
UNIVERSITY OF CINCINNATI

Date:___________________

I, ___,

hereby submit this work as part of the requirements for the degree of:

in:

It is entitled:

This work and its defense approved by:

Chair: _______________________________

11/26/2007

Sasthakumar Ramamurthy

Master of Science

Computer Science

Tracking Recurrent Concept Drift in Streaming data

using Ensemble Classifiers

Dr. Raj Bhatnagar

Dr. Anca Ralescu

Dr. Ali Minai

Tracking Recurrent Concept Drift in Streaming data

using Ensemble Classifiers

by

Sasthakumar Rammaurthy

Bachelor of Engineering Electrical and Electronics

Bharathiar University, Coimbatore

A Masters thesis submitted to the faculty of

University of Cincinnati

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

University of Cincinnati

November 2007

ABSTRACT

Streaming data may consist of multiple drifting concepts each having its own under-

lying data distribution. We present an ensemble learning based approach to handle

the data streams having multiple underlying modes. We build a global set of clas-

sifiers from sequential data chunks; ensembles are then selected from this global set

of classifiers, and new classifiers created if needed, to represent the current concept

in the stream. The system is capable of performing any-time classification and to

detect concept drift in the stream. In streaming data historic concepts are likely

to reappear so we dont delete any of the historic classifiers. Instead, we judiciously

select only pertinent classifiers from the global set while forming the ensemble set for

a classification task.

ii

ACKNOWLEDGMENTS

I express my heartfelt gratitude to Dr.Raj Bhatnagar, my advisor, for being a

constant source of motivation and guiding me through this thesis. I would also like to

thank Dr. Anca Ralescu and Dr.Ali Minai for their presence on my thesis committee

and providing guidance to improve my work.

I thank my parents and my brother Senthil kumar Ramamurthy for their un-

conditional love, support and motivation. I would like to thank my lab mates Ab-

hishek Sharma, Amit Sinha, Giridhar Tatavarty, Kalyan Shencottah and Shriram

Narayanaswamy for providing valuable suggestions and a wonderful environment to

work. I would also like to thank my friends Arun Prasath, Thiagarajan Arumugam

and Srivathsan Ranganathan for their motivation and making my stay at University

of Cincinnati a memorable one.

iv

Contents

Table of Contents v

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 2

1.3 Contribution . 4

1.4 Organization of the thesis . 4

2 Related Research 5

2.1 Decision Tree . 5

2.2 Single Tree approach . 6

2.3 Ensemble approach . 8

2.4 Option Tress . 9

3 Methodology 12

3.1 Ensemble based approach . 12

3.1.1 Maximum mean square error 13

v

3.1.2 Acceptance Factor . 14

3.2 Algorithm . 14

4 Experimental Results 19

4.1 Data Set . 19

4.2 Nursery Data Set . 20

4.2.1 Ensemble Approach . 20

4.2.2 Data Chunk Length . 22

4.2.3 Acceptance Factor . 23

4.2.4 Permitted Error . 24

4.2.5 Number of Classifiers built per concept drift 25

4.2.6 Ensemble Weight . 25

4.2.7 System Performance . 27

4.2.8 Classifier Utilization . 28

4.3 Car Data Set . 28

4.3.1 Ensemble Approach . 30

4.3.2 Data Chunk Length . 31

4.3.3 Acceptance Factor . 32

4.3.4 Permitted Error . 32

4.3.5 Number of Classifiers built per concept drift 33

4.3.6 Ensemble Weight . 34

4.3.7 System Performance . 34

4.3.8 Classifier Utilization . 36

5 Conclusion and Future work 38

5.1 Conclusion . 38

5.2 Future work . 38

vi

Bibliography 39

A Nursery Data Set 44

B Car Evaluation Data Set 46

vii

List of Figures

4.1 Ensemble Vs Single classifier . 22

4.2 Data Chunk Length Vs Performance 23

4.3 AcceptanceFactor Vs Performance 24

4.4 Effect of Permitted Error on Classification error and Number of classifiers built 25

4.5 Number of classifiers built per concept drift 26

4.6 Effect of Ensemble weights . 27

4.7 Performance of the system . 27

4.8 Concept 1 . 29

4.9 Concept 3 . 29

4.10 Concept 7 . 29

4.11 Concept 5 . 30

4.12 Ensemble Vs Single classifier . 30

4.13 Data Chunk Length Vs Performance 31

4.14 AcceptanceFactor Vs Performance 32

4.15 Effect of Permitted Error on Classification error and Number of classifiers built 33

4.16 Number of Classifiers built per concept drift 34

4.17 Effect of Ensemble Weight . 35

4.18 Performance of the system . 35

4.19 Concept 1 . 36

viii

4.20 Concept 2 . 37

4.21 Concept 7 . 37

4.22 Concept 5 . 37

ix

List of Tables

4.1 Data Set before shift . 21

4.2 Data Set After shift . 21

A.1 Nursery data Set Class Distribution 45

B.1 Car data Set Class Distribution 47

x

Chapter 1

Introduction

”The oft-quoted example of what data mining can achieve is the case of a large

US supermarket chain which discovered a strong association for many customers

between a brand of babies nappies (diapers) and a brand of beer. Most customers

who bought the nappies also bought the beer. The best hypothesisers in the world

would find it difficult to propose this combination but data mining showed it existed,

and the retail outlet was able to exploit it by moving the products closer together

on the shelves.”

in-The Financial Times of London (Feb. 7, 1996)

1.1 Introduction

Data mining is the process of extracting hidden and useful information from large

data repositories. The term data repository may refer to flat files, databases or

data streams. When retrieving information from a database, a pre-determined

query is issued to the database. But in the case of data mining, we often do not

know what we are looking for and hence, a query cannot be pre-determined. In the

1

corporate world this information can be used for customer profiling, targeted mar-

keting or to design store layout. In order to achieve this complex task, techniques

from statistics, artificial intelligence, machine learning and pattern recognition are

used to design data mining algorithms.

In this thesis we study mining streaming data. Data mining algorithms can

be a single pass or multi pass. In a single pass algorithm, the algorithm gets

only one chance to pass through the data. But in the multi pass, data is scanned

many times. Hence multi pass algorithms are more time consuming then single

pass. In data streams, the rate at which data flows in is very high. Volume

of the data flowing in is also very large to the extent that all the data cannot

be buffered. Owing to these constraints, a stream data mining algorithm should

parse the incoming data with as less time as possible. Since multi scan algorithm

are time consuming, they are not applicable for stream data mining. The primary

challenge in mining streaming data is the fact that algorithm has to be a single

pass. Our objective is to design a one pass algorithm that will remember historic

patterns.

1.2 Motivation

Streaming data environments are characterized by huge volumes of data flowing

through a computer system. Examples of such streaming data include telephone

call records, weather sensor data, credit card transaction data, surveillance video

streams, data sent by network routers, etc. Typically, we don’t have storage to

retain all the data and we must learn its important characteristics and use them

in future. In this environment, the data mining algorithm gets only one chance

to look at the data. Necessary information has to be retrieved from the data and

2

the data as such has to be moved to a secondary storage due to space constraint.

Machine learning approaches assume a static underlying data distribution but

this does not hold in streaming environments where data may span months and

years and the generating sources may undergo periodic changes. For example, a

customer’s purchasing practices can change due to a seasonal factor like weather,

economic factor like inflation or trend in the market.In general, the generating

sources may drift from one mode of operation to another. This type of change

in a system’s operating mode is known as concept drift. If there is a concept

drift in the data and a fixed classification system continues to do classification

then this system is bound to perform erroneously. So it is very important for the

classification system to trace this concept drift and evolve to learn, and also, use

the new concept.

In many streaming environments historical concepts can reoccur. Information

filtering techniques used to learn the news reading preferences of users [18] are

an example. News reading preference of a user may change with time. A user

can have different choices for mornings, evenings, weekdays, and weekends. In

addition a user might surf astrology articles in the beginning of the year and

financial articles at the beginning of each quarter. In general, different concepts

can occur due to cyclic influences like seasons of a year or non-cyclic factors like

inflation or market trend [10]. These distinct conditions can be termed as different

modes of operation giving rise to different concepts embedded in the data streams.

Many concepts in data streams are likely to reoccur. If a classification system

stores only the current mode’s concept, the system has to relearn every time a new

concept occurs. This significantly affects the performance of the system. Ideally,

a classification system for stream data mining should be capable of 1) learning

in one pass, 2) do any-time classification, 3) track the drift in the data over

3

time 4) remember historically learned concepts and 5) apply the best available

classification scheme for the incoming data.

1.3 Contribution

We present an ensemble learning based approach to handle the data streams hav-

ing multiple underlying modes. We build a global set of classifiers from sequential

data chunks. To represent a current concept in the stream we select an ensemble

set from this global set of classifiers. If the current set of classifiers are unable to

adequately classify the current concept, a new classifier is created and added to

the global set. This system is capable of performing any-time classification and to

detect concept drift in the stream.

1.4 Organization of the thesis

Chapter 1 gives a brief introduction of data mining and stream data mining. It

also describes the motivation of this thesis work. Chapter 2 discusses the relevant

work in stream data mining. Chapter 3 describes our methodology to address the

recurrent concepts in stream data mining. Chapter 4 discusses the experimental

results obtained by applying our algorithm on the Nursery and Car data set

derived from UCI repository [21]. Chapter 5 discusses conclusion, limitation and

future work.

4

Chapter 2

Related Research

Since all data are not available simultaneously in a streaming environment, an

incremental learning approach is used. Many researchers use a a decision tree

based classification system for addressing stream data mining.

2.1 Decision Tree

Decision tress is a supervised learning method. Given a training set, a decision tree

is constructed in which leafs carry a class label. Interior nodes in a decision tree

are called decision nodes. A decision node is assigned one of the input attributes

as its value. A decision node has as many children as there are possible values

for the input attribute and each child is assigned one of the possible values. A

decision node splits the incoming data to one of its children depending on the

value of node attribute. Leaf nodes are labeled as one of the possible classes. If

an input data point reaches a leaf marked with a class label Ca, the data point is

labeled as Class Ca

ID-3 [22] decision tree learning system is a top-down strategy and it searches

5

only a part of search space. In this top-down approach a decision tree is built

starting from the root. ID-3 is based on information theory. The attribute se-

lection at a node in ID-3 depends on the amount of information each attribute

provides towards distinguishing the data points. Information provided by each

attribute at a node is evaluated using information theory:

i =
∑

(piln(pi))

where pi is the probability that the data point belongs to class i. When this

information is subtracted from the information provided by the data point, re-

mainder is obtained. Remainder is an indication of how much more information

is required to classify the data point accurately. So to minimize the remainder

an input attribute which gives maximum information is selected at a node. One

problem in this approach is for continuous attributes. Consider a numerical at-

tribute age having possible values from 1-100. So if a decision node uses this

attribute as splitting attribute, this node will have 100 children. This can have a

very high memory and computational cost. C4.5 [15] extends domain of classifi-

cation from categorical to numerical ones. In addition to above splitting function,

other approaches like gini index [2], [19] is also used for decision tree construction.

Jin et. al. [14] address the problem of numerical attributes in streaming data.

In their Numerical Interval Pruning approach they divide the range of numerical

values into equal sized intervals. This largely decreases the number of children a

decision node can have.

2.2 Single Tree approach

Incremental learning can be seen from two different perspectives, namely, a) greedy

approaches and b) non-greedy approaches. Utgoff et. al. [27] and Kalles et. al.

6

[16] use greedy method to construct a tree with the available information. As

and when more data becomes available or as the concept in the data drifts, the

tree is restructured. Domingos et. al. propose a non-greedy approach, VFDT [4]

in which sufficient statistics about data is maintained at each node in a decision

tree. This is updated as and when data streams through. In this approach decision

tree is not restructured every time new data arrives. Alternatively, only when the

statistics at a node reaches a limit restructuring is performed. Since the tree is not

restructured for every data point, this approach minimizes the effect of ordering of

incoming data. In this work a single tree is maintained for the entire data. As this

does not take into consideration the drifting of concepts, CVDFT was developed

by Hulten et. al. [12] which gives more importance to newer data than the older

data. As in VFDT, sufficient statistics is maintained at each node. Periodically

a splitting test is performed for all the nodes. If a new test-attribute is chosen in

place of the older one, a subtree is grown for the new test-attribute. When the

new subtree starts performing better than the older one, the old one is dropped.

Since a single tree is grown, it takes time for the tree to evolve when a concept

drift takes place.

Fan et. al. [5] use a two phase approach to address drifting data streams

namely 1) class distribution replacement and 2) leaf node expansion. As stated

earlier the underlying concept in a streaming data might drift with time. When

such a drift happens, a leaf nodes labeling may no longer be correct and it can

start performing erroneously. In that case, if the error exceeds a threshold level,

probability at the leaf nodes are recalculated and leafs are relabeled with latest

class distribution (class distribution replacement). In case if the error is still higher

than the acceptable error, leaf node is converted to a decision node and new leaf

nodes are formed as its children and labeled appropriately (leaf node expansion).

7

2.3 Ensemble approach

Street et. al. use an ensemble approach in their streaming ensemble algorithm

(SEA) [25]. An ensemble of classifiers is built from sequential chunks of data and

classification is performed by majority voting. Size of the ensemble is kept fixed.

When a concept drift occurs in the data stream, older classifiers are dropped us-

ing aging criterion. This means a time stamp is maintained for each classifier and

when the threshold limit of classifiers is reached, the oldest classifier (with least

time stamp) is dropped to give space to new classifier. Hence SEA maintains only

classifiers pertaining to concepts that occurred in the recent past. When a historic

concept reoccurs, SEA relearns this concept as if it had never seen the concept

earlier. During this relearning phase, ensemble is dominated by classifiers irrele-

vant to the current concept and this significantly deteriorates the performance of

the system. Wang et. al. propose an algorithm for mining concept drift [28] in

which they use weighed ensembles to produce more accurate results. Although

this system produces more accurate representation of the current concept in the

stream, this system also relearns historic concepts as if it has never seen the con-

cept before. Since the system relearns from the scratch, this approach takes a

considerable time before adjusting to a sudden change in the concept. Our ap-

proach addresses this problem by remembering all the historic concepts. When

a historic concept reappears in the stream, we only reassemble the ensemble set

to represent the current concept correctly. This approach allows our system to

adjust to a sudden drift in concept.

In addition to above ensemble approach, other approaches like boosting and

bagging are also used for building ensembles[26]. In Bagging a data sample of

fixed size is selected from data set. A classifier is built for this sample and added

8

to the ensemble set. A new sample is selected from the same data set and another

classifier is built. This procedure is continued until the size of ensemble is reached.

Sampling is done randomly and hence some data points can be picked multiple

times and some points can be ignored. Breiman [1] used bagging and experi-

mentally shows that this approach improves classification accuracy significantly

compared to conventional tree building strategy. Bagging does not assign weights

to individual data points and there is an equal probability of selecting any data

point from the data set. In boosting individual data points are weighed and the

weights are changed after every sampling. In this approach more weight is given

for those points which are getting wrongly classified. So hard data points get more

weight and are more likely to get selected for next sample. This approach makes

sure that a classifier is built for hard data points which otherwise would have been

wrongly classified. After all the classifiers are formed, an ensemble approach is

used to classify the data. Freund et. al. [6] used boosting to improve accuracy of

the classification system.

Boosting and bagging do multiple scans of the dataset. There are a number

of multiple-scan classification methods for large databases such as Sprint [24],

RainForest [9], BOAT [8], etc. These approaches are not applicable for streaming

data because multiple scan is not possible in this environment.

2.4 Option Tress

Some work uses option trees as an alternate to decision trees. Buntine [3] intro-

duced option trees as a generalization of decision trees. Option trees allow option

nodes in addition to decision nodes. While a decision node allows only one split-

ting attribute at a node, an option node allows multiple splitting attributes in the

9

same nodes. Classification is done similar to decision trees. In addition, at each

option node, a rule is applied to combine the prediction of its children nodes.

Two important reasons for choosing an option trees over decision trees are

lookahead and stability. While building a decision tree in a top-down approach,

an attribute is selected solely depending on the information it provides to classify

the data point correctly at that node. This is a one step lookahead. This approach

would select an attribute that might perform well in isolation but there is no

guarantee that they will perform better as a combination with another attribute.

Instead of one step lookahead a two step or multiple step lookahead can be used.

In a single step approach, the gain achieved by using an input attribute xi at the

current node alone is considered for tree construction. In a two step approach

a pair of input attributes xi, xj is considered where xi is chosen as current node

attribute and xj is used in the next level of the tree construction. Murthy et. al.

[20] show that this multi-ply lookahead is computationally expensive in decision

tree. Option trees by nature have multi-ply lookahead capability

Second problem with the decision tree is its stability. A minor change in one

of the nodes close to the root will change the entire subtree below it. Option

trees solve this problem by providing a single unified structure. Kohavi et. al.

[17] shows experimentally that significant reduction in error can be achieved by

restricting two levels of option nodes at the top. If an option tree is used for

classifying stream data, this limitation of two levels at the top cannot be placed.

If this limitation is kept in stream data environment, it will not be possible to

represent multiple concepts. Both the above mentioned problem can be solved in

decision tree using ensemble approach.

Holmes et. al [11] uses option trees for mining data streams. A tree is built for

every data chunk. This tree is combined with a global model. At any point of time

10

only one global model is maintained. While this approach to maintain a single

global model and to merge individual classifiers to it, can be used for decision trees

also, it is computationally inefficient. Quinlan [23] shows that merging decision

tress is multiplicative. But Holmes et. al [11] shows that merging option trees is

additive. A single global model can represent multiple concepts. If one option trees

is used for representing a continuously drifting data streams, the tree becomes very

complex due to the fact that every decision node will become an option node.

In addition to being computationally intense it become very tough for human

interpretation.

Gama at. al. [7] present the Ultra Fast Forest of Trees (UFFT) for stream

data. For multi class problems, UFFT grows a binary tree for each pair of classes.

11

Chapter 3

Methodology

3.1 Ensemble based approach

We use a decision tree as the base classifier. Decision trees are constructed using

basic ideas of ID-3 algorithm [22]. Sometimes a system works in multiple modes,

each mode having a different data distribution. This is a typical of streaming

data. In this case individual data points do not give much information but a set

of consecutive data points or a chunk of data points gives definitive information.

This means that by analyzing a specific interval of the stream, information can

be inferred to determine the mode, and also to classify data points in the context

of this mode.

We represent a streaming data environment using an ensemble of classifiers

(decision trees). Each individual classifier for this committee is built from a rel-

atively small data chunk extracted from the sequential data. It has been shown

that a committee of classifier can perform better than an individual classifier. In-

deed, if individual classifiers are independent of each other, the ensemble behaves

even better [13]. We use this as one of the basic features of our approach.

12

A new classifier is built when the concepts in the datastream drift. In our

approach we don’t delete the historic classifiers, but store all the classifiers in a

global set. This is done so that we can reuse these classifiers to retrieve the historic

concepts, if they reoccur. If not for this, the system has to relearn a reoccurring

concept again and again. So the global set of classifiers, at any-time is likely to

contain classifiers built to represent concepts discovered so for. It is not necessary

for all the classifiers in the global set to classify the current stream correctly. If

the entire global set is used as an ensemble for classification, the system performs

erroneously, because irrelevant classifiers end up contributing to the classification

of data. So, only those classifiers which are pertinent to the current concept in

the data stream should be used for the purpose of classification.

3.1.1 Maximum mean square error

Our challenge is to select only relevant classifiers from the global set to form an

ensemble set, and to create a new classifier when none is found. We use a filter

which screens the existing classifiers and allows only relevant ones to participate in

an ensemble. To be selected, the classification error of a classifier on the immedi-

ately preceding data points in the stream is taken into account. Wang et. al. use

the error of a classifier that predicts randomly for this purpose [28]. A classifier

is said to predict randomly, if the probability of data point x being classified to a

class c depends solely on c’s class distribution in the current data chunk.

If there are c possible classes in the data, classification error of a classifier that

predict randomly is:

MaxMSE =
∑

c

P (c) ∗ (1− P (c))2

where P(c) = c’s class distribution. MaxMSE stands for maximum mean square

13

error. Wang et. al. have used MaxMSE as the filtering criterion [28]. All the

classifiers which perform better than a classifier predicting randomly (those pro-

ducing less error than MaxMSE) are included in the ensemble set. Intuitive basis

for this is that a classifier is performing poorly if its classification error is equal to

or greater than MaxMSE. If MaxMSE is kept as the absolute filtering criterion,

those classifiers which are minimally better than a classifier predicting randomly,

also participates in the ensemble set. These are poor classifiers and affects the

performance of the system.

3.1.2 Acceptance Factor

To overcome this problem, we use an AcceptanceFactor whose value is such that:

0 < AcceptanceFactor < 1

Instead of using MaxMSE as the ceiling to select a classifier from the global set,

a fraction of it, AcceptanceFactor times MaxMSE, is used as the upper bound.

Depending on the value of the AcceptanceFactor, classifiers which show minimal

improvement to MaxMSE are blocked from participating in the ensemble set. For

a low AcceptanceFactor, the product of AcceptanceFactor and MaxMSE will be

significantly less than MaxMSE. Since this product is used as the threshold for

the classifiers to participate in ensemble, a low AcceptanceFactor would mean that

only those classifiers which show significant improvement to MaxMSE participates

in the ensemble.

3.2 Algorithm

Our discussion is in two phases, Training and Testing. Here the assumption is

that there is an oracle available which on request labels the data correctly. The

14

cost of labeling using this oracle is very high.

Primary objective of the Training phase is to check whether the system already

has enough information to represent a current concept in the stream. If not, to

build a new classifier and add it to the system so that the system is capable

of doing correct classification. Input parameters for the Training phase are, 1)

permitted error and 2) classifier precision. After a data chunk arrives, the Training

phase constructs an ensemble of classifiers from global set using AcceptanceFactor

and MaxMSE. If this ensemble set performs satisfactorily, this means the system

already has the knowledge to evaluate the current concept in the stream. Here

the satisfactory performance means classification error is less than the permitted

error which is one of the input attributes.

If this ensemble formed does not perform satisfactorily, a new classifier is

added to the system. For a building a new classifier, (decision tree in our case), in

addition to the training data set, a classifier precision is given as input. Classifier

precision for a decision tree is usually expressed as a percentage of the input

dataset. A leaf node is not expanded if the number of data points reaching it

falls below this limit. For instance, consider a data set of size 1000 and classifier

precision of 3%. In this case, a leaf node is expanded to become a decision node

only when the number of data points reaching it is greater than 30 (3% of 1000).

This procedure makes sure that the decision tree is a generalization of the input

data and it does not memorize the input data.

Algorithm Ensemble Building

Input: Data stream with class labels available intermittently,

τ = Permitted error

15

α = Classifier Precision

Output: A set of classifiers, Global set G,

G= {C1, C2, C3,.., Cn }

Classification of Testing data

1. Global set ←G { };

2. Ensemble set ←E { };

Training

3. New Classifier Required ←true;

4. E ←{ };

5. Get data chunk T from input stream with class label

6. MaxMSE ←classification error for data set T using a classifier predicting

randomly

MaxMSE =
∑

c

P (c) ∗ (1− P (c))2

where P(c) = c’s class distribution.

7. for classifier Ci in G

8. CEi ←classification error for data set T using classifier Ci

9. if CEi < (AcceptanceFactor * MaxMSE)

10. E ←{E} Union { Ci }

11. Wi ←MaxMSE - CEi

12. endif

13. endfor

14. Ensemble-error ←Calculate Classification error using ensemble set E with

weights

15. if (Ensemble-error < τ)

16. New Classifier Required ←false;

17. GO TO Testing

16

18. endif

19. if (New Classifier Required = true)

20. Ci ←Build Classifier (Data Chunk T, Classifier Precision α)

21. G ←{G} Union {Ci }

22. GO TO Testing

23. endif

End Training

Testing

24. Classify the incoming stream using ensemble set E until the next set of labeled

data is available.

In line 5 of the Ensemble Building algorithm, data generated by the streaming

source is stored in a data buffer and when the buffer reaches a fixed number,

training data chunk size, data chunk T is formed.

For the above data chunk T, error produced by a classifier predicting randomly,

MaxMSE, is calculated in line 6. This value is used for classifier selection to form

the ensemble set and is considered as absolute maximum. Global set contains a

list of all the historical classifiers. In line 8, data chunk T is classified by each of

these classifiers and their performance is stored.

Performance of a classifier on the data chunk T is a measure of its capability

to represent the current concept in the stream. If the underlying distribution in

a stream had not changed, one or more of the classifiers in the global set would

classify the data correctly. On the other hand, if there was a new concept in the

data stream, none of the classifiers in the global set might evaluate the new data

chunk correctly. This means that a new classifier has to be added to the system.

17

This is the basis on which a new classifier is added to the global set.

In line 9 error of the individual classifier Ci is compared with the product of

AcceptanceFactor and MaxMSE. If Ci is less than the product, the ith classifier

qualifies to participate in the ensemble and it is added to the ensemble set in line

10. Depending on the performance of the classifier on the current input data, a

weight is assigned in step 11. More weight is assigned to classifiers which have

less classification error. In other words, weight is inversely proportional to the

error a classifier produces (Ci). From line 11 it can be seen that weight is the

difference between MaxMSE and CEi. A very good classifier would produce CEi

close to zero and it would get more weight. More weight means it has more say

in classifying a data in ensemble. A poorer classifier will have a larger CEi and

would be assigned less weight and hence has less say in the ensemble.

Error produced by the above formed ensemble, ensemble-error is evaluated

in line 14 and compared with permitted error in line 15. If ensemble error is

better than permitted error, the system has the adequate knowledge to classify

the current concept in the stream. Hence the control jumps to the Testing phase

where the above built ensemble is used for classification.

If ensemble set fails to perform better than permitted error, a new classifier is

built and added to the global set in line 20 and 21. A new classifier is built because

the system has not seen this concept historically. So this new classifier is inde-

pendent of all other classifiers already existing in the system. This independence

makes the ensemble set approach stronger.

Whenever labeled data is available, Training phase is run. At the end of

each Training phase an ensemble set is formed and this ensemble set is used for

evaluating the current stream in Testing phase. The Testing phase continues until

next set of labeled data arrives. At this point Training starts again.

18

Chapter 4

Experimental Results

4.1 Data Set

Two data sets from UCI repository [21] namely

1) Nursery Data Set

2) Car Data Set

has been used to demonstrate our approach.

Nursery data, a real life data set, contains data points belonging to 5 different

classes (Appendix A). Amongst them, there are only 2 records belonging to class

”recommend”. Since they are outliers, we remove these two data points and

hence it becomes a four-class problem. This data set contains 8 attributes besides

class label. W. Peng et. al. use this data set for a concept drift problem and

induce artificial drift in this data set [29]. Artificial concept drift is introduced by

changing the value of an attribute throughout the data set in a consistent way.

To achieve this an attribute value is shuffled, for example, an attribute x which

has n possible values is changed as x1 → x2 → ... → xn → x1. For instance,

Nursery data set has an attribute parents whose values are usual, pretentious and

19

great pret. Shuffling is achieved by changing all the tuples whose attribute value

for parents is usual to pretentious. Also all tuples with pretentious is changed to

great pret and great pret to usual. For instance three data tuples before the shift

is shown in the table 4.1 and after the shift is shown in the table 4.1.

While doing so, the class label is kept intact. In addition to using this, we

also shuffle the attributes in the opposite directions. But a particular attribute is

either rotated in clock wise or anti-clock wise direction and not in both directions.

We generate a data stream by repeating the nursery data set. In this stream, at

regular intervals one of the 8 attributes is chosen and shuffled Depending on the

attribute chosen, concept in the stream drifts mildly from the previous state or a

new concept appears.

Once the stream is formed, first set of experiments are run with the entire

stream. The next time for the same set of experiments, the stream starts at

an offset x from the previous stream starting position. This is repeated for five

iterations. The following experimental results are a consolidation of these five

runs.

4.2 Nursery Data Set

4.2.1 Ensemble Approach

A single classifier is unlikely to learn the entire data set because there are multiple

concepts present within the data set. But in order to observe the capability of

our ensemble approach, comparison is made between our approach and that of

building a single classifier for the entire data set. Training is done in three different

ways. In Method 1, a classifier is built for the entire data set. In the Method 2

a new classifier is built whenever a major concept drift takes place. There are

20

Table 4.1: Data Set before shift

S.No. Parents Has Nurse Form Children Housing Finance Social Health admission

1 usual proper complete 1 convenient convenient nonprob recommended recommend

2 pretentious proper complete 1 convenient convenient nonprob priority priority

3 great pret proper complete 1 convenient convenient nonprob priority priority

Table 4.2: Data Set After shift

S.No. Parents Has Nurse Form Children Housing Finance Social Health admission

1 pretentious proper complete 1 convenient convenient nonprob recommended recommend

2 great pret proper complete 1 convenient convenient nonprob priority priority

3 usual proper complete 1 convenient convenient nonprob priority priority

21

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Set

Cla
ss

ific
ati

on
 Er

ror

Method 1
Method 2
Method 3

Figure 4.1: Ensemble Vs Single classifier

minor drifts present within this major drift. Method 3 is our ensemble approach

where a classifier is built on a relatively smaller data chunk and classification is

done using an ensemble of classifiers rather then using a single classifier.

From Figure 4.1 it can be seen that Method 1 classifies almost all the data

points wrongly. This is because a single classifier cannot represent more than one

concept. Method 2 too performs poorly owing to the fact that it is not able to

capture internal drifts within a major drift. Method 3, our ensemble approach,

produces significantly less error. So, if a data contains multiple concepts, an

ensemble approach can represent this data much better than a single classifier.

4.2.2 Data Chunk Length

Each individual classifier in the global set is built from a datastream chunk of size

400. If large data chunks are used, internal drift in the data gets lost. At the same

time, if the data chunk size is too small, it does not get necessary information to

build a classifier. Figure 4.2 shows classification error (performance measure) of

the system for different data chunk sizes. Figure 2 shows that error is large for

both very large data chunk size and for very small data chunk.

22

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.05

0.075

0.1

0.125

0.15

Data Chunk legnth

Cla
ss

ific
ati

on
 Er

ror

Figure 4.2: Data Chunk Length Vs Performance

4.2.3 Acceptance Factor

Figure 4.3 shows how the systems performance varies with AcceptanceFactor. As

mentioned earlier, AcceptanceFactor takes a value between 0 and 1. A value

of zero means only those classifiers which are perfectly classifying the data will

participate in the ensemble and a value of one means all classifiers participate in

the ensemble. If this value is very high, many erroneous classifiers are included

in the system and the system would produce a poor performance. At the same

time, if it is too less, either none or very few classifiers qualify which makes the

ensemble set weak. Empirically we choose a value of 0.4 as AcceptanceFactor

for Nursery data set. For Nursery data set, performance improvement achieved

by using an AcceptanceFactor is very little. This is an indication that the set

of classifiers produced for each distinct concept are independent of each other.

So if there are three distinct concepts A,B and C, while selecting an ensemble

for classifying concept A, classifiers belonging to concept B and C do not even

compete to enter the ensemble. In other words, classifiers not directly built for

this concept, produce error that is larger than MaxMSE. So the significance of

AcceptanceFactor is not very evident.

23

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Acceptance Factor

Cla
ss

ific
ati

on
 er

ror

Figure 4.3: AcceptanceFactor Vs Performance

4.2.4 Permitted Error

Permitted error is inversely proportional to the drift tracking capability of the

system. If it is very high, system is capable of tolerating a high value of error and

hence the system does not sense minor drifts in the data. If this value is very low,

the system cannot tolerate much error and unnecessarily new classifiers are added

to the system for even modeling the noise. Figure 4.4 shows how classification

error and number of classifiers built by the system vary with Permitted error.

Although the system has very small classification error for low Permitted Error, it

builds too many classifiers. This is an indication that the system does not learn the

data stream but memorizes it. On the other hand, for larger values of Permitted

error, greater than 0.15, number of classifiers is small, but the classification error

is poor. This is because the system is not capable of tracking drifts in the concept.

Using Figure 4.4, Permitted error for Nursery dataset is empirically chosen as 0.05

(5% error).

24

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

Cl
as

sif
ica

tio
n E

rro
r

Permitted Error

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

Nu
mb

er
 of

 C
las

sif
ier

s B
uil

t

Number of classifiers

Classification Error

Figure 4.4: Effect of Permitted Error on Classification error and Number of clas-

sifiers built

4.2.5 Number of Classifiers built per concept drift

A vital feature of our systems is its ability to remember historic concepts and to

use them when a concept reoccurs. Some concepts repeat, some are very close

to an earlier concept and some are distinctly different from earlier concepts. In

Figure 4.5, the X-axis represents the number of data points in the stream. Y-axis

represents the number of classifiers built by the system for each concept drift. It

can be observed from the Figure 4.5 that the number of classifiers built by the

system for each concept drift is not the same. When a new concept appears in

the stream, a relatively large number of classifiers are built; but when a concept

mildly drifts from the existing concept or a concept reoccurs, fewer classifiers are

built. This shows that our system does not relearn if a historic concept reappears.

4.2.6 Ensemble Weight

When building an ensemble set each classifier is assigned a distinct weight de-

pending on its ability to classify the current concept. This gives more importance

to good classifiers than the poor ones. Ensemble set is built with and without

25

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Stream data Points (x 1000)

Nu
mb

er
of

Cla
ss

ifie
rs

bu
ilt

Figure 4.5: Number of classifiers built per concept drift

weights and the performance of the system is analyzed in Figure 4.6. Classifica-

tion error without weight is indicated by dotted line and with weight is indicated

by solid line. Clearly classification error is lower when classifiers are weighted.

The performance improvement achieved by using weights is not very significant

for Nursery data set.

We have generated synthetic streaming data from Nursery dataset. In this

synthetic environment if a concept drift happens from concept A to concept B, this

drift is sudden. But in real world environments like weather, drift from phase A

to B might be gradual. For this intermediate phase, many intermediate classifiers

will be built. Nature of these classifiers will be such that they can classify both

concept A and B with some level of confidence but they cannot accurately classify

either of them. Ensemble weights are very useful in this case to justly punish poor

classifiers and rely more on good classifiers. Since out synthetic data does not have

these mildly drifting property, effect of ensemble weight is not very evident.

26

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Data Set

Cla
ss

ific
ati

on
 Er

ror

Without Weight
With Weight

Figure 4.6: Effect of Ensemble weights

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream Data Points (x 1000)

Cla
ss

ific
ati

on
 er

ror

Figure 4.7: Performance of the system

4.2.7 System Performance

Performance of the system, (Classification error), produced by the system in a con-

tinuously concept drifting environment is represented in Figure 4.7. This stream

includes both major and minor drift and also sudden concept drift. Figure 4.7

clearly shows that the performance of the system is consistent throughout the

stream. This is an indication that the system is capable of evolving to learn new

concepts and to perform consistently in environments with sudden concept drift.

27

4.2.8 Classifier Utilization

As mentioned earlier, global set contains classifiers built to represent multiple con-

cepts. Not all the classifiers participate in the classification process at a time. If

there are distinctly different concepts, the set of classifiers used for the classifica-

tion of these two concepts might be mutually exclusive. During classification, each

concept is represented by a set of classifiers from the global set. If two concepts are

totally different, the set of classifiers representing them is distinct and they don’t

share any classifier. But if one concept is a minor drift from another concept then

the two classifier set has many common classifiers. We show this by analyzing the

utilization of global set during different concepts. This is shown in Figures 4.8,

4.9, 4.10 and 4.11. The classifiers in the global set are numbered sequentially and

the number of times each classifier is used during the classification of a particular

concept is represented as utilization. Concept 1, 3, and 5 are distinctly different

concepts. From the Figures 4.8, 4.9 and 4.11 it can be seen that the classifiers

numbered 0-12 participate for classifying concept 1, 13-54 for concept 4 and 55-

114 for concept 5. So each of these concepts do not share classifiers amongst them.

Concept 7 and concept 3 are closely related concepts. So it can be seen that, to

represent concept 7 a lot classifiers used for concept 3 are used.

4.3 Car Data Set

Streaming data is generated from Car data set similar to Nursery data. Car data

set is a four class problem (Appendix B).

28

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Classifier ID

Ut
ilis

ati
on

Figure 4.8: Concept 1

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Classifier ID

Ut
ilis

ati
on

Figure 4.9: Concept 3

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Classifier ID

Ut
ilis

ati
on

Figure 4.10: Concept 7

29

0 20 40 60 80 100 120
0

20

40

60

80

100

120

Classifier ID

Ut
ilis

ati
on

Figure 4.11: Concept 5

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Data Set

Cla
ss

ific
ati

on
 Er

ror

Method 1
Method 2
Method 3

Figure 4.12: Ensemble Vs Single classifier

4.3.1 Ensemble Approach

Performance improvement achieved by using an ensemble of classifiers rather than

a single classifier can be seen from the Car data set also. As stated earlier a single

classifier cannot learn the entire stream because there are multiple concepts within

the stream. As with Nursery data set training is performed in three different ways.

A single classifier for entire data set in Method 1, a classifier per major concept

drift in Method 2 and our approach, namely ensemble of classifiers, in Method 3.

From Figure 4.12 it can be seen that single classifier approach, Method 1,

30

0 200 400 600 800 1000 1200
0

0.05

0.1

0.15

0.2

0.25

0.3

Data Chunk Length

Cla
ss

ific
ati

on
 Er

ror

Figure 4.13: Data Chunk Length Vs Performance

almost classifies all the data points wrongly. Method 2 too performs poorly owing

to the fact that it is not able to capture internal drifts with a major drift. Method

3, our ensemble approach, produces significantly less error. This reemphasizes the

point that an ensemble of classifiers perform better than a single classifier, if the

data contains multiple concepts.

4.3.2 Data Chunk Length

As stated earlier the stream is divided into data chunks of equal size for the

purpose training and testing. Effect of data chunk size on the performance of

the classification system is more evident the Car data set. If the data chunk size

is large the classification system can not capture minor drifts inside the stream.

This can be observed from the Figure 4.13. As the data chunks size increases the

performance of the system degrades. At the same time data chunk size cannot be

very small also, classifier cannot generalize the information, otherwise it memorizes

the stream rather than learning it. For Car data set an optimal size of 75 is chosen

as data chunk length empirically.

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

Acceptance Factor

Cla
ss

ific
ati

on
 Er

ror

Figure 4.14: AcceptanceFactor Vs Performance

4.3.3 Acceptance Factor

The effect of AcceptanceFactor was not very evident in Nursery data set. By

changing the value of AcceptanceFactor performance of the system on Nursery

data set was not considerable. But for Car data set performance of the system

can be highly improved by choosing a correct AcceptanceFactor. From the Figure

4.14 it can be seen that the system performs poorly for low acceptance factors.

This is an indication that the ensemble is not formed with enough number of

qualifying classifiers. We choose a value of 0.6 empirically for this data set. It can

also be seen that the system starts performing poorly as the AcceptanceFactor is

increased beyond a limit. This is because irrelevant classifiers start participating

in the ensemble when the AcceptanceFactor is very high.

4.3.4 Permitted Error

Effect of Permitted error on the system’s performance is similar for the Car data

set as the Nursery data set. Permitted error controls both the classification error

and the number of classifiers built by the system. From the Figure 4.15 it can

be observed that for a low Permitted error the systems performs well in terms

32

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.05

0.1

0.15

0.2

Cl
as

sif
ica

tio
n E

rro
r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

Permitted Error

Nu
mb

er
of

Cl
as

sif
ier

s

Classification error

Number of Classifiers1

Figure 4.15: Effect of Permitted Error on Classification error and Number of

classifiers built

of classification error. At the same time, there are too many classifiers built.

Because even for a small drift in the data a new classifier is added to the system.

On the other extreme when the permitted error is high, the systems error tracking

capability is severely hampered. The reason is even a major drift is not detected

by the system. Empirically a value of 0.06 is chosen as Permitted error for Car

data set.

4.3.5 Number of Classifiers built per concept drift

Streaming data is characterized by recurring concepts. Our primary aim is to

track these recurrent concepts without relearning from scratch. This means that

the system should be capable of coping with a minor drift in the stream by adding

only few extra classifiers to the global list. At the same time, when confronted

with a new concept, the system must be capable of learning the new concept.

This can be observed from the Figure 4.16. Whenever there is a minor drift in

the stream, only a few classifiers are built, whereas when a new concept appears

on the stream, the system builds as many classifiers as required to capture this

33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

Stream data points (x 1000)

Nu
mb

er
of

Cla
ss

ifie
rs

bu
ilt

Figure 4.16: Number of Classifiers built per concept drift

new concept.

4.3.6 Ensemble Weight

As with Nursery data set, the classification systems performance is improved

by using a weight to individual classifiers participating in the ensemble. Figure

4.17 depicts the performance of the system with and without using weights for

classifiers. When all the classifiers inside the ensemble are given a uniform weight

the system has a comparatively poorer performance which is represented by the

dotted line in the Figure 4.17. When individual classifier are given a weight

according to their performance of test data set, the system performs relatively

better which is represented by the solid line.

4.3.7 System Performance

Performance of the classification system at regular intervals in a streaming envi-

ronment is an indication of the systems capabilities to cope up with new concepts

in the stream. Systems performance on the Car dataset is depicted in the Figure

4.18. Systems performance stays consistently around 7% error.

34

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Data Set

Cla
ss

ific
ati

on
 Er

ror

Without Weight
With Weight

Figure 4.17: Effect of Ensemble Weight

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stream data points (x 1000)

Cla
ss

ific
ati

on
 Er

ror

Figure 4.18: Performance of the system

35

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Classifier ID

Ut
ilis

ati
on

Figure 4.19: Concept 1

4.3.8 Classifier Utilization

Classifier utilization in the Car data set indicates the relationship between differ-

ent concepts occurring in the stream. If two concepts are distinctly different then

the classifiers they use from the global set might be mutually exclusive. Concepts

1,2 and 5 are different concepts in the Car data set and this is evident from the

Figure 4.19,4.20 and 4.22. Since they are different from each other there is not

much resemblance in the set of the classifiers they use. But the concepts 7 is a mi-

nor drift from concept 2. Hence the classifiers utilization pattern for the concepts

2 and 7 are very identical. this can be observed from 4.20 and 4.21

36

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Classifier ID

Ut
ilis

ati
on

Figure 4.20: Concept 2

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Classifier ID

Ut
ilis

ati
on

Figure 4.21: Concept 7

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Classifier ID

Ut
ilis

ati
on

Figure 4.22: Concept 5

37

Chapter 5

Conclusion and Future work

5.1 Conclusion

We have proposed a classifier system for stream data mining using ensemble ap-

proach. This system is capable of performing any-time classification, learning in

one scan and detecting drift in the underlying concept. The important issue of

detecting recurring concept drifts has been solved by us for the situations similar

to the dataset used. When there is a recurrent concept drift our system uses

much of the already learnt information rather than learning it anew. Success of

our approach has been demonstrated with the experimental results with the test

dataset.

5.2 Future work

It is assumed that it is always possible to retrieve class label of the incoming data.

In a domain like weather prediction, this assumption does not hold good. Even

in the domains where this assumption holds well, it is too expensive to label the

38

data. This is the case with credit card fraud detection system. It is actually

viable to do a deep investigation of a cards transaction to check whether the card

is fraudulently used. But in practical condition it is very costly to do this check

for every card. Hence, a mechanism has to be derived to determine the goodness

of a classifier without labeled data.

39

Bibliography

[1] L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and

regression trees. The Wadsworth & Brooks/Cole, 1984.

[3] W. Buntine. Learning classification trees. Statistics and Computing, 2(2):63–73,

1993.

[4] P. Domingos and G. Hulten. Mining high-speed data streams. In KDD ’00: Pro-

ceedings of the sixth ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 71–80, New York, NY, USA, 2000. ACM.

[5] W. Fan, Y. Huang, and P. S. Yu. Decision tree evolution using limited number of

labeled data items from drifting data streams. In ICDM ’04: Proceedings of the

Fourth IEEE International Conference on Data Mining (ICDM’04), pages 379–

382, Washington, DC, USA, 2004. IEEE Computer Society.

[6] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. In EuroCOLT ’95: Proceedings of the Second

European Conference on Computational Learning Theory, pages 23–37, London,

UK, 1995. Springer-Verlag.

[7] J. Gama, P. Medas, and P. Rodrigues. Learning decision trees from dynamic

data streams. In SAC ’05: Proceedings of the 2005 ACM symposium on Applied

computing, pages 573–577, New York, USA, 2005. ACM.

[8] J. Gehrke, V. Ganti, R. Ramakrishnan, and W. Loh. Boat - optimistic decision

tree construction. In SIGMOD ’99: Proceedings of the 1999 ACM SIGMOD inter-

40

national conference on Management of data, pages 169–180, New York, NY, USA,

1999. ACM.

[9] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast

decision tree construction of large datasets. Data Mining Knowledgse Discovery,

4(2-3):127–162, 2000.

[10] M. B. Harries, C. Sammut, and K. Horn. Extracting hidden context. Machine

Learning, 32(2):101–126, 1998.

[11] G. Holmes, R. Kirkby, and B. Pfahringer. Mining data streams using option trees.

In First International Workshop on Knowledge Discovery in Data Streams, 2004.

[12] G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In

KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 97–106, New York, NY, USA, 2001.

ACM.

[13] R. A. Jacobs. Methods for combining experts’ probability assessments. Neural

Computation, 7(5):867–888, 1995.

[14] R. Jin and G. Agrawal. Efficient decision tree construction on streaming data.

In KDD ’03: Proceedings of the ninth ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 571–576, New York, NY, USA, 2003.

ACM.

[15] J.Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 1993.

[16] D. Kalles and T. Morris. Efficient incremental induction of decision trees. Machine

Learning, 24(3):231–242, 1996.

[17] R. Kohavi and C. Kunz. Option decision trees with majority votes. In ICML

’97: Proceedings of the Fourteenth International Conference on Machine Learning,

pages 161–169, San Francisco, CA, USA, 1997. Morgan Kaufmann Publishers Inc.

41

[18] K. Lang. NewsWeeder: learning to filter netnews. In Proceedings of the 12th

International Conference on Machine Learning, pages 331–339. Morgan Kaufmann

publishers Inc.: San Mateo, CA, USA, 1995.

[19] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast scalable classifier for data min-

ing. In EDBT ’96: Proceedings of the 5th International Conference on Extending

Database Technology, pages 18–32, London, UK, 1996. Springer-Verlag.

[20] S. Murthy and S. Salzberg. Lookahead and pathology in decision tree induction.

In Proceedings of the 14th International Joint Conference on Artificial Intelligence,

pages 1025–1031. Morgan Kaufmann, 1995.

[21] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine

learning databases, 1998.

[22] J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106.

[23] J. Quinlan. Miniboosting decision trees. submitted to jair, 1998.

[24] J. C. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel classifier for

data mining. In VLDB ’96: Proceedings of the 22th International Conference on

Very Large Data Bases, pages 544–555, San Francisco, CA, USA, 1996. Morgan

Kaufmann Publishers Inc.

[25] W. N. Street and Y. Kim. A streaming ensemble algorithm (sea) for large-scale

classification. In KDD ’01: Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 377–382, New York,

NY, USA, 2001. ACM Press.

[26] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining, (First Edition).

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[27] P. E. Utgoff, N. C. Berkman, and J. A. Clouse. Decision tree induction based on

efficient tree restructuring. Machine Learning, 29(1):5–44, 1997.

[28] H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams

using ensemble classifiers. In KDD ’03: Proceedings of the ninth ACM SIGKDD

42

international conference on Knowledge discovery and data mining, pages 226–235,

New York, NY, USA, 2003. ACM Press.

[29] P. Wang, H. Wang, X. Wu, W. Wang, and B. Shi. On reducing classifier granularity

in mining concept-drifting data streams. In ICDM ’05: Proceedings of the Fifth

IEEE International Conference on Data Mining, pages 474–481, Washington, DC,

USA, 2005. IEEE Computer Society.

43

Appendix A

Nursery Data Set

The purpose of the Nursery dataset is to determine whether a application for nurs-

ery school admission application will be accepted or not. There are eight inputs

namely (1) Parents occupation, (2) Availability of Nurse (3) Family structure (4)

Number of children’s in the family (5) Housing condition (6) Financial standing

(7) Social condition and (8) Health condition. Output class has five different

values indicating the likely hood of the child being admitted.

Historically Nursery dataset was developed to rank applications for nursery

school. During 1980s there was excessive enrollment to the schools in Ljubljana,

Slovenia. Applicants who were rejected for admission wanted to know the reason

for their rejection. An objective reason could be given to those applicants who

got rejected by building a decision model on the nursery data set.

The input attributed and their possible values are as follows:

1) parents usual, pretentious, great pret

2) has nurs proper, less proper, improper, critical, very crit

3) form complete, completed, incomplete, foster

4) children 1, 2, 3, more

44

Table A.1: Nursery data Set Class Distribution

Class Number of instances Percentage of the total %

not recom 4320 33.333

recommend 2 0.015

very recom 328 2.531

priority 4266 32.917

spec prior 4044 31.204

5) housing convenient, less conv, critical

6) finance convenient, inconv

7) social non-prob, slightly prob, problematic

8) health recommended, priority, not recom

As stated above the final class is an indication of how likely the child will get

admission. There are five different values. Their class distribution is as in the

table A

The ’recommend’ class has only 2 data point in a data set of size 12960. We

remove these two points as outliers before generating streaming data.

45

Appendix B

Car Evaluation Data Set

Car Evaluation data set is used to evaluate a car depending on various input

parameters. There are six input attributes namely buying price, maintenance cost,

number of doors, capacity (persons), luggage boot space and safety. Depending

on these six values, car is evaluated to be unaccommodating, accommodating,

good and very good.

Possible value of the input attributes are as follows:

1) buying v-high, high, med, low

2) maint v-high, high, med, low

3) doors 2, 3, 4, 5-more

4) persons 2, 4, more

5) lug boot small, med, big

6) safety low, med, high

There are 1728 tuples and the class distribution among the possible four classes

is shown in the table B

46

Table B.1: Car data Set Class Distribution

Class Number of instances Percentage of the total %

unacc 1210 70.023

acc 384 22.222

good 69 3.993

v-good 65 3.762

47

	Sastha - Thesis Draft.pdf
	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Motivation
	Contribution
	Organization of the thesis

	Related Research
	Decision Tree
	Single Tree approach
	Ensemble approach
	Option Tress

	Methodology
	 Ensemble based approach
	Maximum mean square error
	Acceptance Factor

	Algorithm

	Experimental Results
	Data Set
	 Nursery Data Set
	Ensemble Approach
	Data Chunk Length
	Acceptance Factor
	Permitted Error
	Number of Classifiers built per concept drift
	Ensemble Weight
	System Performance
	Classifier Utilization

	 Car Data Set
	Ensemble Approach
	Data Chunk Length
	Acceptance Factor
	Permitted Error
	Number of Classifiers built per concept drift
	Ensemble Weight
	System Performance
	Classifier Utilization

	Conclusion and Future work
	Conclusion
	Future work

	Bibliography
	Nursery Data Set
	Car Evaluation Data Set

