
A New Discrete Binary Particle Swarm Optimization based on Learning Automata

R. Rastegar M. R. Meybodi K. Badie
Soft Computing Lab Soft Computing Lab Information Technology

Computer Eng. Department Computer Eng. Department Department
Amirkabir University Amirkabir University Iran Telecom. Research Center

Tehran, Iran Tehran, Iran Tehran, Iran
rrastegar@ce. aut. ac. ir meybodi@ce.aut. ac. ir k-badie@itrc. ac. ir

Abstract: The particle swarm is one of the most
powerful methods for solving global optimization
problems. This method is an adaptive algorithm based
on social-psychological metaphor. A population of
particle adapts by returning stochastically toward
previously successful regions in the search space and is
influenced by the successes of their topological
neighbors. In this paper we propose a learning automata
based discrete binary particle swarm algorithm. In the
proposed algorithm the set of learning automata
assigned to a particle may be viewed as the brain of
the particle determining its position from its own and
other particles past experience. Simulation results show
that the proposed algorithm is a good candidate for
solving optimization problems.

1. Introduction

Particle Swarm Optimization (PSO) technique was
first proposed by Kennedy and Eberhart [6] in 1995.
This technique is inspired by choreography of bird flock
and can be regarded as a distributed behavior that
perform multidimensional search. According to PSO,
the behavior of each particle is affected by either the
best local or the best global particle to help it fly
through a search space. Moreover, a particle can learn
from its past experience to adjust its flying speed and
direction. Therefore, by observing the behavior of the
flock and memorizing their flying histories all particle
in swarm can quickly converge to near optimal
geographical with a well preserved population density
distribution [7] . PSO is considered as an evolutionary
computation approach in that it possesses many
characteristics that is used by evolutionary algorithms
such as, initializing with a population of random
solutions, searching for optima by updating generations,
the adjustment of particles and evaluating particles by a
fitness function. However unlike evolutionary
algorithms, the updates of particles are not
accomplished by crossover or mutation. The particle

in continuous search space, where the trajectories are
defined as changes in position on some number of
dimensions. But in discrete PSO the particles operates
on discrete search space, and the trajectories are defined
as changes in the probability that a coordinate will take
on a value from feasible discrete values [9].

Learning Automaton (LA) is a general-purpose
stochastic optimization tool, which has been developed
as a model for learning systems. They are typically used
as the basis of learning systems, which through
interactions with a stochastic unknown environment
learn the optimal action for that environment. The
learning automaton tries to determine, iteratively, the
optimal action to apply to environment from a finite
number of actions that are available to it. The
environment returns a reinforcement signal that shows
the relative quality of action of the learning automaton.
This signal is given to learning automaton and learning
automaton adjusts itself by a learning algorithm
[121[141.

In this paper, a new discrete PSO algorithm will be
proposed. In the proposed algorithm, learning automata
are used by the particles to model the dynamics of the
group to which the particles belong. The set of leaning
automata associated to a particle, by observing the
behavior of the group help the particle in searching for
optimal geographical with a well preserved population
density distribution. To show the effectiveness of the
proposed algorithm we test the algorithm on several
function optimization problems. The results of
computer simulations show that the proposed algorithm
attains better solutions in a faster way for most of the
problems.

The rest of the paper is organized as follows; Section
2 describes the Particle Swarm Optimization method.
Section 3 briefly reviews the learning automata. Section
4 presents the proposed algorithm and section 5
demonstrates simulations results. The last section is the
conclusion.

2. Particle Swarm Optimization
swarm algorithms reported in the literatures are
classified into two groups: discrete PSO and continuous The particle swarm optimization simulates the
PSO [10][4][6]. In continuous PSO the particles operate behaviors of bird flocking. Suppose the following

scenario; a group of birds are randomly searching food
in an area. There is only one piece of food in the area
being searched. All the birds do not know where the
food is. The effective solution to find food is to follow
the bird, which is nearest to the food. PSO learn from
the scenario and use it to solve the optimization
problems [6]. In PSO, each single solution is a bird in
the search space that is called particle. All of the
particles have fitness values, which are evaluated by a
fitness function to be optimized. Particles have
velocities, which direct the flying of the particles. The
particles fly through the problem space by following the
current optimum particles.

PSO is initialized with a group of random particles
(solutions) and then searches for optimal solutions by
updating generations. In each iteration, the velocity and
the position of each particle i is updated using two
quantities: the best solution obtained by particle i (LB,.)
and the global best solution (GB) obtained by the group
of particles. After finding these two quantities, particle i
updates its velocity and its position according to the
following equations.

X.. = X.. + V . .
! I 8 1 1

where vi=(v, l...v,,J is the velocity of particle i,
X,=(X,~, ..., x,J is the current position (solution). vnd is a
random number in the range (0,l). cl and c2 are learning
factors. Usually cl is equal to cj. Particles velocities on
each dimension are limited to a maximum velocity of
V,,,. If the sum of the accelerations causes the velocity
on that dimension to exceed V,,, a parameter specified
by the user, then the velocity on that dimension is set to
Vm'W

In past several years, PSO has been success~lly
applied to many research and application areas such as
minimax problems [l 11, binary constraint satisfaction
problem [13], constrained nonlinear optimization
problems [8], Improvised music [2], optimization in
electromagnetic [3], and multimachine power system
stabilizer design [I] to mention a few. It is
demonstrated that PSO for optimization gets better
results in a faster, cheaper way compared to other
methods such as genetic algorithm. Another reason that
PSO is attractive is that it has fewer parameters to adjust
comparing to other methods of optimization [10][4].

The first version of particle swarm algorithm reported
by Kennedy in [6] operates in continuous search space.
But many optimization problems are set in discrete
space. For this reason in [9], Kennedy proposed a
discrete binary version of the particle swarm (DPSO).
DPSO is obtained by modify equations in continuous
PSO to be adapted to discrete binary space. In discrete
binary space the search space can be viewed as a
hypercube. Viewing the search space as a hypercube,
the meanings of the concepts such as trajectory, velocity
between and beyond used in continuous version of PSO
will be changed. A particle may be seen to move nearer
or farther from comers of hypercube by flipping various

numbers of bits; in this way, velocity of the particles
can be described by the number of bits changed per
iteration. A particle with zeros bits changed does not
move. A particle moves the farthest if all of its binary
coordinates are changed. In this DPSO a dilemma
occurs. What is the velocity or rate of change of a single
bit or coordinate? Kennedy and Eberhart solved this
dilemma by defining velocities and trajectories in term
of changes in the probabilities that a bit will be 0 or 1.

For binary discrete search spaces, DPSO updates the
velocity according to equation (1) but computes the new
position component to be 1 with a probability which is
obtained by applying a sigmoid transformation
(l/(l+exp (-v)) to the velocity component [9]. The
pseudo code for DPSO is given in figure 1.

Repeat
For each particle i

Calculate the fitness value
If the fitness value is better than the best fitness value LB,

Set current value as the new LB,
End if
Choose the particle with the best fitness value and call it GB

End for
For each particle i

Calculate the particle velocity according to equation (1)
Update the particle position as follows,

If vnd<(l/(l +exp (-vd)
x,=l

Else
x,=o

End if
End for

Until maximum iterations or minimum error criteria is attained
Figure 1. Pseudo code of DPSO

3. Learning Automata

Learning Automata are adaptive decision-making
devices operating on unknown random environments.
The Learning Automaton has a finite set of actions and
each action has a certain probability (unknown for the
automaton) of getting rewarded by the environment of
the automaton. The aim is to learn to choose the optimal
action (i.e. the action with the highest probability of
being rewarded) through repeated interaction on the
system. If the learning algorithm is chosen properly,
then the iterative process of interacting on the
environment can be made to result in selection of the
optimal action. Figure 1 illustrates how a stochastic
automaton works in feedback connection with a random
environment. Learning Automata can be classified into
two main families: fixed structure learning automata
and variable structure learning automata (VSLA)
[12][14]. In the following, the variable structure
learning automata is described.

A VSLA is a quintuple <a,p,p,T(a,p,p) >, where a,
p, p are an action set with s actions, an environment
response set and the probability set p containing s
probabilities, each being the probability of performing
every action in the current internal automaton state,
respectively. The function of T is the reinforcement
algorithm, which modifies the action probability vector
p with respect to the performed action and received
response. Let a VSLA operate in an environment with

P={O,l). Let tgN be the set of nonnegative integers. A
general linear schema for updating action probabilities
can be represented as follows. Let action i be
performed. If p(t)=O (Reward),

If p(t) = l (Penalty),

assigned to each particle is equal to the dimension of the
search space. Each automaton has two actions 0 and 1.
The LA based DPSO algorithm works as follows:
While some condition is not reached, iterate the
following steps,
1- all the particles do steps I and I1 simultaneously,
I -every automaton associated to particle i chooses one
of their actions (0 or 1) according to their action
probability vectors.
11- the particle i generates a new position (a comer of
the hypercube) by (concatenating) combining the
actions chosen by its set of learning automata. The
particle then moves to that position. If the fitness value
of new position is better than the best fitness value LB,,
LB, willbe set to the new position.

Where a and b are reward and penalty parameters.
When a=b, automaton is called LRP. If b=O the 2- the position of the particle with the best fitness, GB,

automaton is called LRI and if O<b<<a<l the is computed.

automaton is called LREP. 3-All the particles perform the following
simultaneously
- Based on GB, LB, and the position of the particle, each
particle i generates a reinforcement vector P,=(PI1, ...,
p,J which becomes the input to the set of learning
automata associated to particle i.
The jth element of the reinforcement vector for particle
i, PV, is computed as follows,

0 if LBV = GB,:, = x,
Figure 2. The interaction between learning automata and environment p,. =

B 1 otherwise
(5)

Initialize p to [l/s,l/s, ..., lls] where s is the number of
actions

While not done
Select an action i a sample realization of distribution p
Evaluate action and return a reinforcement signal P
Update probability vector according to learning

algorithm
End While
Figure 3. Pseudocode of variable-structure learning automaton

4. Learning Automata based Discrete
Particle Swarm Optimization

In this section, a new DPSO algorithm is proposed. In
the proposed algorithm, learning automata are used by
the particles to model the dynamics of the group of
which the particle is a member. The set of leaning
automata associated to a particle by observing the
behavior of the group leads the particle to search the
optimal geographical with a well preserved population
density distribution.

Similar to the DPSO. the velocities and traiectories
concepts are defined in terms of changes of probabilities
that a bit will become 0 or 1. Instead of using equation
(1) and the sigmoid transformation, learning automata
are used to determine the position of the particles. In
other words, the set of learning automata associated to a
particle can be viewed as the components of the brain of
the particle. These components collectively lead the
particle to search the place where the food can be found
with high probability. The number of learning automata

The reinforcement vector P, will be used to update the
action probabilities vectors of the learning automata
associated to particle i.
The set of learning automata associated to a particle

helps the particle to gradually move to a position that
confirms with the global goal of the group of the
particles. This happens by updating the actions
probabilities of the set of learning automata associated
to the particle in such a manner that the group goal will
be achieved.

5. Simulations

This section presents simulation results and compares
the LAPS0 with DPSO, in terms of solution quality, the
number of function evaluations taken and the speed of
finding the best solution for a given population size.
Each quantity of the results reported is the average
taken over 20 runs. The parameters used for DPSO are
the same as those used in [9] , i.e. V,, is set to 6, and c l
and c2 are equal to 1. The population size varies from 2
to 50 with increments of two. The proposed Algorithm
is tested for different learning algorithms: LRI, and Lw.
For the sake of convenience in presentation, we use
LA(automata)-PSO to refer to the LA-PSO algorithm
when it uses Learning automata automata. The
algorithm terminates when the number of iterations
succeeds 500. The proposed algorithms are tested on
five different standard functions to be minimized. These
functions are given below are and are taken from De
Jong's dissertation [5].

Experiment 1: In experiment 1, we compare the
proposed algorithms with respect to the quality of the
solution produced and the number of function
evaluations needed when the algorithms use different
population sizes or learning algorithms.
Experimentation has also been conducted to study the
effect of the parameters of the learning algorithm on the
effectiveness of the proposed algorithms. By carehl
inspection of the results reported in Figures 4 through 6,
it is found that as the number of particles increase, the
quality of the solution produced and the number of
function evaluations needed by the algorithm increases.
Also, it has been noted that, better solutions are
obtained when LRp automata with penalty and reward
parameters near zero (i.e. 0.01) is used.
Experiment 2: In this experiment algorithms LA(LRI)-
PSO with a=O.Ol and LA(LW)PSO with a=b=O.Ol are
used and compared with DPSO with respect to the
quality of solution produced and the number of hnction
evaluations needed for different population size (Figure
7 through 10). For all the problems except problem F2,
algorithm LA(LN)-PSO obtains the worst result with
respect to the quality of the solution produced. For
problem F2, both LA(LRI)-PSO and LA(Lw)-PSO
algorithms perform better than DPSO. For problems F1,
F4 and F5, algorithm LA(LW)-PSO performs nearly the
same as DPSO with respect to the quality of solution,
but the number of function evaluations needed by
DPSO is higher.

6. Conclusion

In this paper a learning automata based discrete
particle swarm optimization algorithm (LA-PSO) was
proposed. In the proposed algorithm the learning automata
is used to determine the position of a particle that
confirms with the global goal of the group of the particles.
This happens by updating the actions probabilities of the
set of learning automata associated to the particle in such
a manner that the group goal will be achieved. Simulation
results showed the effectiveness of the proposed algorithm
in solving the optimization problems.

References

[3] Ciuprina, G., Ioan, D., and Munteanu, I., "Use of intelligent-
particle swarms optimization in electromagnetics", IEEE
Transactions on Magnetics, Vol. 38, No. 2, PP. 1037-1040.
2002.
[4] Clerc, M., and Kennedy, J., "The Particle Swarm-Explosion,
Stability, and Convergence in a Multidimensional Complex
Space", IEEE Transaction on Evolutionary Computation, Vol. 6,
No. 1, PP. 58-73, February 2002.
[5] De Jong, K. A,, "The Analysis of the behavior of a class of
genetic adaptive systems" Ph.D, dissertation, University of
Michigan, Ann Arbor, 1975.
[6] Eberhart, R. C, and Kennedy, J., "Particle Swarm
Optimization", in Proceedings of IEEE International Conference
on Neural Networks, Vol 4, PP. 1942-1948, IEEE Service
Center, Piscataway, NJ, 1995.
[7] Gary, G, Y., and Haiming, Lu,. "Dynamical Population
Strategy assisted Particle Swarm Optimization", Proceedings of
the 2003 IEEE International Symposium on Intelligent Control,
Houston, Texas, PP. 697-702, October 2003.
[8] Hu, X., and Eberhart, R. C., "Solving constrained nonlinear
optimization problems with particle swarm optimization",
Proceedings of the Sixth World Multiconference on Systemic,
Cybernetics and Informatics 2002 (SCI 2002), Orlando, USA,
2002.
[9] Kennedy, J., and Eberhart, R. C., "A Discrete Binary Version
of The Particle Swarm Algorithm", in Proceedings of
Conference on Systems, Man, and Cybernetics, PP. 4104-4108,
IEEE Service Center, Piscataway, NJ, 1997.
[lo] Kennedy, J., "The Particle Swarm: Social Adaptation of
Knowledge", in Proceedings of IEEE International Conference
on Neural Networks (Indianapolis, Indiana), pp. 303-308, IEEE
Service Center, Piscataway, NJ, 1997.
[l l] Laskari, E. C., Parsopoulos, K. E., and Vrahatis, M. N.,
"Particle swarm optimization for minimax Problems",
Proceedings of the IEEE Congress on Evolutionary computation
2002 Honolulu, Hawaii USA, 2002b.
[12] Narendra, K. S., and Thathachar, M. A. L., Learning
Automata: An Introduction, Printice-Hall Inc, 1989.
[13] Schoofs, L., and Naudts, B., "Swarm Intelligence on the
Binary Constraint Satisfaction problem", Proceedings of the
IEEE Congress on Evolutionary Computation 2002 Honolulu,
Hawaii USA, 2002.
[14] Thathachar, M. A. L., Sastry, P. S., "Varieties of Learning
Automata: An Overview", IEEE Transaction on Systems, Man,
and Cybernetics-Part B: Cybernetics, Vol. 32, No. 6, PP. 71 1-
722,2002.

[I] Abido, M. A,, "Particle swarm optimization for
multimachine power system stabilizer design", Power
Engineering Society Summer Meeting, Vol. 3, PP. 1346-1359,
2001.
[2] Blackwell, T. and Bentley, P. J., "Improvised music with
swarms", Proceedings of the IEEE Congress on Evolutionary
Computation 2002 Honolulu, Hawaii USA, 2002b.

a a

(a) (b)
Figure 4. Effect of the population size and the reward parameter on the effectiveness of LA(LRI)-PSO for function F1 (a) the number of function
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained.

evaluations

(a) (b)
Figure 5. Effect of the population size and the reward parameter on the effectiveness of LA(LRP)-PSO for function F2 (a) the number of h c t i o n
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained.

evaluations

(a) (b)
Figure 6. Effect of the population size and the reward parameter on the effectiveness of LA(LR,D)-PSO for function F5 (a) the number of h c t i o n evaluations
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained.

papulatlan s ize populati~n size

(a) (b)
Figure 7. Comparison of the DPSO, LA(LRI)-PSO, and LA(LRP)-PSO algorithms for function F1 (a) the number of function evaluations taken to obtain the best
solution in 500 iterations. (b) the solution quality obtained at the end of the runs.

population airs

(a)

Figure 8. Comparison of the DPSO, LA(Lm)-PSO, and LA(LRP)-PSO algorithms for hnction F2 (a) the number of function evaluations taken to obtain the best
solution in 500 iterations. (b) the solution quality obtained at the end of the runs.

u . v t v v k r r u -

% @ * b ~ @ & + & * ? % & b @ @

papulatian size

(a)

Figure 9. Comparison of the DPSO, LA(LRI)-PSO, and LA(Lxp)-PSO algorithms for hnction F4 (a) the number of function evaluations taken to obtain the best
solution in 500 iterations. (b) the solution quality obtained at the end of the runs.

Figure 10.
solution in

X
1

t e
ft:
3

population size popul&tion size
(a) (b)

Comparison of the DPSO, LA(LRI)-PSO, and LA(LRP)-PSO algorithms for function F5 (a) the number of function evaluations taken to obtain
500 iterations. (b) the solution quality obtained at the end of the runs.

the best

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

