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Abstract: The particle swarm is one of the most 
powerful methods for solving global optimization 
problems. This method is an adaptive algorithm based 
on social-psychological metaphor. A population of 
particle adapts by returning stochastically toward 
previously successful regions in the search space and is 
influenced by the successes of their topological 
neighbors. In this paper we propose a learning automata 
based discrete binary particle swarm algorithm. In the 
proposed algorithm the set of learning automata 
assigned to a particle may be viewed as the brain of 
the particle determining its position from its own and 
other particles past experience. Simulation results show 
that the proposed algorithm is a good candidate for 
solving optimization problems. 

1. Introduction 

Particle Swarm Optimization (PSO) technique was 
first proposed by Kennedy and Eberhart [6] in 1995. 
This technique is inspired by choreography of bird flock 
and can be regarded as a distributed behavior that 
perform multidimensional search. According to PSO, 
the behavior of each particle is affected by either the 
best local or the best global particle to help it fly 
through a search space. Moreover, a particle can learn 
from its past experience to adjust its flying speed and 
direction. Therefore, by observing the behavior of the 
flock and memorizing their flying histories all particle 
in swarm can quickly converge to near optimal 
geographical with a well preserved population density 
distribution [ 7 ] .  PSO is considered as an evolutionary 
computation approach in that it possesses many 
characteristics that is used by evolutionary algorithms 
such as, initializing with a population of random 
solutions, searching for optima by updating generations, 
the adjustment of particles and evaluating particles by a 
fitness function. However unlike evolutionary 
algorithms, the updates of particles are not 
accomplished by crossover or mutation. The particle 

in continuous search space, where the trajectories are 
defined as changes in position on some number of 
dimensions. But in discrete PSO the particles operates 
on discrete search space, and the trajectories are defined 
as changes in the probability that a coordinate will take 
on a value from feasible discrete values [9]. 

Learning Automaton (LA) is a general-purpose 
stochastic optimization tool, which has been developed 
as a model for learning systems. They are typically used 
as the basis of learning systems, which through 
interactions with a stochastic unknown environment 
learn the optimal action for that environment. The 
learning automaton tries to determine, iteratively, the 
optimal action to apply to environment from a finite 
number of actions that are available to it. The 
environment returns a reinforcement signal that shows 
the relative quality of action of the learning automaton. 
This signal is given to learning automaton and learning 
automaton adjusts itself by a learning algorithm 
[121[141. 

In this paper, a new discrete PSO algorithm will be 
proposed. In the proposed algorithm, learning automata 
are used by the particles to model the dynamics of the 
group to which the particles belong. The set of leaning 
automata associated to a particle, by observing the 
behavior of the group help the particle in searching for 
optimal geographical with a well preserved population 
density distribution. To show the effectiveness of the 
proposed algorithm we test the algorithm on several 
function optimization problems. The results of 
computer simulations show that the proposed algorithm 
attains better solutions in a faster way for most of the 
problems. 

The rest of the paper is organized as follows; Section 
2 describes the Particle Swarm Optimization method. 
Section 3 briefly reviews the learning automata. Section 
4 presents the proposed algorithm and section 5 
demonstrates simulations results. The last section is the 
conclusion. 

2. Particle Swarm Optimization 
swarm algorithms reported in the literatures are 
classified into two groups: discrete PSO and continuous The particle swarm optimization simulates the 
PSO [10][4][6]. In continuous PSO the particles operate behaviors of bird flocking. Suppose the following 



scenario; a group of birds are randomly searching food 
in an area. There is only one piece of food in the area 
being searched. All the birds do not know where the 
food is. The effective solution to find food is to follow 
the bird, which is nearest to the food. PSO learn from 
the scenario and use it to solve the optimization 
problems [6]. In PSO, each single solution is a bird in 
the search space that is called particle. All of the 
particles have fitness values, which are evaluated by a 
fitness function to be optimized. Particles have 
velocities, which direct the flying of the particles. The 
particles fly through the problem space by following the 
current optimum particles. 

PSO is initialized with a group of random particles 
(solutions) and then searches for optimal solutions by 
updating generations. In each iteration, the velocity and 
the position of each particle i is updated using two 
quantities: the best solution obtained by particle i (LB,.) 
and the global best solution (GB) obtained by the group 
of particles. After finding these two quantities, particle i 
updates its velocity and its position according to the 
following equations. 

X.. = X.. + V . .  
! I 8 1 1  

where vi=(v, l...v,,J is the velocity of particle i, 
X,=(X,~, ..., x,J is the current position (solution). vnd is a 
random number in the range (0,l). cl and c2 are learning 
factors. Usually cl is equal to cj.  Particles velocities on 
each dimension are limited to a maximum velocity of 
V,,,. If the sum of the accelerations causes the velocity 
on that dimension to exceed V,,, a parameter specified 
by the user, then the velocity on that dimension is set to 
Vm'W 

In past several years, PSO has been success~lly 
applied to many research and application areas such as 
minimax problems [ l  11, binary constraint satisfaction 
problem [13], constrained nonlinear optimization 
problems [8], Improvised music [2], optimization in 
electromagnetic [3], and multimachine power system 
stabilizer design [I] to mention a few. It is 
demonstrated that PSO for optimization gets better 
results in a faster, cheaper way compared to other 
methods such as genetic algorithm. Another reason that 
PSO is attractive is that it has fewer parameters to adjust 
comparing to other methods of optimization [10][4]. 

The first version of particle swarm algorithm reported 
by Kennedy in [6] operates in continuous search space. 
But many optimization problems are set in discrete 
space. For this reason in [9], Kennedy proposed a 
discrete binary version of the particle swarm (DPSO). 
DPSO is obtained by modify equations in continuous 
PSO to be adapted to discrete binary space. In discrete 
binary space the search space can be viewed as a 
hypercube. Viewing the search space as a hypercube, 
the meanings of the concepts such as trajectory, velocity 
between and beyond used in continuous version of PSO 
will be changed. A particle may be seen to move nearer 
or farther from comers of hypercube by flipping various 

numbers of bits; in this way, velocity of the particles 
can be described by the number of bits changed per 
iteration. A particle with zeros bits changed does not 
move. A particle moves the farthest if all of its binary 
coordinates are changed. In this DPSO a dilemma 
occurs. What is the velocity or rate of change of a single 
bit or coordinate? Kennedy and Eberhart solved this 
dilemma by defining velocities and trajectories in term 
of changes in the probabilities that a bit will be 0 or 1. 

For binary discrete search spaces, DPSO updates the 
velocity according to equation (1) but computes the new 
position component to be 1 with a probability which is 
obtained by applying a sigmoid transformation 
(l/(l+exp (-v)) to the velocity component [9]. The 
pseudo code for DPSO is given in figure 1. 

Repeat 
For each particle i 

Calculate the fitness value 
If the fitness value is better than the best fitness value LB, 

Set current value as the new LB, 
End if 
Choose the particle with the best fitness value and call it GB 

End for 
For each particle i 

Calculate the particle velocity according to equation (1) 
Update the particle position as follows, 

If vnd<(l/(l +exp (-vd) 
x,=l 

Else 
x,=o 

End if 
End for 

Until maximum iterations or minimum error criteria is attained 
Figure 1. Pseudo code of DPSO 

3. Learning Automata 

Learning Automata are adaptive decision-making 
devices operating on unknown random environments. 
The Learning Automaton has a finite set of actions and 
each action has a certain probability (unknown for the 
automaton) of getting rewarded by the environment of 
the automaton. The aim is to learn to choose the optimal 
action (i.e. the action with the highest probability of 
being rewarded) through repeated interaction on the 
system. If the learning algorithm is chosen properly, 
then the iterative process of interacting on the 
environment can be made to result in selection of the 
optimal action. Figure 1 illustrates how a stochastic 
automaton works in feedback connection with a random 
environment. Learning Automata can be classified into 
two main families: fixed structure learning automata 
and variable structure learning automata (VSLA) 
[12][14]. In the following, the variable structure 
learning automata is described. 

A VSLA is a quintuple <a,p,p,T(a,p,p) >, where a, 
p, p are an action set with s actions, an environment 
response set and the probability set p containing s 
probabilities, each being the probability of performing 
every action in the current internal automaton state, 
respectively. The function of T is the reinforcement 
algorithm, which modifies the action probability vector 
p with respect to the performed action and received 
response. Let a VSLA operate in an environment with 



P={O,l). Let tgN be the set of nonnegative integers. A 
general linear schema for updating action probabilities 
can be represented as follows. Let action i be 
performed. If p(t)=O (Reward), 

If p(t) = l  (Penalty), 

assigned to each particle is equal to the dimension of the 
search space. Each automaton has two actions 0 and 1. 
The LA based DPSO algorithm works as follows: 
While some condition is not reached, iterate the 
following steps, 
1- all the particles do steps I and I1 simultaneously, 
I -every automaton associated to particle i chooses one 
of their actions (0 or 1) according to their action 
probability vectors. 
11- the particle i generates a new position (a comer of 
the hypercube) by (concatenating) combining the 
actions chosen by its set of learning automata. The 
particle then moves to that position. If the fitness value 
of new position is better than the best fitness value LB,, 
LB, willbe set to the new position. 

Where a and b are reward and penalty parameters. 
When a=b, automaton is called LRP. If b=O the 2- the position of the particle with the best fitness, GB, 

automaton is called LRI and if O<b<<a<l the is computed. 

automaton is called LREP. 3-All the particles perform the following 
simultaneously 
- Based on GB, LB, and the position of the particle, each 
particle i generates a reinforcement vector P,=(PI1, ..., 
p,J which becomes the input to the set of learning 
automata associated to particle i. 
The jth element of the reinforcement vector for particle 
i, PV, is computed as follows, 

0 if LBV = GB,:, = x, 
Figure 2. The interaction between learning automata and environment p,. = 

B 1 otherwise 
(5) 

Initialize p to [l/s,l/s, ..., lls] where s is the number of 
actions 

While not done 
Select an action i a sample realization of distribution p 
Evaluate action and return a reinforcement signal P 
Update probability vector according to learning 

algorithm 
End While 
Figure 3. Pseudocode of variable-structure learning automaton 

4. Learning Automata based Discrete 
Particle Swarm Optimization 

In this section, a new DPSO algorithm is proposed. In 
the proposed algorithm, learning automata are used by 
the particles to model the dynamics of the group of 
which the particle is a member. The set of leaning 
automata associated to a particle by observing the 
behavior of the group leads the particle to search the 
optimal geographical with a well preserved population 
density distribution. 

Similar to the DPSO. the velocities and traiectories 
concepts are defined in terms of changes of probabilities 
that a bit will become 0 or 1. Instead of using equation 
(1) and the sigmoid transformation, learning automata 
are used to determine the position of the particles. In 
other words, the set of learning automata associated to a 
particle can be viewed as the components of the brain of 
the particle. These components collectively lead the 
particle to search the place where the food can be found 
with high probability. The number of learning automata 

The reinforcement vector P, will be used to update the 
action probabilities vectors of the learning automata 
associated to particle i. 
The set of learning automata associated to a particle 

helps the particle to gradually move to a position that 
confirms with the global goal of the group of the 
particles. This happens by updating the actions 
probabilities of the set of learning automata associated 
to the particle in such a manner that the group goal will 
be achieved. 

5. Simulations 

This section presents simulation results and compares 
the LAPS0 with DPSO, in terms of solution quality, the 
number of function evaluations taken and the speed of 
finding the best solution for a given population size. 
Each quantity of the results reported is the average 
taken over 20 runs. The parameters used for DPSO are 
the same as those used in [9 ] ,  i.e. V,, is set to 6, and c l  
and c2 are equal to 1. The population size varies from 2 
to 50 with increments of two. The proposed Algorithm 
is tested for different learning algorithms: LRI, and Lw. 
For the sake of convenience in presentation, we use 
LA(automata)-PSO to refer to the LA-PSO algorithm 
when it uses Learning automata automata. The 
algorithm terminates when the number of iterations 
succeeds 500. The proposed algorithms are tested on 
five different standard functions to be minimized. These 
functions are given below are and are taken from De 
Jong's dissertation [5]. 



Experiment 1: In experiment 1, we compare the 
proposed algorithms with respect to the quality of the 
solution produced and the number of function 
evaluations needed when the algorithms use different 
population sizes or learning algorithms. 
Experimentation has also been conducted to study the 
effect of the parameters of the learning algorithm on the 
effectiveness of the proposed algorithms. By carehl 
inspection of the results reported in Figures 4 through 6, 
it is found that as the number of particles increase, the 
quality of the solution produced and the number of 
function evaluations needed by the algorithm increases. 
Also, it has been noted that, better solutions are 
obtained when LRp automata with penalty and reward 
parameters near zero (i.e. 0.01) is used. 
Experiment 2: In this experiment algorithms LA(LRI )- 
PSO with a=O.Ol and LA(LW )PSO with a=b=O.Ol are 
used and compared with DPSO with respect to the 
quality of solution produced and the number of hnction 
evaluations needed for different population size (Figure 
7 through 10). For all the problems except problem F2, 
algorithm LA(LN)-PSO obtains the worst result with 
respect to the quality of the solution produced. For 
problem F2, both LA(LRI )-PSO and LA(Lw )-PSO 
algorithms perform better than DPSO. For problems F1, 
F4 and F5, algorithm LA(LW)-PSO performs nearly the 
same as DPSO with respect to the quality of solution, 
but the number of function evaluations needed by 
DPSO is higher. 

6. Conclusion 

In this paper a learning automata based discrete 
particle swarm optimization algorithm (LA-PSO) was 
proposed. In the proposed algorithm the learning automata 
is used to determine the position of a particle that 
confirms with the global goal of the group of the particles. 
This happens by updating the actions probabilities of the 
set of learning automata associated to the particle in such 
a manner that the group goal will be achieved. Simulation 
results showed the effectiveness of the proposed algorithm 
in solving the optimization problems. 
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(a) (b) 
Figure 4. Effect of the population size and the reward parameter on the effectiveness of LA(LRI)-PSO for function F1 (a) the number of function 
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained. 

evaluations 

(a) (b) 
Figure 5. Effect of the population size and the reward parameter on the effectiveness of LA(LRP)-PSO for function F2 (a) the number of h c t i o n  
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained. 

evaluations 

(a) (b) 
Figure 6. Effect of the population size and the reward parameter on the effectiveness of LA(LR,D)-PSO for function F5 (a) the number of h c t i o n  evaluations 
taken in 500 iterations to obtain the best solution. (b) the average of the best solutions obtained. 
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(a) (b) 
Figure 7. Comparison of the DPSO, LA(LRI)-PSO, and LA(LRP)-PSO algorithms for function F1 (a) the number of function evaluations taken to obtain the best 
solution in 500 iterations. (b) the solution quality obtained at the end of the runs. 

population airs 

(a) 

Figure 8. Comparison of the DPSO, LA(Lm)-PSO, and LA(LRP)-PSO algorithms for hnction F2 (a) the number of function evaluations taken to obtain the best 
solution in 500 iterations. (b) the solution quality obtained at the end of the runs. 
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Figure 9. Comparison of the DPSO, LA(LRI)-PSO, and LA(Lxp)-PSO algorithms for hnction F4 (a) the number of function evaluations taken to obtain the best 
solution in 500 iterations. (b) the solution quality obtained at the end of the runs. 
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Comparison of the DPSO, LA(LRI)-PSO, and LA(LRP)-PSO algorithms for function F5 (a) the number of function evaluations taken to obtain 
500 iterations. (b) the solution quality obtained at the end of the runs. 
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