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Abstract

We introduce Regression Databases (REDB) to formal-
ize and automate probabilistic querying using sparse learn-
ing sets. The REDB data model involves observation data,
learning set data, views definitions, and a regression model
instance. The observation data is a collection of relational
tuples over a set of attributes; the learning data set involves
a subset of observation tuples, augmented with learned at-
tributes, which are modeled as random variables; the views
are expressed as linear combinations of observation and
learned attributes; and the regression model involves func-
tions that map observation tuples to probability distribu-
tions of the random variables, which are learned dynami-
cally from the learning data set. The REDB query language
extends relational algebra project-select queries with con-
ditions on probabilities of first-order logical expressions,
which in turn involve linear combinations of learned at-
tributes and views, and arithmetic comparison operators.
Such capability relies on the underlying regression model
for the learned attributes. We show that REDB queries
are computable by developing conceptual evaluation algo-
rithms and by proving their correctness and termination.

1 Introduction

Decision makers are often confronted with the difficult
task of reasoning based on sparse learning sets. Decisions
for a drug company about which lines of R&D to pursue or
move to clinical trials, are often made using limited testing
data and expert opinion. Terrorist threats assessment to de-
termine the vulnerability of a group of locations to specific
types of attacks, is another area where limited samples and
expert opinion are the only means available to make critical
decisions.

To deal with this kind of reasoning we introduce and au-
tomate the methodology of (1) identifying a set of “entities”
which may represent scenarios, events or courses of action
to be considered; (2) associating each entity with a set of
“observable” attributes that can be precisely determined; (3)
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associating each entity with additional “learned” attributes,
which can be estimated only probabilistically as a function
of the observable attributes; and (4) querying and reason-
ing about the entities based on user-posed conditions with
user-specified levels of confidence.

Extensive work has been done in relational databases to
handle imprecise data and to reason with uncertainty. Most
of the proposed approaches focuses on the estimation of un-
known attribute values [7, 6, 1]. The work in [7] consid-
ered regression models and classification analysis to esti-
mate continuous and categorical unknown attribute values.
The models are generated under the assumption that statis-
tical relationships exist between relevant attributes and the
attribute with an unknown value. This work was extended
in [6], where the concept of regression models was applied
to database constraints. The work in [2] generalizes the
OLAP model to incorporate both uncertainty and imprecise
data. In general, the methods developed for the imputation
of missing values assume that, typically, the value of an at-
tribute is defined in the database, and only occasionally it
is unknown. Therefore, such techniques are not suited to
support the decision making process when the information
on the variables of interest is actually very sparse.

Another related area of research is the prediction of at-
tribute values using prior information [3, 9]. Specifically,
this research attempts to predict sensor values or moving
object locations using a prior value and other domain in-
formation. The work in [5] extended the conventional re-
lational schema with the objective of assigning a probabil-
ity value to predicates. This task is achieved by appending
a special column, called probability stamp, which assigns
a fixed probability value to each tuple. An extended re-
lational algebra [4] and SQL syntax and semantics were
introduced to handle probabilistic conditions over tuples.
In this work, tuples are associated with fixed probability
values assigned at users’ discretion. This is an unrealis-
tic assumption when working with massive data where the
decision making process involves quantities whose depen-
dency on the given observations cannot be formulated in a
close form by domain experts. In addition, the probabilis-
tic query language developed in previous work is limited



to handle probability conditions on tuples and/or attributes.
On the other hand, complex decision making processes, of-
ten require answering queries that involve probabilities of
combinations of random variables. Finally, the statistical
community has proposed regression models to learn param-
eters of specific families of functions from given training
data [8]. Such models, though, are suited to describe spe-
cific relationships, but are not sufficient for database appli-
cations, where dynamic and diverse queries, which require
on-the-fly estimation of probabilities, need to be computed.

The contributions of this paper can be summarized as
follows. First, we introduce and formalize a Regres-
sion Database (REDB) data model, which involves (1)
known data over observation attributes; (2) learning set over
learned attributes; (3) view attributes, defined as linear com-
binations of learned and observation attributes, and (4) a re-
gression model. In this paper we assume that all attributes
are numeric and range over R.

Second, we introduce probabilistic reasoning over
REDB data by defining a query language. It extends re-
lational algebra project-select queries with conditions on
probabilities of first-order logical expressions, which in-
volve linear combinations of learned attributes and views,
and arithmetic comparison operators.

Third, we show that REDB queries are computable by
developing conceptual evaluation algorithms, and by prov-
ing their termination and correctness. A key technical diffi-
culty is the computation of probabilities of first-order logi-
cal formulae with learned attributes and views. We note that
even if such a formula is in a disjunctive normal form, prob-
abilistic events described by its disjuncts are not disjoint;
and events corresponding to conjuncts in each disjunct are
not independent.

2 Motivating Example

Consider the scenario of a security analyst who would
like to reason about potential terrorist threat locations using
conditions on attributes representing assessment measures.
Table 1 is an instance of observation table which contains
five observation attributes. The Loc attribute represents a
location of a potential threat. Loss of life (Life) represents
the number of people that would directly be harmed by an
attack on this target. Protection level (PLev) defines a nu-
meric weighting of the security at that location. Here, a
government building or military installation would have a
very high weight, where as a bridge would most likely have
a very low weight. Monetary damage (MD) puts a dollar
figure on the amount of damage and economic impact that
would be caused by an attack on a location. Political visibil-
ity (PVis) identifies an additional weight that is used to eval-
uate a locations significance to public awareness. Bridges
and power plants would have high weights, but we may also

see fairly high weights on historic sites that could drastically
effect public confidence.

Table 2 is an instance of a learning table. It consists of
a sparse sample set which is a subset of the threat location
table. This sample extends the threat table schema with the
Likelihood of attack (LAtt) attribute, which represents an
estimate, based on a survey by experts from related fields.

Table 3 shows the definition of the learned attribute
(LALtt). It also defines two view attributes: Expected loss of
life (ExLife) and Expected monetary damage (ExMD). Us-
ing these learned attributes and views we can pose queries
such as “Select the records for which the probability of the
expected monetary damage is greater than 10 and less than
50 with a confidence of .95”.

Observation Attributes
Loc | Life | MD | PLev | PVis
A07 20 62 23 10
B21 2 24 35 14
F51 30 17 11 77
GO1 | 150 89 62 22

Table 1. Observation Table

Learning Attributes
Loc | Life | MD | PLev | PVis | LAtt
A07 20 62 23 10 22
B21 2 24 35 14 .67

Table 2. Learning Table

Learned Attributes View Attributes
LAtt= ExLife= ExMD=
f(Loc, Life,..) Life*LAtt | MD*LAtt

Table 3. Learned Attributes and Views

3 Data Model

In this section we present our uncertainty assumptions in
the form of regression analysis and define the schema and
instances for a regression database.

3.1 Regression Analysis Preliminaries

We would like our reasoning model to allow queries,
over the independent observation table, that include selec-
tion conditions which use the additional measures defined in
our learning table. Here we will turn to regression analysis,
which attempts to build a model based on the relationship
of several independent variables and a dependent variable.
We consider the technique of linear least squares regression
which has been proven effective across many disciplines.



Let O1,...,0,, be the names of the independent at-
tributes, and Ly, ..., L; the names of the dependent at-
tributes. The latter are random variables defined over the
underlying distribution of sample tuples in dom(O;) x
dom(O3) x -+ x dom(O,,). Suppose the learning table
contains m tuples. Let us denote such a tuple as o; =
(0i1y-.-,0ip) for i = 1,...,m. The collections of data
C; = {(04,1;)},, for j = 1,..., k, represent the avail-
able training data to estimate the values of the random vari-
ables Lj, for j = 1,...,k respectively. For each training
set C;, we learn a regression model: L; = f;(0;, 8) + N;
forj=1,...,kand¢ = 1,...,m. Here N; is a random
noise distributed as a Gaussian with 0 mean and variance
oj so that: E[L;] = E[fj(0i, B) + N;] = E[f;(0s,8)] =
fi(0i,B), forall j = 1,...,k (where E is the expected
value). We use the standard least squares method to find
coefficients of each f; that minimize o;.

3.2 Regression Database Schema and Instance

This section presents formal definitions for our regres-
sion database schema and instance.

Definition 1 (Regression Database Schema). A regression
database schema is a quadruple < OS,LS, VS, RS >,
where OS is an independent observation table schema, LS
is a learning table schema, V'S is a view schema, and RS
is a regression schema.

e An observation schema OS is defined as
< Ola e 7On >

where each attribute O;, fori = 1, - - - , n, has an asso-
ciated domain dom(O;).

o A learning schema LS is defined as
<017"' aOn;Lla"' aLk >

where each attribute O;, fori = 1,--- ,n is from the
observation table schema, and each attribute L, for
j=1,---,k, has an associated domain dom(L;).

e A view schema V S is a tuple of the form

< (‘/1;1)1(01;"' 7On;l17"' alk))v"' )
(Vm7Um(017"' 7lk)) >

50n7l15"'

where the V;s, for ¢ = 1,--- ,m, are attributes, and
each v;(01,--+ ,0n,01, - ,l), for i = 1,--- 'm,
is a symbolic expression that defines a function
dom(01) x --- x dom(Oy) x dom(Ly) X -+ X
dom(Ly) — R.

o A regression schema RS is a tuple

< (L17f1(076))7" : a(Lk’;fk’(Oaﬁ)) >

where each L;, for j = 1,--- , k, is from the learning
schema, and f;(O, 3), fori = 1,--- , k, is a symbolic
expression that defines a function in terms of the at-
tributes O =< Oy, - -+ , O, > and parameters (3.

In this paper we assume that all domains are ¥, includ-
ing observation parameters, learning parameters, and views.

Definition 2 (Regression Database Instance). A regres-
sion database instance, iRDB =< 10S,iLS,iRS >, is
composed of relation instances over an independent obser-
vation table schema, a learning table schema, and a regres-
sion model schema. An instance of the observation table
schema, {0 S, is a set of tuples of the form < 01, -+ , 0, >
where o; € dom(O;), ¢ € 1---n. An instance of the
learning table schema, iL.S, is a collection of tuples of the
form < o1,--- ,0n, l1, -+ ,lx > where 0; € dom(O;), for
i=1,---,n,and [; € dom(L;), j € 1---k. A regression
instance, i RS, is of the form < (L1, 31,01), -+ -,

(Lk, Br, o) >, where 3;,0; fori = 1,--- |k, are the pa-
rameters for f; in R.S and the variance of the gaussian noise,
correspondingly.

4 Query Language

This section defines the formal syntax and semantics
for our reasoning query language as an extension to the
relational algebra.

Definition 3 (Condition). A condition on a set of
attributes Attr is defined recursively as follows:

e A op cis an atomic condition, where A € Attr, cis
a constant, and op is a relational comparison operator
(<7 S? >7 27 :);

e If C1, Cy and C3 are conditions on Attr, then also
C1 N Oy, C1 V Cy, ~Cs5 are conditions on Attr.

Definition 4 (Regular Condition). A regular condition is a
condition on attributes < O1,--- , O, >.

Definition 5 (Random variable Condition). A random vari-
able condition is a condition on attributes < Lq,--- , Li >
and < Vi, -+, Vi, >.

Definition 6 (Probability Condition). A probability
condition is an expression of the form P(Cj.qnq) > 0 or
P(Crand) < 8, where P is for probability, Crqnqg is a
random variable condition, and ¢ € [0, 1].



Definition 7 (Query Condition).
defined recursively as follows:

A query condition is

e An atomic regular condition is a query condition;
e A probability condition is a query condition;

e If (1, Cs, C5 are query conditions, then also C; A Cs,
C1 Vv Uy, =Cj5 are query conditions.

Definition 8 (Regression Database Query). A regression
database query is an expression of the form (m,,o¢),
where x C {O1, - ,0p, L1,-++ , Ly, Vi,-++ , Vi }, and
C' is a query condition.

Definition 9 (Regression Query semantics). A regres-
sion database query (m,,o¢) over a regression database
instance I computes the following set of tuples:

{(017”' y On,y Z17"' )Zk’? V1, 7U7”/) | Z'i =
fi(ola"' 7On7ﬂ) Vi = ]-a 7k’ Vg =
vi(01,++ yon, M1, k) V) = 1,--- ;m,and TV(C) =

true }, where TV(C) is the truth value of the query
condition C' whose definition follows.

Definition 10 (Truth value of a query condition). The
truth value of a query condition C' is defined recursively as
follows:

e If C' is a regular condition, the truth value of C' is the
truth value of the regular condition, i.e.:

-IfC=Oopc),thenTV(C) =TV (O op c);

-IfC = (C1 ANCy), then TV(C) = TV(Cy) A
TV(Cy), with C; and Cs given regular condi-
tions;

-IfC = (Cl \Y Cg), then TV(C) = TV(Cl) \Y
TV(Cy), with C; and Cs given regular condi-
tions;

- IfC =-Cq,thenTV(C) = =TV (Cy), with Cy
given regular condition.

e If C is a probability condition, the truth value of C' is
the truth value of the probability condition, i.e.:

- TV(P(Crand) = 0) = True if P(Crand) > 9
and False otherwise. (Similarly for
TV(P(Crand) < 9).) Here P(Crand) is
the probability of the event Cj,,q is under
the independence assumptions of the random
variables L, and using the distribution functions
in the regression schema i RS.

e If (4, Co, Cs5 are query conditions, TV (Cy A Cs) =
TV (Cy) ATV (Cy), TV(Cy VvV Cy) = TV(Cy) V
TV(CQ), and TV(ﬁCg) = —‘TV(Cg)

It is important to note that, while an atomic random vari-
able condition in queries only allows arithmetic compar-
isons of a learned or view attribute with a constant, it is pos-
sible to express an arithmetic comparison of two atributes,
and, more generally, of two arbitrary linear combinations of
attributes, i.e., LCy relop LCo, where LC7 and LCy are
two linear combinations of learned and view attributes, and
relop is an arithmetic comparison operator. This can be
done by introducing a new view attribute V' and defining it
in the schema as LCy; — LC5, and then using the condition
V relop 0.

S Conceptual Query Evaluation

In this section, we show that REDB queries are com-
putable by developing algorithms for conceptual query eval-
uation, and proving their termination and correctness. We
allow view attributes that are defined in the REDB schema
as arbitrary linear combinations of the learned attributes.
Simpler algorithms for more restrictive view definition can
be derived from the general ones. Probabilities are com-
puted with finite precision €; that is: when computing a
value u, a value v’ is returned such that u — e < v/ < u+e.
When evaluating the truth value of a condition u relop c,
where u is a computed value, relop is an arithmetic com-
parison operator, and c is a constant, we will return the truth
value of u’ relop c, where v’ is a finite precision computa-
tion of u.

Algorithms 1 and 2 (Figures 1 and 2) compute a query
and a query condition, respectively. Algorithm 1 is a sim-
ple iterative algorithm. It uses Algorithm 2 for Truth-Value
evaluation of query conditions. Algorithm 2 recursively
evaluates a query condition, which involves the computa-
tion of the probability of random variable conditions (with
finite precision €¢). This computation is given in Algo-
rithm 3, and is based on computing what we call a Primitive
Disjunctive Normal Form.

Definition 11 (Primitive Disjunctive Normal Form). We say
that a condition F' is in a primitive disjunctive normal form
(PDNF) if it is of the form V; A; K;;, where K;; is one of
the following: A < ¢1,¢;, < A<c¢ip1,i=1,...,n—1,0r
A >c,,where A € Attrand ey < ¢co < --- < ¢, are all
constants that appear in atomic conditions with A in F'.
Algorihm 3 transforms a probabilistic condition into PDNF
that may involve view attributes. The computation of PDNF
conditions is given in Algorithm 4.

The main idea behind Algorithm 4 is that the disjuncts in
the PDNF probabilistic conditions represent disjoint events.
Thus, Algorithm 4 computes the probability of the PDNF
probabilistic condition as the sum of probabilities of its dis-
junts. Each disjunct, being a conjunction of atomic con-
ditions, is computed by Algorithm 5. Algorithm 5 com-
putes the probability of a conjunction C' of atomic con-



Algorithm 1
Input: Query (7, 0¢);
regression database instance 7R D B; precision €
Output: Query answer (as in Definition 9)
Method:
answer := (;
for each tuple t = (01, -+, 0,) in ¢0OS do
compute TV (C,t,VS, RS,iRS, €) using Algorithm 2
if T'V is true then

answer := answer U 7,(01, -+ , Op,
ll,”' ,lk,v1,~- ,vk),wherell,~~ ,lk
are computed using f1,- - , fx from i RS and

v, , Uk are computed as defined in V' S.

Figure 1. Conceptual Query Evaluation

ditions of the form A relop ¢, where A is a learned or a
view attributes, and c is a constant. Because view attributes
are defined as linear combinations of the learned attributes,
we basically need to compute the probability of a condi-
tion that is a conjunction of linear inequalities over variables
Ly, ..., Ly, which are the learned attributes. Geometrically
C defines a polyhedral set S in k-dimensional space.

Assume first that S is bounded, and thus can be enclosed
in the k-dimensional rectangle (bounded box) B. For this
case, the key idea of Algorithm 5 is to partition B into
smaller “boxes” by splitting each dimension into 2° equal
size intervals, for iteratively increasing .

For each such partition, we can estimate the probabil-
ity of the condition C' by computing its lower and upper
bounds. The lower bound is computed by considering all
“boxes” inside B that are fully contained in S. The proba-
bility of the event represented by the union of these boxes
is the sum of the probabilities of the boxes. Since each
box is only defined using learned attributes/variables L;,
i € {1, ..., k}, and they represent independent random vari-
ables, each “box” probability can be easily computed. Sim-
ilarly, we compute the upper bound on the probability of
C by considering all “boxes” in the partition that intersect
C (not just contained in C). This process continues, until
the lower and upper bound are close enough in terms of the
required precision e.

However, the set .S that represents the condition C' may
not be bounded. For that reason, Algorithm 5 first artifi-
cially creates a k-dimensional rectangle (“box”) B in such a
way that the probability of being outside the box is bounded
by €/2. Then, the algorithm proceeds to compute the prob-
ability of S'N B with finite precision €/2, so that the overall
precision will be bounded by e.

Clearly, Algorithm 1 (and all sub-algorithms) do termi-
nate. By carefully looking at the construction in Algo-

Algorithm 2
Input: Query condition C; tuple (o1, - - -
V'S, RS,iRS; precision €
Output: True or false (as in Definition 10)
Method:
if C is an atomic regular condition then
return its truth value
else if C' is a probability condition
P(CT(lYLd) >4 (or P(CT(lYLd) < 5) then
compute P(C}.qnq) with precision e using Algorithm 3
evaluate the truth value
P(Crand) > o (OI' P(Crand) < 5) resp.
return the evaluated truth value
else if C = C; A Cs then
return TV (Cy) ATV (Cs)
else if C = C1 Vv Cs then
return TV (Cy) V TV (Cs)
else if C = = then
return =TV (C})

,0n) €108,

Figure 2. Computation of Truth Value

rithm 5 and at the selection of finite precision parameters
in Algorithms 4 and 5, we can see that Algorithm 5 is also
correct. We have the following theorem:

Theorem 1 Algorithm 1 for REDB query evaluation (1) ter-
minates, and (2) is correct, i.e., it evaluates the correct an-
swer (with an arbitrary small finite precision €) according to
Definition 9 of query semantics.

6 Conclusions and Future Work

In this paper we have introduced, formalized, and pro-
vided a conceptual computation framework for Regression
Databases. Regression Databases are suitable for applica-
tions of reasoning about scenarios, events and courses of
action, based on dynamically estimated characteristics and
queries. We plan to pursue some related research questions,
such as extending REDB to deal also with categorical do-
mains; developing efficient algorithms for query processing
and its optimization; implementing REDB; and extending
the class of REDB queries.
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