
Memory-Based Context-Sensitive Spelling Correction at Web Scale

Andrew Carlson
Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
acarlson@cs.cmu.edu

Ian Fette
Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
icf@cs.cmu.edu

Abstract

We study the problem of correcting spelling mistakes in
text using memory-based learning techniques and a very
large database of token n-gram occurrences in web text as
training data. Our approach uses the context in which an
error appears to select the most likely candidate from words
which might have been intended in its place. Using a novel
correction algorithm and a massive database of training
data, we demonstrate higher accuracy on correcting real-
word errors than previous work, and very high accuracy at
a new task of ranking corrections to non-word errors given
by a standard spelling correction package.

1 Introduction

In this paper, we apply memory-based learning tech-
niques to the problem of correcting spelling mistakes in text,
using a very large database of token n-gram occurrences in
web text as training data. Our approach uses the context
in which a word appears to select the most likely candidate
from words which might have been intended in its place, as
determined by the sequence of words most frequently ob-
served in the n-gram training data. Our novel correction
algorithm extends previous work by considering each pos-
sible position where the word in question can occur in an
n-gram and selecting the most discriminative position.

We evaluate the performance of our algorithm on both
real-word errorsand non-word errors. Real-word errors
are lexically valid words that are not noticed by conven-
tional dictionary-based spelling correction packages when
used incorrectly (e.g. usingpieceinstead ofpeace). We ex-
ceed the accuracy of previous memory-based approaches to
this task for both newswire and general English text. Non-
word errors are errors where a word not found in a dictio-
nary was used instead of an intended dictionary word. We

show that our algorithm can accurately recommend correc-
tions for non-word errors by reranking a list of spelling sug-
gestions from a widely used spell checking package. The
correct word is usually selected by our algorithm.

We view this application and our results as useful in their
own right, but we also as a case study of applying relatively
simple machine learning techniques that leverage statistics
drawn from a very large corpus. The data set we use as
training data is the Google n-gram data [3], which was re-
leased by Google Research in 2006. It contains statistics
drawn from over a trillion words of web text. It was released
with the aim of enabling researchers to explore web-scale
applications using relatively modest computing resources.
We believe that our application is one of many possibilities
enabled by this data set.

The rest of the paper is organized as follows. Section 2
discusses related work, while Section 3 explains the details
of the dataset we use in our work. Section 4 describes our
methodology, while Section 5 presents results of applying
that methodology on various datasets. Finally, we present
our concluding remarks in Section 6.

2 Related Work

Approaches to finding real-word errors have frequently
taken as input a list ofconfusion sets, where a confusion set
is a set of dictionary words that are often incorrectly used in
place of one another. Typical types of confusion sets include
homophones (e.g.pieceandpeace), words with low edit
distance (e.g.form and from), and words likeamongand
betweenwhere the correct word is determined by the rules
of grammar. When correcting spelling errors in an input
text, whenever a member of a confusion set occurs in the
text, the problem is to decide if a different member of that
confusion set was intended in its place.

Banko and Brill [2] use a memory-based learning ap-
proach to select the correct member of a confusion set by



collecting n-gram statistics from training data and choosing
the member most frequently observed in the context of the
word before and word after the target word. They show a
roughly log-linear improvement in accuracy relative to the
size of the training corpus. Their largest corpus has10

9

words, three orders of magnitude smaller than the Google
n-gram corpus. We report higher accuracy than their results,
in line with their observed log-linear trend in improvement.

Liu and Curran [8] build a 10 billion word corpus from
a web crawl and use the memory-based learner approach of
Banko and Brill. They also give results using the Gigaword
corpus, a 2 billion word corpus of relatively “clean” text
from newswire and similar sources. They achieve the high-
est reported accuracies for true cross-domain experiments
where the training data is not drawn from the same distri-
bution as the test data. Our methods use much more train-
ing data than these previous memory-based methods, and a
more sophisticated algorithm which chooses the most dis-
criminative context to select the correct word, to exceed the
previously stated best performance.

Golding and Roth explore a classification-based ap-
proach to this problem [6]. Given text that demonstrates
correct usage of the words, classifiers are trained to discrim-
inate the intended member of a confusion set from the con-
text words near a member of that confusion set, their part-
of-speech tags, and conjunctions of those features. Their
work applies mistake-based classification algorithms to this
problem, which can be relatively expensive to train and re-
quire large amounts of memory for the large feature spaces
used. Later work explores methods of pruning features to
avoid some of these problems [4]. Our work uses sim-
pler methods with much more training data, and training
our models consists of simply counting n-gram statistics in
a corpus. Additionally, their approaches tend to perform
poorly on true cross-domain experiments, where the train-
ing data differs significantly in domain from the test data.
We train on a general Web corpus and evaluate on two do-
mains, giving a more realistic evaluation of our system.

Church and Gale present an approach to correcting non-
word errors using a noisy channel model to predict a prob-
able intended word given a misspelled word [5]. Their use
of contextual information from n-gram statistics showed a
small improvement in accuracy. They found that simple
MLE-based approaches to using the n-gram statistics actu-
ally degraded performance. We find that a simple MLE-
based algorithm for estimating probabilities of intended
words from their context works very well. Their work used
much less training data (about 100 million words versus our
1 trillion), which explains why our simpler approach works
well.

An alternative method of using web-scale data for natu-
ral language tasks is to use search engine counts, which re-
moves the need to store a large database of aggregated data.

Lapata and Keller used this approach with results from the
search engine Altavista on the task of spelling correction
[7]. However, Liu and Curran showed that this approach
gives much lower accuracy than using accurate counts from
a collection of web pages. This is because hit counts re-
turned by search engines are typically estimates, and not
well-suited for use in NLP systems.

3 Data Set

Our experiments use the Google n-gram data set [3],
which was released in 2006, and is available through the
Linguistic Data Consortium. The data collection gives the
number of times an ordered sequence of tokens occurs in
a collection of public web pages containing over one tril-
lion words. Sequences of lengths one, two, three, four, and
five are reported. Words that occurred fewer than 200 times
were replaced by the token ‘<UNK>’, and n-grams that
occurred fewer than 40 times are not reported. Punctuation
and capitalization are preserved in the data set. Punctuation
is generally split into a single token, with the exception of
apostrophes, which start a new token but letters after them
are kept intact (e.g.they’rebecomesthey ’re).

This dataset is 87GiB on disk, without any database in-
dexes. This may limit uses, as the data is far too large to
distribute with client applications. However, the datasetis
still useable in an online scenario where clients are contact-
ing centralized servers, as the query load is light and the
queries themselves can be executed quickly. To enable fast
queries for our application, we loaded the data set into a
MySQL database and indexed each table, which brought
the total size of the database up to roughly 250GiB.

4 Methods

Our method for context-sensitive spelling correction
chooses the most likely word from a list of candidates, given
the context of adjacent words from the sentence in which
the word in question appears. This requires us to determine
which sequence of words (the context, with each of the can-
didiates substituted in turn) is most probable. To estimate
these probabilities we use the Google n-gram corpus pre-
viously described. Our procedure is described generally in
Section 4.1, and specifically for correcting real-word errors
and non-word errors in Sections 4.2 and 4.3.

4.1 General Methodology

Our general algorithm takes as input a set of candidate
wordsC = {c1, c2, ..., ck}, a database of n-gram statistics
for sizes 1 tom, and context words less thanm words to
the left and right of the target word being corrected, where



w−i is the ith word before, andwj is the jth word after.
For example,C could be{peace, piece}, m could be 2, and
the context words could bew−1 = a andw1 = of. Our
algorithm recommends a wordc ∈ C using the procedure:

Consider each position in which each candidate wordc

could appear within an n-gram of sizem. Select the po-
sition with the highest ratio between the highest count and
the second highest count, and return the wordc that cor-
responds to the highest count. If all queries had counts of
zero, decrement the maximum n-gram size and repeat the
procedure. In our example, we would consider the 2-grams
a peace, a piece, peace of,andpiece of. If no matches were
found any of those 2-grams, we would then consider the 1-
gramspeaceandpieceand select the more frequent word.

Probabilistically, this algorithm selects the candidate
with highest ratio between its joint probability with the con-
text and the second highest probability, where we use the
maximum likelihood estimate of the joint probability of a
word in context from an n-gram count database.

Only n-grams that occurred at least 40 times were re-
ported in the training data, so if we do not find a match for
a query, we optimistically assume a count of 39.

In some cases, we do not have enough context words. We
use only context from within the same sentence, so when
the candidates appear near the beginning or the end of a
sentence, we might not have a full set of context words.
In this case, we restrict the positions in which a word can
appear to those with sufficient context.

It should also be noted that the actual query issued to
the database might not always directly line up with the con-
text words. This is caused by tokenization issues, namely
the fact that a word like “they’re” becomes two separate
tokens- “they” and “’re” to match the tokenization used in
the Google n-gram database. In this case, one of the to-
kens from the context will be ignored, as the word with the
apostrophe takes up two words in the n-gram query.

4.2 Real-Word Error Methodology

One application of this methodology is to correct real-
word errors where a real word was used while a dif-
ferent word was intended. Sets of such words are
called confusion sets, and include sets of words such as
{they′re, their, there}, and{hear, here}. The applica-
tion of our method to this problem is straightforward. Given
some text to correct, whenever we find a word that is a mem-
ber of a (pre-defined) confusion set, we use the method de-
scribed in Section 4.1 to choose the correct word from the
confusion set given its context.

In this setting, the left and right context are the sets of
words appearing before and after the word that belongs to
a confusion set, and the set of candidate words are those
words that belong to the same confusion set. E.g. if we were

presented with “Johnny is going to their house for dinner
tonight”, the left context would be “Johnny is going to”, the
right context would be “house for dinner tonight”, and the
set of candidate words would be{their, they′re, there}.

We tested this method on the Brown corpus, which is
a collection of American English drawn from a variety of
sources, and the Wall Street Journal corpus, a collection of
articles from the Wall Street Journal. Both corpora are sub-
sets of the text from the Penn Treebank corpus. Since these
are widely used corpora, we were concerned that their text
might occur enough on the web to bias the results, as the n-
gram data came from web pages. However, we tested many
queries and found only one complete copy of the Brown
corpus and a few excerpts from each corpus online. We be-
lieve that the threshold of 40 occurrences used in the n-gram
data is enough to prevent these pages from biasing the re-
sults. For each corpus, we looked for any occurrence of a
word in a confusion set in the text. We assumed that the
text was grammatical, meaning that the word used in the
sentence was the correct member of the confusion set, and
tested whether our method predicted the same member of
the confusion set as being correct. This same methodology
was used on the same corpus in the results reported by Liu
and Curran [8], which we compare to in Section 5.1.

4.3 Non-Word Error Methodology

A second application of this method is towards re-
ranking suggestions made by a spell checking program
when a word not found in the dictionary is accidentally used
instead of a dictionary word. Spell checkers are often used
to correct such errors, but it’s not always clear what word
is the correct replacement for a mis-typed word. For in-
stance, should someone type “funn”, should this be inter-
preted as “fun”, “funny”, “funk”, or something else? To
handle this, spell checkers often present users with a list of
choices of correctly spelled words from which to choose.
This list is typically generated based on edit distance from
the non-word typed by the user without take context into
account. Our goal is to choose the correct word from this
list presented by a spell checker using the context in which
the error occurs.

To test this approach, we took a novel (Fame and For-
tune, by Horatio Alger) that had not previously been in-
dexed by Google, and as such our results would not be bi-
ased by the text showing up in search engines. An e-book
of this novel was released by Project Gutenberg on May
28, 2007, well after the release date of the n-gram dataset.
Searching Google for a number of phrases from the book
returned zero results. Our goal then was to introduce er-
rors into the text, and see if we could use our method, in
conjunction with a spell checker, to correct these errors.

We introduced three types of errors into the text - we



added characters, deleted characters, and subsitituted char-
acters. Each of these errors was introduced into a word with
probability 0.05. In the case of added characters, we chose
a number of characters by sampling from a Normal(0,.3)
and taking the ceiling of its absolute value as the number of
chracters to insert. For each of these characters, we chose a
position for insertion (defined as the position before which
to insert a letter, including the “end” position). We then in-
serted a character that was “close” to the following char-
acter. We did this by creating a distance mapping from
each character to each other character, where the distance
roughly approximates the L-1 distance on a standard U.S.
keyboard (roughly L-1 in the sense that we used an excep-
tion for keys that are only one diagonal space apart, which
we said have a distance of 1). We then choose a “close” key
by choosing a distance by sampling a Normal(0,4) distribu-
tion, and again taking the ceiling of its absolute value, and
then selecting one of the keys with this distance randomly.

We also deleted characters from words. The number of
deletions was calculated in the same manner as the num-
ber of additions, and the specific characters to be deleted
were selected uniformly at random. Finally, we introduced
substitution errors into the text, where again the number of
substitutions was calculated in the same way as the number
of additions was calculated, the specific positions where er-
rors were to be introduced were selected uniformly at ran-
dom, and the character to substitute was chosen according
to the same “closeness” metric as described in addition of
characters.

For each word into which we introduced an error, we
used GNU Aspell [1], an open source spell checking library,
to generate candidates for spelling corrections. If the cor-
rect word did not appear within the first ten candidates, we
ignored the instance and moved on to the next. (This of-
ten occurred when too severe an error, or combination of
errors, was introduced.) We then used our method to de-
termine which of the candidates was the correct suggestion.
The left and right context were the (un-perturbed) words
surrounding the word in which the error was introduced,
and the candidate set was the set of words suggested by As-
pell. We calculated both the rank of the correct word in
the list returned by Aspell, as well as the rank produced by
our method. If our method returned another word as most
likely, we removed that word from the candidate set, and re-
peated the method, and continued this process until the cor-
rect word was suggested. The number of times this process
was repeated thereby creates a ranking based on frequency
of the words given the context.

This method of introducing errors created 3,373 mis-
spelled words where the correct word was present among
the top 10 suggestions. 943 of these words were the re-
sult of a character deletion only, 1,410 were the result of a
character insertion only, 938 were the result of a character

substitution only, and the rest were the result of multiple
types of errors.

5 Results

5.1 Real-Word Error Correction

Our experiments for real-word error correction, where
we choose the member of a confusion set that best fits a
given context, aim to answer the following questions: Does
using a very large corpus improve accuracy, and does con-
sidering each possible position where the target word can
occur to select the most discriminative position help?

In the experiments that follow, “N-grams (limit 3)” gives
results for training on the Google n-gram data with the same
algorithm as Banko and Brill [2] (considering the 3-gram
centered on the target word). “N-grams (fixed)” gives re-
sults for using 5-grams centered on the target word. “N-
grams (sliding)” gives results for the full algorithm, where
we consider all possible positions in the 5-gram window for
the target word. Comparing to results from Liu and Cur-
ran [8], “Gigaword” gives results for the Banko and Brill
algorithm on a 2 billion word corpus of newswire text, and
“Web corpus” gives results from 10 billion words worth of
web page text.

“Average accuracy” reports the accuracy averaged over
the 18 confusion sets used in the experiments. “Weighted
average accuracy” is the per-token accuracy, where confu-
sion set accuracies are weighted proportional to their fre-
quency in the test corpus.

Table 1. Comparison to previous results for
correcting real-word spelling errors on Brown
and WSJ corpora. Highest accuracies are in
boldface.

Training Data Test Average Weighted
Corpus Accuracy Average

Accuracy

Gigaword Brown 90.7 94.6
Web corpus Brown 91.8 95.4
N-grams (limit 3) Brown 92.6 95.6
N-grams (fixed) Brown 94.2 96.3
N-grams (sliding) Brown 95.2 96.8

Gigaword WSJ 93.7 96.1
Web corpus WSJ 93.3 95.1
N-grams (limit 3) WSJ 93.4 95.4
N-grams (fixed) WSJ 94.3 95.9
N-grams (sliding) WSJ 95.8 96.7



Table 1 compares the accuracy of our method to previous
results. Our full method achieves higher accuracy on both
the Brown and Wall Street Journal corpora than previous
work using memory-based learners. The other rows in the
table give results reported by Liu and Curran on the same
test data with the same confusion sets. Our accuracy us-
ing 3-grams exceeds their results for the Brown corpus, and
does not quite match on the Gigaword/WSJ combination.
However, the WSJ and Gigaword corpora are both from the
newswire domain, which probably helps performance sig-
nificantly. These results show that using the larger corpus
does indeed improve accuracy.

The previous work, when tested on the WSJ data after
having been trained on the “web corpus” falls behind the
fixed 5-gram method. When we add in the sliding window
approach, where we no longer require that the n-grams be
centered on the word in question, but rather use the posi-
tioning that is most discriminative, our accuracy increases
to the point where we have the highest average accuracy on
the Brown corpus by a 2.7% margin, and our average accu-
racy on the WSJ corpus exceeds previous work by 1.3-1.7%
(depending on training set). We conclude that using larger
n-grams improves performance significantly. Considering
all possible positions for the target word appears to be an
additional source of improvement.

Table 2 gives percentage accuracy for spelling correc-
tion on the Brown corpus on a per-confusion set level. The
Confusion Set Average is the average accuracy across the
confusion sets, and the Weighted Average is the average ac-
curacy on a per-token level. We see that some confusion
sets have lower accuracy than others– it is hard to distin-
guish betweenamongandbetween, and relatively easier to
distinguish betweenaffectandeffect. This seems sensible
becauseaffectandeffectare likely to have different types
of words nearby in the text, sinceaffect is a verb andef-
fect is usually a noun.Amongandbetweenshare the same
part of speech, and the local context in the text might not be
informative about which is correct.

5.2 Non-Word Error Correction

Figure 1 shows the accuracy of our method for re-
ranking suggestions from a spell checker for words where
errors have been introduced by inserting, subsituting, or
deleting characters. Insertion errors are the easiest to re-
cover from. Aspell ranks the correct word first 43.1% of the
time, while our method using 1-grams and 5-grams ranks
the correct word first 79.1% and 92.4% of the time, respec-
tively. For deletion errors, Aspell ranks the correct word
first 33.1% of the time, compared to 60.1% and 84.9% for
our method with 1-grams and 5-grams. Accuracy on substi-
tution errors is similar, with Aspell ranking the correct word
first 30.9% of the time, and our method 67.4% and 86.4%

Table 2. Test accuracies by confusion set for
correcting real-word errors on the Brown cor-
pus for various n-gram types.

N-gram types used
Confusion 3-gram 5-gram 5-gram
Set Examples (fixed) (fixed) (sliding)
accept, except 253 96.4 97.2 97.2
affect, effect 249 97.6 97.6 98.8
among, between 1099 82.9 86.1 87.4
amount, number 643 78.2 87.6 89.9
begin, being 805 97.0 97.8 97.8
cite, sight, site 160 73.8 82.5 88.1
country, county 500 92.8 93.0 94.0
its, it’s 2158 95.4 95.8 96.3
lead, led 264 87.1 90.2 88.6
fewer, less 478 94.6 94.6 94.4
maybe, may be 592 97.5 97.8 98.0
I, me 6347 98.9 99.0 99.0
passed, past 442 93.4 93.9 95.2
peace, piece 331 91.2 92.7 95.5
principal, principle 201 89.1 93.0 95.0
quiet, quite 358 96.4 96.1 98.3
raise, rise 155 94.2 94.2 95.5
than, then 3175 95.5 95.7 97.3
their, there, they’re 5576 97.5 98.0 97.2
weather, whether 361 97.0 97.2 98.1
your, you’re 1072 97.2 97.4 98.6
Confusion Set Average 92.6 94.2 95.2
Weighted Average 95.6 96.3 96.8

of the time for 1- and 5-grams, respectively.

The accuracy using word frequency alone (1-grams) is
better than what Aspell produces, and the addition of con-
text yields an improvement in accuracy of roughly 10-25%,
depending on error type. However, as Figure 1 also shows,
the improvement between 3-grams and 5-grams is much
smaller. It may be worth using only 3-grams to save space,
as they offer the best tradeoff between space and accuracy.

Because spelling correction systems return a ranked list
of suggestions, we also evaluate how often the correct word
is ranked among the topk words. Figure 2 shows the “recall
at k” for Aspell, 1-grams, and 5-grams, fork from 1 to 10
(recall that we discarded instances when the correct word
did not appear in the top 10 results, hence all methods con-
verge to 100% atk=10). Here, we see that the method using
5-grams usually has the target word in the top 2 or 3 ranked
slots. The reranking using 1-grams is a significant improve-
ment over Aspell, but often has candidates ranked fourth or
fifth. The ranking given by Aspell is much worse than our
methods, with a significant number of examples ranked in
the lower half of the recommendations.



Figure 1. Results of reranking spell checker suggestions fo r non-word errors per error type.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy for Insertion Errors

A
cc

ur
ac

y 
of

 T
op

−
R

an
ki

ng
 W

or
d

A
sp

el
l

1g
ra

m
s

2g
ra

m
s

3g
ra

m
s

4g
ra

m
s

5g
ra

m
s 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy for Deletion Errors

A
cc

ur
ac

y 
of

 T
op

−
R

an
ki

ng
 W

or
d

A
sp

el
l

1g
ra

m
s

2g
ra

m
s

3g
ra

m
s

4g
ra

m
s

5g
ra

m
s 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Accuracy for Substitution Errors

A
cc

ur
ac

y 
of

 T
op

−
R

an
ki

ng
 W

or
d

A
sp

el
l

1g
ra

m
s

2g
ra

m
s

3g
ra

m
s

4g
ra

m
s

5g
ra

m
s

Figure 2. Recall at k for reranking the top 10
recommendations made by GNU Aspell for
non-word errors using 1-grams and 5-grams.

1 2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1

k

R
ec

al
l a

t k

Recall at k for Aspell, 1grams, and 5grams

 

 

Aspell
1grams
5grams

6 Conclusions

We have shown that using a massive database for
spelling correction with memory-based learning techniques
yields high accuracy at correcting both real-word errors and
non-word errors. Additionally, we extended previous ap-
proaches by considering each possible position where the
spelling error could occur inside the n-grams and demon-
strated that it improved accuracy.

AcknowledgementsThe authors would like to acknowledge
the support of their advisors, Tom Mitchell and Norman Sadeh.
Work reported herein has been supported in part under the NSF
Cyber Trust initiative (Grant #0524189), under ARO research
grant DAAD19-02-1-0389 (“Perpetually Available and Secure In-

formation Systems”) to Carnegie Mellon University’s CyLab, by
DARPA under the CALO/PAL program, and by a Yahoo! Grad-
uate Fellowship. Any opinions, findings, and conclusions orrec-
ommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science
Foundation.

References

[1] K. Atkinson. GNU Aspell, 1998. Software available at
http://aspell.net/.

[2] M. Banko and E. Brill. Scaling to very very large corpora for
natural language disambiguation. InMeeting of the Associa-
tion for Computational Linguistics, pages 26–33, 2001.

[3] T. Brants and A. Franz. Web 1t 5-gram version 1, 2006.
[4] A. J. Carlson, J. Rosen, and D. Roth. Scaling up context-

sensitive text correction. InProceedings of the Thirteenth
Conference on Innovative Applications of Artificial Intelli-
gence Conference, pages 45–50. AAAI Press, 2001.

[5] K. W. Church and W. A. Gale. Probability scoring for spelling
correction.Statistics and Computing, 1991.

[6] A. R. Golding and D. Roth. Applying winnow to context-
sensitive spelling correction. InInternational Conference on
Machine Learning, pages 182–190, 1996.

[7] M. Lapata and F. Keller. Web-based models for natural lan-
guage processing.ACM Trans. Speech Lang. Process., 2(1):3,
2005.

[8] V. Liu and J. R. Curran. Web text corpus for natural language
processing. InEACL. The Association for Computer Linguis-
tics, 2006.


