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Abstract

This paper presents an autonomous symbolic indoor
tracking system for ubiquitous computing applications. The
proposed approach is based upon the assumption that topo-
logically discriminable information can be assigned explic-
itly to different spaces of a given indoor environment. On
that assumption, continuous Time-of-Flight (ToF) measure-
ments of echo-bursts obtained from four orthogonally and
coplanarly mounted ultrasonic transducer are used to learn
a stochastic room model. While the individual acoustic rep-
resentation of space is captured using Gaussian mixture
densities, the stochastic variabilities in the moving direc-
tion of a person are modeled by Hidden-Markov-Models
(HMMs). Experiments within a six room environment re-
sulted in a room recognition rate of 92.21% and a room
sequence recogntion rate of 66.00% without any pre-fixed
devices.

1. Introduction

Although many high accuracy positioning systems exist,
indoor location-awareness remains a challenging task. For
example, the Global Positioning System (GPS) provides
very accurate positioning information but suffers from poor
indoor applicability because of signal attenuation inside
buildings. In addition, indoor environments usually consist
of metal and other materials and these negatively affect the
estimation of position permitting by RF-signals or inertial
navigation system (INS). Therefore, alternatives based upon
different physical principles have been developed in recent
years to overcome such difficulties [1, 2, 3, 4, 5]. All of
these approaches make use of numerousness installed sen-
sors at precisely known locations. Accuracies in position of
a few centimeters are attainable with a high degree of logis-

tic effort and expense for an area-wide installation of sen-
sors. In many ubiquitous computing applications, a highly
accurate position is not necessary. Instead, a rough resolu-
tion of a few square meters associated with labeled places
is sufficient to permit the monitoring of moving persons or
some equipment within a building, therefore it is also called
symbolic localization. For example, imagine a blind person
who will be guided from room to room through a hospital or
to a bookshelf inside a public library. The requirements for
symbolic localization are of a quite different nature, namely
symbolic localization has to be self-contained, inexpensive
and easy adaptable to changing surroundings. This paper
addresses all these issues and a novel symbolic localization
framework will be presented.

2. Symbolic Localization Framework

The proposed framework relies on the assumption that
different rooms or parts of rooms (subrooms) are distin-
guishable by means of their unique topological characteris-
tics (Fig. 1). This means as long as enough static structure

Figure 1. Test environment.



Figure 2. Ultrasonic transceiver module
SRF08 from Devantech [7].

Figure 3. Measurement unit consisting of four
orthogonally and coplanarly mounted SRF08.

is provided in terms of furniture, doors, windows and the
outline of the rooms, it is possible to use range measure-
ments (topological features) for a classification into sym-
bolic representatives, like KITCHEN or BATHROOM. The
proposed method is divided in two building blocks: a hard-
ware component for ultrasonic range measurements and a
stochastic room model for continuous classification of fea-
tures in (sub-)rooms.

2.1. Hardware implementation

Because a ranging resolution of less than a few cen-
timeters is not required but instead a low price is an im-
portant objective, simple commercial available ultrasonic
transceivers are used (Fig. 2). The SRF08 transceiver
module features a range measurement of 0.03-6m, a pro-
grammable gain control and a low current drain for mo-
bile applications of 15mA typical/3mA standby. The mod-
ule emits a 40kHz ultrasonic burst and is able to detect
up to 17 echoes in series within a 36ms acquisition time.
This feature is crucial, because it allows it to construct a
depth image of space. To acquire as many of the topolog-
ical features of the environment as possible, four SRF08
modules are assembled orthogonally and coplanarly to a
multi-echo measurement unit (MEMU) (Fig. 3). Inside the
MEMU, a PIC microcontroller initiates sequentially firing
of every module’s sonar burst, performs the pre-processing
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Figure 4. This figure shows topological fea-
tures of five rooms of the test environment
measured with the MEMU.

Figure 5. The SYLOC prototype consisting of
the MEMU and a notebook fixed on a wear-
able baby carrier.

and handles the communication to a mobile computer for
post-processing. A full cycle completes in about 440ms
resulting in a feature rate of about nine features per sec-
ond. In (Fig. 4) some samples are shown, at which the
y-axis relates to the echo number, the x-axis relates to the
feature vector number (respectively time) and the color re-
lates to the distance (long distances are brighter than short
distances). Note, measurements of the bathroom above the
fifth echo contain little distinguishable information. This
is because of the very small outline of the bathroom and
the resulting multi-echo interferences. The MEMU together
with a laptop were fixed on a wearable baby carrier (Fig. 5)
and served as experimental prototype of the proposed self-
contained symbolic localization system (SYLOC).

2.2. Stochastic Modeling

The feature generation observed by the SYLOC-system
during a walk through different rooms has been modeled



Figure 6. A continuous Hidden-Markov-Model
(HMM).

under the assumption of two dependent stochastic pro-
cesses. The first process generates a finite discrete random
walk (ω1, . . . , ωT ) through a discretized environment Ω :=
{p1, . . . , pK} along randomly chosen positions ωt ∈ Ω at
discrete times t ∈ T := {1, . . . , T}. Different speeds of
the walker are modeled by allowing to skip states (faster)
or to repeat states (slower). The second process produces
randomly distributed echo measurements x ∈ IRd depen-
dent on the actual position ωt as well as on the differ-
ent reflections at static elements in space and interferences
of the ultrasonic waves. Although, the actual path a user
takes through the environment is not known explicitly, it
is possible to estimate the most probable room or subroom
from a sequence of observed measurements during a ran-
dom walk applying Hidden-Markov-Models (HMMs) (Fig.
6). Hidden-Markov-Models are well-known, and have been
successfully used in speech recognition since many years
[8]. In general, a stochastic process under the assumption
that the probability to be in position ωt depends only on the
predecessor position ωt−1, i.e.

P (ωt = pit
|ωt−1 = pit−1 , ωt−2 = pit−2 . . . ) = (1)

P (ωt = pit
|ωt−1 = pit−1) ∀t ∈ T : 1 ≤ it ≤ K,(2)

is called a first-order Markov process. Independence of the
absolute time and writing k := it, l := it+1 enables it to
define the transition probabilities from the current position
to the next position as

akl := P (ωt+1 = pl|ωt = pk) ∀1 ≤ k, l ≤ K (3)

which have the properties

akl ≥ 0 ∀1 ≤ k, l ≤ K (4)
K∑

l=1

akl = 1 ∀1 ≤ k ≤ K. (5)

Under the condition that the actual position (or state of the
HMM) ωt equals pk, and the measurement error caused by
different reflections and interferences at objects in the sur-
rounding is well modeled using Gaussian mixture densities

Figure 7. A HMM is assigned to each location.

consisting of M linear combined Gaussians, the observation
density of a measurement x is given by

bk(x) := p(X = x|ωt = pk,λk) = (6)
M∑

m=1

αk
m√

(2π)d det(Σk
m)

e−
1
2 (x−µk

m)T r(Σk
m)−1(x−µk

m), (7)

αk
m ≥ 0,

M∑
m=1

αk
m = 1 ∀1 ≤ k ≤ K, (8)

λk := (αk
1 , . . . , αk

M ,µk
1 , . . . ,µk

M ,Σk
1 , . . . ,Σk

M ). (9)

A HMM is fully characterized by a transition matrix A :=
(akl)1≤k,l≤K , the observation densities b := (bk)1≤k≤K

and the initial state distribution π := (πk)1≤k≤K with

πk := P (ω1 = pk) ∀1 ≤ k ≤ K. (10)

Before HMMs can be applied for positioning in the
SYLOC-system, three crucial questions have to be an-
swered. In the following, these questions are stated and
well-known results are given for a brief introduction in
HMMs with references for further reading:

2.2.1 The recognition of rooms from observations

Given an observation sequence O := (x1,x2, . . . ,xT )
of independent multi-echo range measurements obtained
from the MEMU, one wants to classify the sequence O in
one of the defined location symbols L := {s1, . . . , sL},
as e.g. KITCHEN, NEAR COMPUTER or 3RD FLOOR.
Thus, from a statistical point of view one is faced with
the problem of finding the most probable HMM γq :=
(Aq, bq,πq), 1 ≤ q ≤ L representing a labeled location
sq ∈ L given the observation sequence O (Fig. 7) , i.e.

q∗ := argmax
q∈{1,...,L}

P (O|γq)P (γq)
P (O)

. (11)



Note in (Fig. 7), there are particular states, one start state
pS and one end state pE , which represent the doors of each
room and are used to interconnect the HMMs for room se-
quence recognition given an observation sequence O. For
the optimization in (11) it is sufficient to find an optimal q∗

for which the nominator P (O|γq)P (γq) is maximized. The
prior P (γq) is usually defined based on particular knowl-
edge of the problem, whereas the observation likelihood
P (O|γq) has to be estimated. Suppose an observation se-
quence O, then the likelihood for the sequence given a
model γq equals

P (O|γq) =
∑

W∈{1,...,Kq}T

P (O|W,γq)P (W|γq)(12)

=
∑

{i1,...,iT }∈{1,...,Kq}T

πi1bi1(x1)
T∏

t=2

ait−1it
bit

(xt).

Obviously, the computation of P (O|γq) is intractable in
practice, even for a small number Kq of states, because of
the high number of possible hidden walks W . Fortunately,
there exists a calculation procedure called the Forward-
Backward algorithm [8] which solves this problem effi-
ciently.

2.2.2 The optimal state sequence

As the actual path is hidden, the problem is to find the most
probable path W∗ through the environment. This can be
solved by using the well-known Viterbi-algorithm [8]. The
Viterbi-algorithm efficiently maximizes the probability of a
single path W given the observations sequence O and the
model γq, i.e.

P (W∗|O,γq) = max
W∈{1,...,Kq}T

P (O,W|γq)
P (O)

. (13)

First, define the probability of a partial path
(pi1 , . . . , pit−1 , pk) accounting for the observations
{x1, . . . ,xt} whereas ωt = pk at time t, i.e.

δt(k) := max
i1,...,it−1

P (ωt = pk, pi1 , . . . , pit−1 ,x1, . . . ,xt|γq).

(14)
Then the most probable state sequence is found by applying
the recursion

δt(l) = bl(xt)max
k

δt−1(k)akl, 2 ≤ t ≤ T (15)

and backtracking from the final state ωT to the first state
ω1 traversing transitions which led to the maximal partial
path probability. In (Fig. 8) a transition graph for decoding
is shown, at which the vertical represents the states of the
HMM and the horizontal represents the time a feature xt is
observed. The nodes represents the density bk(xt) and the
arcs represent the transition probabilities akl. The probabil-
ity of a path given the observations is simply the product of
all transition and observation densities along that path.

Figure 8. The Viterbi algorithm finds the most
probable path through a graph.

2.2.3 Training of room-models

The training (or estimation of parameters) of a HMM for
every location in L is by far the most difficult problem. Be-
cause the equations required to solve for an optimal set of
parameters (A∗, b∗,π∗) are highly coupled, it is not possi-
ble to derive a solution analytically. However, an iterative
technique to find a set of parameters corresponding to a lo-
cal maximum of P (O|γq) exists, namely the Baum-Welch
algorithm [8]. Defining the probability of being at position
pk at time t, and position pl at time t + 1, conditioned on
the observations O and the model γq, i.e.

ξt(k, l) := P (ωt = pk, ωt+1 = pl|O,γq), (16)

the Baum-Welch reestimation formulas for (π,A) read as

π̄k :=
K∑

l=1

ξ1(k, l), (17)

ākl :=
∑T−1

t=1 ξt(k, l)∑T−1
t=1

∑K
l=1 ξt(k, l)

∀1 ≤ k, l ≤ K. (18)

The reestimation formulas for the parameters λk of every
Gaussian mixture densities bk are given by:

ᾱk
m :=

∑T
t=1 ζt(k, m)∑T

t=1

∑M
m=1 ζt(k,m)

, (19)

µ̄k
m :=

∑T
t=1 ζt(k,m)xt∑T

t=1 ζt(k, m)
, (20)

Σ̄k
m :=

∑T
t=1 ζt(k,m)(xt − µ̄k

m)(xt − µ̄k
m)Tr∑T

t=1 ζt(k, m)
(21)

∀1 ≤ k ≤ K, 1 ≤ m ≤ M,

where ζt(k,m) := P (ωt = pk, υt = m|O,γq) is the
probability to be in state pk at time t and the mth-mixture
component accounts for observation xt. Note, that both



ξt(k, l) and ζt(k,m) can be calculated using the Forward-
Backward algorithm. The Baum-Welch reestimation has
been proven to improve the likelihood of the observation se-
quence, i.e. P (O|γ̄q) > P (O|γq), or γ̄q = γq [8]. Thus,
starting with an initial guess γq

0 one can iteratively produce
a sequence of parameters γq

i with P (O|γq
i+1) > P (O|γq

i )
using the update formulas and terminate e.g. when the im-
provement is below a given threshold. Although, this pro-
cedure yields an local extremum, it is not guaranteed to find
a global optimum.

2.3. Recognition of Room Sequences

Consider N randomly visited (sub-)rooms ΓN :=
(γi1 , . . . ,γiN ), 1 ≤ ij ≤ L represented by trained HMMs
for symbolic localization (like a sequence of continuously
spoken words in continuous speech recognition). Recog-
nizing the most probable room sequence Γ∗N is accom-
plished by interconnecting HMMs and approximating an
augmented problem of (11) yielding

Γ∗N := argmax
all ΓN

{
max

all WN

P (ON ,WN |ΓN )P (ΓN )
}

, (22)

where ON and WN are the total observation respec-
tively state sequence over the connected models. The
approximation of P (ON |ΓN ) is necessary in practice
to solve this complex problem efficiently using the
Viterbi-algorithm (cf. 12-15). The prior P (ΓN ) =
P (γ1)P (γ2|γ1) . . . P (γN |γ1, . . . ,γN−1) (also known as
language model in speech recognition) may be used to sta-
tistically model contextual information. E.g. a player of a
pervasive game [9] might visit some (sub-)rooms more of-
ten (with higher probability) than other places of the whole
game environment dependent on previously visited (sub-
)rooms and steered by the gameplay.

3. Experiments and System Setup

In the previous sections, the hardware implementation
as well as the principle of stochastic modeling inside the
SYLOC-system were discussed. In the following the ex-
periments with the SYLOC prototype and the system con-
figuration will be explained. The experimental prototype
is currently not capable of real-time operation, thus eval-
uation, training and testing was performed offline using a
well-established toolkit for Hidden-Markov-models, called
Hidden-Markov-Model-Toolkit (HTK) [10]. HTK has been
mainly developed to build-up and test continuous speech
recognition systems. However, it is general enough to be
applicable to other applications demanding HMMs. The
test environment was a floor of a building consisting of six
rooms: bedroom, bathroom, hallway, kitchen, living room

Figure 9. The shown network represents al-
lowed paths through the environment.

Figure 10. The Viterbi algorithm finds the
most probable room sequence.

and workroom. A sketch of this environment including the
most affective furnitures are shown in (Fig. 1). Obviously,
not all paths through the spaces are permitted. For exam-
ple, one always has to walk from room to room across the
hallway while a direct jump between bedroom, bathroom,
kitchen, living room and workroom is in general not pos-
sible. This knowledge may improve the performance of
a recognition system and therefore it was implemented in
SYLOC by a so called task grammar (Fig. 9). The task
grammar defines a lattice of allowed room transitions and
represents the global structure of the environment. The
resulting lattice (Fig. 10), consisting of nodes as well as
arcs between them, is used by the Viterbi algorithm to find
the most probable room sequence Γ∗N (cf. 22). The nodes
may be though of as the doors of the rooms (actually, they
are the start nodes respectively end nodes of the associated
HMMs) whereas the arcs represent the acoustic character-
istic P (O|γq), (1 ≤ q ≤ 6) of a room. Note, no con-
text information were used, thus all P (ΓN ) were assumed
equal. In the shown network without context probabilities,
the probability of a path is simply the product of the obser-
vation probabilities along that path. For the acoustic model-
ing bq, mixtures of M Gaussians with diagonal covariance



Figure 11. The diagram shows the evaluated
(RC [%]) for different number of echoes d.

matrices Σk
m, (1 ≤ k ≤ Kq), (1 ≤ m ≤ M) has been

assumed in any of the Kq states of the room-HMM γq. The
choice of Kq was dependent on the length of the room (ap-
prox. 0.7m a state) plus a start and end state representing
the doors interconnecting the HMMs (Fig. 7). The task
grammar was also employed to randomly generate room se-
quences for the acquisition of evaluation, training and test
data by randomly traversing the resulting lattice and out-
putting the associated label of each room start node encoun-
tered. A total of 250 observation sequences were acquired
using SYLOC and composed in three disjoint sets: 50 se-
quences for evaluation (130 room instances), 150 sequences
for training (633 room instances) and further 50 sequences
for testing (154 room instances).

3.1. Training of Room-HMMs using HTK

For evaluation and testing of the SYLOC-system a HMM
for every room of the test environment had to be trained
using the training data. The training procedure were per-
formed in three phases using the tools of HTK. First, the
MEMU measured so called bootstrap data by separately
traversing every room (cf. Fig. 1) in each case 30 times
beginning and ending at the doors (room boundary). Then,
the room-HMMs γq were initialized with a flat start where
the bootstrap data related to the model was used to estimate
its global means and variances of the diagonal covariance
matrices. The initialization of the transition probabilities
is uncritical and thus they were set to any value satisfy-
ing the positivity and summation constraints. From this
flat start, sophisticated start models were reestimated using
the Baum-Welch algorithm and the bootstrap data again. In
the final training steps, when only training data of room se-
quences without any boundary information was available,
the room sequence transcriptions generated from the task
grammar together with the training data were processed in
turn to construct a composite HMM which spans the whole
sequence. The Baum-Welch formulas were then applied re-
peatedly until convergence had been achieved.

Figure 12. The diagram shows the evaluated
(RC [%], left axis) and (RSC [%], right axis)
involving d = 3 echoes and different number
of mixtures.

3.2. Evaluation of System Parameters

The evaluation data was used to experiment with adjust-
ing the affecting parameters of the SYLOC-system indepen-
dent of the test data. With increasing number of echoes d
the MEMU receives, the number of free parameters to be es-
timated increases, too. Thus, a huge amount of data would
be needed for a robust estimate of the room-HMMs. Usu-
ally, this makes a system setup very extensive perhaps even
impossible for a new environment the SYLOC-system shall
be employed. Obviously, only a small number of effective
depth differences in the direction of sound can be expected
in small (sub-)rooms with moderate number of static ob-
jects inside. Therefore, when there are many echoes they
are likely to include redundant or even incorrect depth in-
formation, because of multi-echo interferences (Fig. 4). To
find out an optimal d for the test environment, HMMs were
trained (cf. Sec. 3.1) using the training data with a fixed
number of mixtures (M = 1) but with varying number of
echoes (Fig. 11). The optimum is found for d = 3 with
96.92% room recognition rate (RC), as expected the perfor-
mance was worse when using more echoes. Setting d = 3,
the next evaluation experiment examined the influence of
the number of mixtures M in each of the observation dis-
tributions bk (Fig. 12). As best setting, M = 10 has been
chosen resulting in 97.69% (RC) as well as 12.00% room
sequence recognition rate (RSC). After tuning the insertion
penalty in order to balance insertion and deletion errors, the
evaluation performance finally reached 90.00% (RC) and
63.41% (RSC).

3.3. Using Contextual Room Models

As shown in (Fig. 7), the hallway was modeled using one
HMM only, although it can be passed through many differ-
ent routes. Obviously, using the same HMM for very differ-
ent paths results in bad acoustic modeling and hence many
insertion and deletion errors may occur. Therefore, contex-



Figure 13. Possible paths modeled by room-
dependent HMMs. The ellipses indicate clus-
tered states.

Figure 14. The diagram shows the evaluated
(RC [%], left axis) and (RSC [%], right axis)
using the tied tri-room models (d = 3).

tual HMMs were trained to account for the dependency on
the predecessor and successor room when walking across
the hallway (Fig. 13). Because of the dependency of the
predecessor and successor such models are called tri-room
models as opposed to mono-room models used so far.

3.4. Tied Tri-Room Model Training and
Evaluation

In principle, the training of tri-room models for the
hallway is similar to the mono-model training, but in the
presence of very limited data one has to establish a more
elaborate training procedure: First, 10 tri-room models *-
HALLWAY+* named according to the successor and pre-
decessor room 1 were cloned from the HALLWAY mono-
room model (M = 1) (cf. Sec. 3.1). No distinction was
made between forward and backward paths. Models with
similar path structure were forced to share the same transi-
tion matrices to reduce complexity. The resulting tri-room
models 2 were then reestimated with mono-room labels sub-

1The symbol * means any of the abbreviations {BE,BA,KI,LI,WO} for
{BEDROOM,BATHROOM,KITCHEN,LIVING ROOM,WORKROOM}

2For the sake of brevity, all models are called tri-room models, although
the hallway is the only contextual room.

Figure 15. The figure shows the (RC [%], left
axis) and (RSC [%], right axis) obtained on
the test data.

stituted by tri-room labels. To reduce the model complex-
ity further, eight pools of acoustic similar positions (states)
were created and the associated states of a pool were shared.
After reestimation, the remaining HALLWAY labels with
unknown predecessor were substituted by bi-labels HALL-
WAY+* and in turn a Viterbi automated realignment was
performed to substitute these by the most probable tri-room
models. Evaluation results using all reestimated tied tri-
room models are shown in (Fig. 14). The models (M = 8)
performing 75.61% (RSC) as well as 93.06% (RC) were
chosen for the final test.

3.5. Testing

After configuring the system parameters to the evalu-
ated values, the final step was an independent test of the
SYLOC-system using the test data which has been retained
so far. The trained mono-room models (Sec. 3.1) and tri-
room-models (Sec. 3.4) were separately employed to recog-
nize the test data and to measure the performance by means
of different figures of merit. In (Fig. 15) the (RC) and
(RSC) on the test data are shown. The use of tri-room mod-
els improved the system performance by a relative (RC) of
1.43% whereas (RSC) increased by 32.00% relating to the
mono-room models. The absolute rates are 92.21% (RC)
and 66.00% (RSC) for tri-room models and 90.91% (RC)
and 50.00% (RSC) for mono-room models. The improve-
ment of the (RSC) is due to the decrease of the insertion
and deletion errors as a result of a better acoustic modeling
with tri-room models for the hallway (Fig. 16). In (Fig.
17) a confusion matrix is shown to give a detail description
of the performance of the SYLOC-system in recognizing
the different rooms using the tri-room models. The vertical
represents the correct category, whereas the horizontal rep-
resents the classification of the SYLOC-system. The per-
formance is very good, with only 2 incorrect classifications
of WORKROOM as LIVING ROOM. The room sequence
recognition rate is mainly affected by the deletions and in-
sertion errors of the hallway.



Figure 16. The figure shows the deletion and
insertion errors.

Figure 17. The confusion matrix. Addition-
ally, deletion and insertion errors are given.

4. Conclusion

This paper presented a symbolic localization system
(SYLOC) based on topological features extracted from ul-
trasonic multi-echo range measurements in four coplanar
and orthogonal directions in space. SYLOC used HMMs
to estimate positions by means of a classification of con-
tinuous acquired features to (sub-)room symbol sequences.
Promising results of 92.21% room recognition rate and
66.00% room sequence rate are presented and focus fur-
ther research in developing a next SYLOC prototype. The
additional effort using tied tri-room models is marginal, as
cloning of tri-room models from mono-room-models is au-
tomated and the rules for pooling of states must be defined
only once. Although the idea of using ultrasonic ranging
for navigation is not new (especially in robotics), the novel
concept for personal tracking presented in this paper of us-
ing continous multi-echo measurements in connection with
HMMs has many advantages compared to ultrasonic based
systems reported in literature [1, 2, 4, 5, 6]:

• SYLOC is self-contained. No preliminary installed
equipment is necessary, because ranging is initiated
from the moving user in opposite to measurements per-
formed from the walls or the ceiling by fixed sensors.

• SYLOC is mobile for personal tracking.

• SYLOC is a low cost solution, only commercial in-
expensive hardware devices are used. For the algo-

rithmic implementation existing (free available) tools
were employed for training HMMs as well as Viterbi
decoding.

• SYLOC is easy adaptable to changing environments
using well-known adaptation techniques, like e.g.
MLLR or MAP approach which are also well-known
from continuous speech recognition.
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