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DNA microarrays provide rich profiles that are used in cancer prediction considering the gene expression levels across a collection
of related samples. Support Vector Machines (SVM) have been applied to the classification of cancer samples with encouraging
results. However, they rely on Euclidean distances that fail to reflect accurately the proximities among sample profiles. Then,
non-Euclidean dissimilarities provide additional information that should be considered to reduce the misclassification errors.
In this paper, we incorporate in the ν-SVM algorithm a linear combination of non-Euclidean dissimilarities. The weights of the
combination are learnt in a (Hyper Reproducing Kernel Hilbert Space) HRKHS using a Semidefinite Programming algorithm. This
approach allows us to incorporate a smoothing term that penalizes the complexity of the family of distances and avoids overfitting.
The experimental results suggest that the method proposed helps to reduce the misclassification errors in several human cancer
problems.
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1. Introduction

DNA Microarray technology provides us a way to monitor
the expression levels of thousands of genes simultaneously
across a collection of related samples. This technology has
been applied particularly to the prediction of different types
of human cancer with encouraging results [1].

Support Vector Machines (SVM) [2] are powerful
machine learning techniques that have been applied to
the classification of cancer samples [3]. However, the
categorization of different cancer types remains a difficult
problem for classical SVM algorithms. In particular, the
SVM is based on Euclidean distances that fail to reflect
accurately the proximities among the sample profiles [4].
Non-Euclidean dissimilarities misclassify frequently different
subsets of patterns because each one reflects complementary
features of the data. Therefore, they should be integrated in
order to reduce the fraction of patterns misclassified by the
base dissimilarities.

In this paper, we introduce a framework to learn a
linear combination of non-Euclidean dissimilarities that

reflect better the proximities among the sample profiles.
Each dissimilarity is embedded in a feature space using
the Empirical Kernel Map [5, 6]. After that, learning the
dissimilarity is equivalent to optimize the weights of the
linear combination of kernels. Several approaches have been
proposed to this aim. In [7, 8] the kernel is learnt optimizing
an error function that maximizes the alignment between the
input kernel and an idealized kernel. However, this error
function is not related to the misclassification error and is
prone to overfitting. To avoid this problem, [9] learns the
kernel by optimizing an error function derived from the
Statistical Learning Theory. This approach includes a term to
penalize the complexity of the family of kernels considered.
This algorithm is not able to incorporate infinite families of
kernels and does not overcome the overfitting of the data.

In this paper, the combination of distances is learnt
in a (Hyper Reproducing Kernel Hilbert Space) HRKHS
following the approach of hyperkernels proposed in [10].
This formalism exhibits a strong theoretical foundation and
is less sensitive to overfitting. Moreover, it allow us to work
with infinite families of distances. The algorithm has been
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applied to the prediction of different kinds of human cancer.
The experimental results suggest that the combination of
dissimilarities in a Hyper Reproducing Kernel Hilbert Space
improves the accuracy of classifiers based on a single
distance, particularly for nonlinear problems. Besides, our
approach outperforms the Lanckriet formalism specially for
multicategory problems and is more robust to overfitting.

This paper is organized as follows. Section 2 introduces
the algorithm proposed, the material and the methods
employed. Section 3 illustrates the performance of the
algorithm in the challenging problem of gene expression
data analysis. Finally, Section 4 gets conclusions and outlines
future research trends.

2. Material and Methods

2.1. Distances for Gene Expression Data Analysis. An impor-
tant step in the design of a classifier is the choice of a
proper dissimilarity that reflects the proximities among the
objects. However, the choice of a good dissimilarity is not
an easy task. Each measure reflects different features of
the data and the classifiers induced by the dissimilarities
misclassify frequently a different set of patterns. In this
section, we comment shortly the main differences among
several dissimilarities proposed to evaluate the proximity
between biological samples considering their gene expression
profiles. For a deeper description and definitions see [11].

Let x = [x1, . . . , xd] be the vectorial representation of
a sample where xi is the expression level of gene i. The
Euclidean distance evaluates if the gene expression levels
differ significantly across different samples:

deuclid
(

x, y
) =

√
√
√√
√

d∑

i=1

(xi − yi)
2. (1)

An interesting alternative is the cosine dissimilarity. This
measure will become small when the ratio between the gene
expression levels is similar for the two samples considered.
It differs significantly from the Euclidean distance when the
data is not normalized by the L2 norm:

dcosine
(

x, y
) = 1− xTy

‖x‖∥∥y
∥∥ . (2)

The correlation measure evaluates if the expression level of
genes change similarly in both samples. Correlation-based
measures tend to group together samples whose expression
levels are linearly related. The correlation differs significantly
from the cosine if the means of the sample profiles are not
zero. This measure is more sensitive to outliers:
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where x and y are the means of the gene expression profiles.

The Spearman rank dissimilarity is less sensitive to
outliers because it computes a correlation between the ranks
of the gene expression levels:
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where x
′
i = rank(xi) and y

′
j = rank(y j).

An alternative measure that helps to overcome the
problem of outliers is the Kendall-τ index which is related to
the Mutual Information probabilistic measure [11]:

dkendall
(

x, y
) = 1−

∑d
i=1

∑d
j=1Cxij − Cyij

d(d − 1)
, (5)

where Cxij = sign(xi − xj) and Cyij = sign(yi − yj).
Finally, the dissimilarities have been transformed using

the inverse multiquadratic kernel because this transforma-
tion helps to discover certain properties of the underlying
structure of the data [12, 13]. The inverse multiquadratic
transformation is based on the inverse multiquadratic kernel
defined as follows:

k
(

x, y
) = 1

√∥
∥x − y

∥
∥2 + c2

, (6)

where c is a smoothing parameter. Considering that ‖x − y‖
is the Euclidean distance, (6) can be rewritten in terms of a
dissimilarity as follows:

k
(

x, y
) = 1

√
d2
i j + c2

. (7)

The above nonlinear transformation gives more weight to
small dissimilarities, particularly when c becomes small.

2.2. ν-Support Vector Machines. Support Vector Machines
[2] are powerful classifiers that are able to deal with high
dimensional and noisy data keeping a high generalization
ability. They have been widely applied in cancer classification
using gene expression profiles [1, 14]. In this paper, we will
focus on the ν-Support Vector Machines (SVM). The ν-
SVM is a reparametrization of the classical C-SVM [2] that
allows to interpret the regularization parameter in terms of
the number of support vectors and margin errors. This pro-
perty helps to control the complexity of the approximating
functions in an intuitive way. This feature is desirable for
the application we are dealing with because the sample size
is frequently small and the resulting classifiers are prone to
overfitting.

Let {(xi, yi)}ni=1 be the training set codified in Rd. We
assume that each xi belongs to one of the two classes labeled
by yi ∈ {−1, 1}. The SVM algorithm looks for the linear
hyperplane f (x; w) = wTx + b that maximizes the margin
γ = 2/‖w‖2. γ determines the generalization ability of the
SVM. The slack variables ξi allow to consider classification
errors and are defined as ξi = max{0, 1− yi f (xi)}.
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For the ν-SVM, the hyperplane that minimizes the pre-
diction error is obtained solving the following optimization
problem [2]:

min
w,{ξi},ρ

1
2
‖w‖2 − νρ +

1
m

∑

i

ξi

s.t. yi(〈w, xi〉 + b) ≥ ρ − ξi, i = 1, . . . ,m,

ξi ≥ 0, ρ ≥ 0 i = 1, . . . ,m,

(8)

where ν is an upper bound on the fraction of margin errors
and a lower bound on the number of support vectors.
Therefore, this parameter controls the complexity of the
approximating functions.

The optimization problem can be solved efficiently in the
dual space and the discriminant function can be expressed
exclusively in terms of scalar products:

f (x) =
∑

αi>0

αi yi〈x, xi〉 + b, (9)

where αi are the Lagrange multipliers in the dual optimiza-
tion problem. The ν-SVM algorithm can be easily extended
to the nonlinear case substituting the scalar products by
a Mercer kernel [2]. Besides, non-Euclidean dissimilarities
can be incorporated into the ν-SVM via the kernel of
dissimilarities [5].

Finally, several approaches have been proposed in the
literature to extend the SVM to deal with multiple classes.
In this paper, we have followed the one-against-one (OVO)
strategy. Let k be the number of classes, in this approach
k(k − 1)/2 binary classifiers are trained and the appropriate
class is found by a voting scheme. This strategy compares
favorably with more sophisticated methods and it is more
efficient computationally than the one-against-rest (OVR)
approach [15].

2.3. Empirical Kernel Map. The Empirical Kernel Map allows
us to incorporate non-Euclidean dissimilarities into the SVM
algorithm using the kernel trick [5, 13].

Let d : X × X → R be a dissimilarity and R =
{p1, . . . , pn} a subset of representatives drawn from the
training set. Define the mapping φ : F → Rn as

φ(z) = D(z,R) = [d(z, p1
)
,d
(
z, p2

)
, . . . ,d

(
z, pn

)]
. (10)

This mapping defines a dissimilarity space where feature i is
given by d(·, pi).

The set of representatives R determines the dimensio-
nality of the feature space. The choice of R is equivalent to
select a subset of features in the dissimilarity space. Due to
the small number of samples in our application, we have
considered the whole training set as representatives. Notice
that it has been suggested in literature [13] that for small
samples reducing the set of representatives does not help to
improve the classifier performance.

2.4. Learning a Linear Combination of Dissimilarities in
an HRKHS. In order to learn a linear combination of
non-Euclidean dissimilarities, we follow the approach of

Hyperkernels developed by [10]. To this aim, each distance
is embedded in an RKHS via the Empirical Kernel Map
presented in Section 2.3. Next, a regularized quality func-
tional is introduced that incorporates an l2-penalty over
the complexity of the family of distances considered. The
solution to this regularized quality functional is searched in
a Hyper Reproducing Kernel Hilbert Space. This allows to
minimize the quality functional using an SDP approach.

Let Xtrain = {x1, x2, . . . , xm} and Ytrain = {y1, y2, . . . , yn}
be a finite sample of training patterns where yi ∈ {−1, +1}.
Let K be a family of semidefinite positive kernels. Our goal is
to learn a kernel of dissimilarities k ∈ K that represents the
combination of dissimilarities and minimizes the following
empirical quality functional:
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f ,Xtrain,Ytrain

) = 1
m

m∑
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xi, yi, f (xi)

)
+
λ

2

∥∥ f
∥∥2

H ,

(11)

where l is a loss function, ‖‖H is the L2 norm defined in a
reproducing kernel Hilbert space, and λ is a regularization
parameter that controls the balance between training error
and the generalization ability.

By virtue of the representer theorem [2], we know that
(11) can be written as a kernel expansion:

Qemp = min
α, k

⎡

⎣ 1
m

m∑

i=1

l
(
xi, yi, [Kα]i

)
+
λ

2
αTKα

⎤

⎦. (12)

However, if the family of kernels K is complex enough it is
possible to find a kernel that achieves zero error overfitting
the data. To avoid this problem, we introduce a term that
penalizes the kernel complexity in an HRKHS. A rigorous
definition of the HRKHS is provided in the appendix:

Qreg(k,X ,Y) = Qemp(k,X ,Y) +
λQ
2
‖k‖2

H , (13)

where ‖‖H is the L2 norm defined in the Hyper Reproducing
Kernel Hilbert space generated by the hyperkernel k. λQ is a
regularization parameter that controls the complexity of the
resulting kernel.

The following theorem allows us to write the solution to
the minimization of this regularized quality functional as a
linear combination of hyperkernels in an HRKHS.

Theorem 1 (Representer theorem for Hyper-RKHS [10]).
Let X, Y be the combined training and test set, then each

minimizer k ∈ H of the regularized quality functional
Qreg(k,X ,Y) admits a representation of the form

k(x, x′) =
m∑

i, j=1

βi jk
((

xi, xj
)

, (x, x′)
)

, (14)

for all x, x′ ∈ X , where βi j ∈ R, for each 1 ≤ i, j ≤ m.

However, we are only interested in solutions that give rise
to positive semidefinite kernels. The following condition over
the hyperkernels [10] allows us to guarantee that the solution
is a positive semidefinite kernel.
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Property 1. Given a hyperkernel k with elements such that for
any fixed x ∈ X , the function k(xp, xq) = k(x, (xp, xq)), with
xp, xq ∈X, is a positive semidefinite kernel, and βi j ≥ 0 for all
i, j = 1, . . . ,m, then the kernel

k
(
xp, xq

)
=

m∑

i, j=1

βi jk
(
xi, xj , xp, xq

)
(15)

is positive semidefinite.

Now, we address the problem of combining a finite
set of dissimilarities. As we mentioned in Section 2.3, each
dissimilarity can be represented by a kernel using the
Empirical Kernel Map. Next, the hyperkernel is defined as

k(x, x′) =
n∑

i=1

ciki(x)ki(x′), (16)

where each ki is a positive semidefinite kernel of dissimilari-
ties and ci is a constant ≥0.

Now, we show that k is a valid hyperkernel. First, k
is a kernel because it can be written as a dot product
〈Φ(x),Φ(x′)〉 where

Φ(x) = (
√
c1 k1(x),

√
c2 k2(x), . . . ,

√
cn kn(x)). (17)

Next, the resulting kernel (15) is positive semidefinite
because for all x, k(x, (xp, xq)) is a positive semidefinite kernel
and βi j can be constrained to be ≥0. Besides, the linear
combination of kernels is a kernel and therefore is positive
semidefinite. Notice that k(x, (xp, xq)) is positive semidefinite
if ci ≥ 0 and ki are pointwise positive for training data. Both
RBF and multiquadratic kernels verify this condition.

Finally, we show that the resulting kernel is a linear
combination of the original ki. Substituting the expression
of the hyperkernel (16) in (15), the kernel is written as

k
(
xp, xq

)
=

m∑

i, j=1

βi j

n∑

l=1

clkl
(
xi, xj

)
kl
(
xp, xq

)
. (18)

Now the kernel can be written as a linear combination of base
kernels:

k
(
xp, xq

)
=

n∑

l=1

⎡

⎣cl

m∑

i, j=1

βi jkl
(
xi, xj

)
⎤

⎦kl
(
xp, xq

)
. (19)

Therefore, the above kernel introduces into the ν-SVM a
linear combination of base dissimilarities represented by kl
with coefficients γl = cl

∑m
i, j=1βi jkl(xi, xj).

The previous approach can be extended to an infinite
family of distances. In this case, the space that generates
the kernel is infinite dimensional. Therefore, in order to
work in this space, it is necessary to define a hyperkernel
and to optimize it using an HRKHS. Let k be a kernel of
dissimilarities. The hyperkernel is defined as follows [10]:

k(x, x′) =
∞∑

i=0

ci(k(x)k(x′))i, (20)

where ci ≥ 0 and i = 0, . . . ,∞. In this case, the nonlinear
transformation to feature space is infinite dimensional.
Particularly, we are considering all powers of the original
kernels which is equivalent to transform nonlinearly the
original dissimilarities:

Φ(x) =
(√

(c1)k(x),
√

(c2)k2(x), . . . ,
√

(cn)kn(x)
)

, (21)

where n is the dimensionality of the space which is infinite
in this case. As we mentioned in Section 2.1, nonlinear
transformations of a given dissimilarity provide additional
information that may help to improve the classifier perfor-
mance.

As for the finite family, it can be easily shown that k
is a valid hyperkernel provided that the kernels considered
are pointwise positive. The Inverse Multiquadratic kernel
satisfies this condition. Next, we derive the hyperkernel
expression for the multiquadratic kernel.

Proposition 1 (see [Harmonic Hyperkernel]). Suppose k is a
kernel with range [0, 1] and ci = (1−λh)λih, i ∈ N, 0 < λh < 1.
Then, computing the infinite sum in (20), one has the following
expression for the harmonic hyperkernel:

k(x, x′) = (1− λh)
∞∑

i=0

(λhk(x)k(x′))i = 1− λh
1− λhk(x)k(x′)

,

(22)

λh is a regularization term that controls the complexity of the
resulting kernel. Particularly, larger values for λh give more
weight to strongly nonlinear kernels while smaller values give
coverage for wider kernels.

In this paper one has considered the inverse multiquadratic
kernel defined in (6). Substituting in (22), one gets the inverse
multiquadratic hyperkernel:

k(x, x′) = 1− λh

1− λh
((
‖x − x′‖2 + c2

)(
‖x′′ − x′′′‖2 + c2

))−1/2 ,

(23)

where x = (x, x′) and x′ = (x′′, x′′′).

2.5. ν-SVM in an HRKHS. In this section, we detail how
to learn the kernel for a ν-Support Vector Machine in an
HRKHS. First, we will introduce the optimization problem
and next, we will explain shortly how to solve it using an SDP
approach.

We start some notation that is used in the ν-SVM
algorithm. For p, q, r ∈ Rn, n ∈ N let r = p ◦ q be defined
as element by element multiplication, ri = pi × qi. The
pseudoinverse of a matrix K is denoted by K†. Define the
hyperkernel Gram matrix K by Kijpq = k((xi, xj), (xp, xq)),

the kernel matrix K = reshape (Kβ) (reshaping an m2 by 1
vector, Kβ, to an m×m matrix), Y = diag(y) (a matrix with
y on the diagonal and zero otherwise), G(β) = YKY (the
dependence on β is made explicit), and 1 is a vector of ones.

The ν-SVM considered in this paper uses an l1 soft mar-
gin, where l(xi, yi, f (xi)) = max(0, 1 − yi f (xi)). This error
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is less sensitive to outliers which are convenient features for
microarray datasets. Let ξi be the slack variables that allow for
errors in the training set. Substituting in (13) Qemp by the one
optimized by ν-SVM (8) the regularized quality functional in
an HRKHS can be written as

min
k∈H

min
w∈Hk

1
m

m∑

i=1

ξi +
1
2
‖w‖2

H − νρ +
λQ
2
‖k‖2

H

s.t. yi f (xi) ≥ ρ− ξi, i = 1, . . . ,m,

ξi ≥ 0 i = 1, . . . ,m,

(24)

where ν is the regularization parameter that achieves a
balance between training error and the complexity of the
approximating functions and λQ is a parameter that penalizes
the complexity of the family of kernels considered. The
minimization of the previous equation leads to the following
SDP optimization problem [10].

min
β,γ,η,ξ,χ

1
2
t1 − χν +

1
m
ξT1 +

λQ
2
t2 (25)

s.t. χ ≥ 0, η ≥ 0, ξ ≥ 0, β ≥ 0, (26)
∥
∥∥K1/2β

∥
∥∥ ≤ t2, 1Tβ = 1, (27)

⎡

⎣
G
(
β
)

z

zT t1

⎤

⎦ � 0, (28)

where z = γy + χ1 + η − ξ
The value of α which optimizes the corresponding

Lagrange function is G(β)†z, and the classification function,
f = sign(K(α ◦ y)− boffset), is given by

f = sign
(
KG(β)†

(
y ◦ z)− γ

)
, (29)

K is the hyperkernel defined in Section 2.4 which represents
the combination of dissimilarities considered. Finally, the
algorithm proposed can be easily extended to deal with
multiple classes via a one-against-one approach (OVO).
This strategy is simple, more efficient computationally
than the OVR, and compares well with more sophisticated
multicategory SVM methods [15].

2.6. Implementation. The optimization problem (25) were
solved using SeDuMi 1.1R3 [16] and YALMIP [17] SDP
optimization packages running under MATLAB.

As in the SDP problem there are m2 coefficients βi j ,
the computational complexity is high. However, it can be
significantly reduced if the Hyperkernel {k((xi, xj), ·) | 1 ≤
i, j ≤ m2} is approximated by a small fraction of terms, p

m2 for a given error. In particular, we have chosen an m ×
p truncated lower triangular matrix G which approximate
the hyperkernel matrix to an error δ = 10−6 using the
incomplete Cholesky factorization method [18].

2.7. Datasets and Preprocessing. The gene expression datasets
considered in this paper correspond to several human

Table 1: Features of the different cancer datasets

Clases Samples Genes Var/Samp. Priors %

Lymphoma DLBCL 2 77 6817 88 75.3

Lymphoma
MLBCL/DLBCL

2 210 44928 213 84

Breast cancer LN 2 49 7129 145 51

Medulloblastoma 2 60 7129 119 65

Breast cancer B 3 49 1213 24.7 52

DLBCL survival C 4 58 3795 65.4 27

DLBCL survival D 4 129 3795 29.4 38

cancer problems and exhibit different features as shown
in Table 1. We have considered both, binary and multi-
category problems with a broad range of signal to noise
ratio (Var/Samp.), different number of samples, and vary-
ing priors for the larger category. All the datasets are
available from the Broad Institute of MIT and Harvard
http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi/. Next
we detail the features and preprocessing applied to each
dataset.

The first dataset was obtained from 77 patients with
(diffuse large B-cell lymphoma) DLBCL (58 samples) or FL
(follicular lymphoma) (19 samples) and they were subjected
to transcriptional profiling using oligonucleotide Affymetrix
gene chip hu68000 containing probes for 6817 genes [19].
The second dataset consists of frozen tumors specimens
from newly diagnosed, previously untreated MLBCL patients
(34 samples) and DLBCL patients (176 samples). They
were hybridized to Affymetrix hgu133b gene chip containing
probes for 44000 genes [20]. In both cases the raw intensities
have been normalized using the rma algorithm [21] available
from Bioconductor package [11]. The third problem we
address concerns the clinically important issue of metastatic
spread of the tumor. The determination of the extent of
lymph node involvement in primary breast cancer is the
single most important risk factor in disease outcome and
here the analysis compares primary cancers that have not
spread beyond the breast to ones that have metastasized to
axillary lymph nodes at the time of diagnosis. We identified
tumors as “reported negative” (24) when no positive lymph
nodes were discovered and “reported positive” (25) for
tumors with at least three identifiably positive nodes [22].
All assays used the human HuGeneFL Genechip microarray
containing probes for 7129 genes. The fourth dataset [23]
address the clinical challenge concerning medulloblastoma
due to the variable response of patients to therapy. Whereas
some patients are cured by chemotherapy and radiation,
others have progressive disease. The dataset consists of 60
samples containing 39 medulloblastoma survivors and 21
treatment failures. Samples were hybridized to Affymetrix
HuGeneFL arrays containing 5920 known genes and 897
expressed sequence tags.

All the datasets have been standarized subtracting the
median and dividing by the Inter-quantile range. The
rescaling were performed based only on the training set to
avoid bias.
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Regarding the identification of multiple classes of cancer
we have considered three different datasets. The first one
consists of 49 samples of Breast Cancer generated using 1-
channel oligonucleotide Affymetrix HuGeneFl [1]. The sec-
ond and third datasets consist of 58 and a129 samples from
Diffuse large B-cell lymphoma with survival data. Fourth
different subclasses can be identified. Data preparatory steps
have been performed by the authors of the primary study [1].
The 10% oligonucleotides with smaller Interquantile Range
were filtered to remove genes with expression level constant
across samples.

2.8. Performance Evaluation. In order to assure an honest
evaluation of all the classifiers we have performed a double
loop of crossvalidation [15]. The outer loop is based on
stratified tenfold cross-validation that iteratively splits the
data in ten sets, one for testing and the others for training.
The inner loop perform stratified ninefold cross-validation
over the training set and is used to estimate the optimal
parameters avoiding overfitting. The stratified variant of
cross-validation keeps the same proportion of patterns for
each class in training and test sets. This is necessary in our
problem because the class proportions are not equal. Finally,
the error measure considered to evaluate the classifiers has
been accuracy. This metric computes the proportion of
samples misclassified. The accuracy is easy to interpret and
allows us to compare with the results obtained by previously
published studies.

2.9. Parameters for the Classification Algorithm. The para-
meters for the ν-SVM and for the classifiers based on a
linear combination of dissimilarities have been set up by a
nested stratified tenfold crossvalidation procedure [15]. This
method avoids the overfitting as is described in Section 2.8
and takes into account the asymmetric distribution of class
priors.

For the ν-SVM we have considered both, linear and
inverse multiquadratic kernels. The optimal parameters have
been obtained by a grid search strategy over the following set
of values: ν = {0.1, 0.2, 0.3, 0.4, 0.5} and σ = {d/2,d, 2d},
where d denotes the dimensionality of the input space.

Additionally, for the finite family of distances ci = 1/M
where M is the number of dissimilarities considered, and
λQ = 1 because the misclassification errors are hardly sen-
sitive to the regularization parameter that controls the kernel
complexity. Finally, for the infinite family of dissimilarities,
the regularization parameter λh in the Harmonic hyperkernel
(22) has been set up to 0.6 which gives an adequate coverage
of various kernel widths. Smaller values emphasizes only
wide kernels. All the base kernel of dissimilarities have been
normalized so that all ones have the same scale.

Regarding the Lanckriet [9] formalism that allows to
combine a finite set of dissimilarities, several values for
the regularization parameter C have been tried, C =
{0.1, 1, 10, 100, 1000}. A grid search strategy has been applied
to determine the best values for both, the kernel parameters
and the regularization parameter. The kernel matrices have

Table 2: Accuracy for the ν-SVM using a linear combination of
non-Euclidean dissimilarities in an HRKHS. The ν-SVM based on
the best distance and coordinates and the Lanckriet formalism have
been taken as a reference.

Technique Limphoma Limphoma
cell B

Breast
LN

Brain

ν-SVM (coordinates) 6.66% 7.14% 8.16% 16.6%

ν-SVM (best distance) 6.66% 5.71% 8.16% 13.3%

ν-SVM (nonlinear
kernel)

6.25% 5.71% 8.16% 11.6%

Lanckriet (finite
family)

5% 7.62% 8.16% 11.67%

Finite family of
distances

5% 7.14% 10% 10%

Infinite family of
distances

5% 5.71% 8% 8.33%

been normalized by the trace as recommended in the original
paper.

2.10. Gene Selection. Gene selection can improve signifi-
cantly the classifier performance [24]. Therefore, we have
evaluated the classifiers for the following subsets of genes
{280, 146, 101, 56, 34}. The ν-SVM is robust against noise
and is able to deal with high dimensional data. However,
the empirical evidence suggests that considering a larger
subset of genes or even the whole set of genes increases the
misclassification errors.

The genes are ranked according to the ratio of between-
group to within-group sums of squares defined in [25]:

BW
(
j
) =

∑
i

∑
kI
(
yi = k

)(
x(k)
· j − x· j

)2

∑
i

∑
kI
(
yi = k

)(
xi j − x(k)

· j
)2 , (30)

where x(k)
· j and x· j denote “respectively” the average expres-

sion level of gene j for class k and the overall average
expression level of gene j across all samples, yi denotes the
class of sample i, and I(·) is the indicator function. Next, the
top ranked genes are chosen. This feature selection method is
simple but compares well with more sophisticated methods
[24]. Finally, the ranking of genes has been carried out
considering only the training set to avoid bias. Therefore,
feature selection is repeated in each iteration of cross-
validation.

3. Results and Analysis

The algorithms proposed have been applied to the identifica-
tion of several cancer human samples using microarray gene
expression data.

First, we address several binary categorization problems.
Table 2 reports the accuracy for the two combination

approaches proposed in this paper. The first one considers
the finite set of dissimilarities introduced in Section 2.1.
The second one considers an infinite family of distances
obtained by transforming nonlinearly the base dissimilarities
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Table 3: Accuracy for the ν-SVM using a linear combination of
non-Euclidean dissimilarities in an HRKHS. The ν-SVM based on
the best distance, the classical ν-SVM, and the Lanckriet formalism
have been taken as a reference.

Technique Breast B DLBCL C DLBCL D

ν-SVM (Coordinates) 10.20% 6.89% 12.96%

ν-SVM (Best Distance) 8.6% 6.89% 14.81%

ν-SVM (Nonlinear kernel) 8.16% 6.89% 12.96%

Lanckriet (finite family) 8% 10.3% 25.2%

Infinite family of
distances

6% 5.33% 16%

to feature space. We have compared with the ν-SVM based
on the best distance (linear and nonlinear kernel) and
the classical ν-SVM. The performance for the Lanckriet
formalism [9] that allow us to incorporate a finite linear
combination of dissimilarities is also reported.

Before computing the kernel of dissimilarities, all the
distances have been transformed using the multiquadratic
kernel introduced in Section 2.1. This nonlinear transforma-
tion helps to improve the accuracy for all the techniques
evaluated. From the analysis of Table 2, the following
conclusions can be drawn.

(i) The ν-SVM based on a finite set of distances improves
the ν-SVM based on the best dissimilarity for brain
prognosis and Lymphoma datasets. The error is not
reduced for Lymphoma cell B and Breast LN. This
may be explained because the ratio (var/samp.) in
Table 1 suggests that both datasets are quite noisy
and nonlinear. The combination of a finite set of
dissimilarities is not able to improve the separation
between classes and increases slightly the overfitting
of the data. Similarly, our algorithm helps to improve
the SVM based on coordinates, particularly for the
previous problems. We also report that working
directly from a dissimilarity matrix may help to
reduce the misclassification errors.

(ii) The infinite family of distances outperforms the ν-
SVM based on the best distance disregarding the ker-
nel considered for all the datasets. The improvement
is more relevant in brain cancer prognosis. Brain
cancer prognosis is a complex problem according
to the original study [23] and the nonlinear trans-
formations of the dissimilarities help to reduce the
misclassification errors. Besides, the infinite family
improves the accuracy of the finite family of distances
particularly for lymphoma cell B and Breast LN. This
suggests that both datasets are nonlinear.

(iii) The Lanckriet formalism and the finite family of
dissimilarities perform similarly. However, the infi-
nite family of distances outperforms the Lanckriet
formalism particularly for brain and Lymphoma cell
B which are more complex problems.

(iv) The best distance depends on the dataset considered.

Next we move to the categorization of multiple cancer
types.

Table 3 compares the proposed algorithms with ν-SVM
based on the best distance (linear and nonlinear kernel)
and the classical ν-SVM. The accuracy for the Lanckriet
formalism has also been reported. Our approach considers
an infinite family of distances obtained by transforming
nonlinearly the base dissimilarities to feature space.

Before computing the kernel of dissimilarities, all the
distances have been transformed using the multiquadratic
kernel introduced in Section 2.1. From the analysis of
Table 3, the following conclusions can be drawn.

(i) The combination of non-Euclidean dissimilarities
helps to improve the SVM based on the best dissi-
milarity disregarding the kernel considered for the
two first datasets. The error is slightly larger for the
third dataset which may suggest that the problem is
linear.

(ii) Our algorithm improves the SVM based on coor-
dinates. The experimental results suggest that the
nonlinear transformations of the dissimilarities help
to increase the separation among classes.

(iii) The Hyperkernel classifier outperforms the Lanckriet
formalism for multicategory problems. As the num-
ber of classes growths the number of samples per class
comes down and the Lanckriet formalism seems to be
less robust to overfitting.

Finally, notice that our algorithm allow us to work with
applications in with only a dissimilarity is defined. Moreover,
we avoid the complex task of choosing a dissimilarity that
reflects properly the proximities among the sample profiles.

4. Conclusions

In this paper, we propose two methods to incorporate
in the ν-SVM algorithm a linear combination of non-
Euclidean dissimilarities. The family of distances is learnt
in a (Hyper Reproducing Kernel Hilbert Space) HRKHS
using a Semidefinite Programming approach. A penalty
term has been added to avoid the overfitting of the data.
The algorithm has been applied to the classification of
complex cancer human samples. The experimental results
suggest that the combination of dissimilarities in a Hyper
Reproducing Kernel Hilbert Space improves the accuracy
of classifiers based on a single distance particularly for
nonlinear problems. Besides, this approach outperforms the
Lanckriet formalism specially for multi-category problems
and is more robust to overfitting. Future research trends will
focus on learning the combination of dissimilarities for other
classifiers such as k-NN.

Appendix

In this section we define rigorously the Hyper-Reproducing
Kernel Hilbert Spaces. First, we define a Reproducing Kernel
Hilbert Space.
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Definition 1 (see [Reproducing Kernel Hilbert Space]). Let
X be a nonempty set and H be a Hilbert space of functions
f : X → R. Let 〈·, ·〉 be a dot product in H which induces

a norm as ‖ f ‖ =
√
〈 f , f 〉. H is called an RKHS if there is a

function k : X×X with the following properties:

(i) k has the reproducing property 〈 f , k(x, ·)〉 = f (x)
for all f ∈H , x ∈X;

(ii) k spans H , that is, H = span{k(x, ·) | x ∈X}, where
X is the completion of the set X;

(iii) k is symmetric, that is, k(x, y) = k(y, x).

Next, we introduce the Hyper Reproducing Kernel
Hilbert Space.

Definition 2 (see [Hyper-Reproducing Kernel Hilbert
Space]). Let X be a nonempty set and X = X × X
be the Cartesian product. Let H be the Hilbert space of
functions k : X → R with a dot product 〈·, ·〉 and a norm
‖k‖ = √

(〈k, k〉). H is a Hyper Reproducing Kernel Hilbert
Space if there is a hyperkernel k : X × X → R with the
following properties:

(i) k has the reproducing property 〈k, k(x, ·)〉 = k(x) for
all k ∈H ;

(ii) k spans H = span{k(x, ·) | x ∈ X};
(iii) k(x, y, s, t) = k(y, x, s, t) for all x, y, s, t ∈X.
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[4] Á. Blanco, M. Martı́n-Merino, and J. De Las Rivas, “Com-
bining dissimilarity based classifiers for cancer prediction
using gene expression profiles,” BMC Bioinformatics, vol. 8,
supplement 8, article S3, pp. 1–2, 2007.

[5] K. Tsuda, “Support vector classifier with asymmetric kernel
function,” in Proceedings of the 7th European Symposium on
Artificial Neural Networks (ESANN ’99), pp. 183–188, Bruges,
Belgium, April 1999.

[6] B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W. Stafford
Noble, “A kernel approach for learning from almost orthog-
onal patterns,” in Proceedings of the 13th European Conference
on Machine Learning (ECML ’02), vol. 2430 of Lecture Notes

in Computer Science, pp. 511–528, Springer, Helsinki, Finland,
August 2002.

[7] N. Cristianini, J. Kandola, J. Elisseeff, and A. Shawe-Taylor,
“On the kernel target alignment,” Journal of Machine Learning
Research, vol. 1, pp. 1–31, 2002.

[8] J. Kandola, J. Shawe-Taylor, and N. Cristianini, “Optimizing
kernel alignment over combinations of kernels,” Tech. Rep.
NC-TR-02-121, NeuroCOLT, London, UK, 2002.

[9] G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and
M. I. Jordan, “Learning the kernel matrix with semidefinite
programming,” Journal of Machine Learning Research, vol. 5,
pp. 27–72, 2004.

[10] C. S. Ong, A. J. Smola, and R. C. Williamson, “Learning
the kernel with hyperkernels,” Journal of Machine Learning
Research, vol. 6, pp. 1043–1071, 2005.

[11] R. Gentleman, V. Carey, W. Huber, R. Irizarry, and S. Dudoit,
Bioinformatics and Computational Biology Solutions Using R
and Bioconductor, Springer, Berlin, Germany, 2006.

[12] G. Wu, E. Y. Chang, and N. Panda, “Formulating distance
functions via the kernel trick,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 703–709, Chicago, Ill, USA, August 2005.

[13] E. Pekalska, P. Paclick, and R. Duin, “A generalized kernel
approach to dissimilarity-based classification,” Journal of
Machine Learning Research, vol. 2, pp. 175–211, 2001.

[14] S. Ramaswamy, P. Tamayo, R. Rifkin, et al., “Multiclass
cancer diagnosis using tumor gene expression signatures,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 98, no. 26, pp. 15149–15154, 2001.

[15] A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin,
and S. Levy, “A comprehensive evaluation of multicategory
classification methods for microarray gene expression cancer
diagnosis,” Bioinformatics, vol. 21, no. 5, pp. 631–643, 2005.

[16] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones,” Optimization Methods
and Software, vol. 11-12, no. 1–4, pp. 625–653, 1999.
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