prevent
the outerlier samples from spoiling decision boundaries. We
control the skewness by adding a convex penalty function to
the objective of the minimax problem. Through the generalized
minimax theorem, we have shown that the penalty scheme
can be pursued equivalently in the dual domain and the LPreg-
AdaBoost is a special case of the penalty scheme with the
penalty function being chosen as a hard limited function.
By using two smooth convex penalty functions, two new
soft margin concepts have been defined and thereby two
new regularized AdaBoost algorithms have been proposed.
The regularization is naturally incorporated into the AdaBoost
process adaptively. To demonstrate the effectiveness of the
proposed algorithms, a large scale experiment has been con-
ducted. Compared with AdaBoostReg, ν-Arc and C-Barrier,
our methods can achieve at least the same or much better
performances.
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[6] G. Rätsch, T. Onoda, and K.-R. Müller, “Soft margins for AdaBoost,”
Machine Learning, vol. 42, pp. 287–320, March 2001.

[7] Y. Freund, “An adaptive version of the boost by majority algorithm,”
Machine Learning, pp. 293–318, June 2001.
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