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Abstract
Distance-preserving dimension reduction techniques can fail to separate elements of different
classes when the neighborhood structure does not carry sufficient class information. We introduce
a new visual technique, K-epsilon diagrams, to analyze dataset topological structure and to assess
whether intra-class and inter-class neighborhoods can be distinguished.

We propose a force feature space data transform that emphasizes similarities between same-class
points and enhances class separability. We show that the force feature space transform combined
with distance-preserving dimension reduction produces better visualizations than dimension
reduction alone. When used for classification, force feature spaces improve performance of K-
nearest neighbor classifiers. Furthermore, the quality of force feature space transformations can be
assessed using K-epsilon diagrams.

1. Introduction
A common approach for analysis and visualization of high-dimensional datasets is to reduce
the data through dimension reduction and feature extraction while preserving as much of the
underlying information as possible. The goal is to find a two-dimensional or three-
dimensional representation of the original dataset that separates different classes into
visually intuitive groups while preserving the initial structure. Low-dimensional projection
techniques have been widely applied in the past decade; see Saul [1] and van der Maaten [2]
for reviews and comparison of the existing methods. The algorithms attempt to preserve
either global or local data similarities by maximizing different optimization criteria.

Though the emphasis has been on distance and neighborhood preservation, little work has
been done in analysis of topological neighborhood structures, their preservation in the
projection space, and their effect on classification. In this paper we introduce a visual
method for analysis of these topological neighborhood structures in high-dimensional data
called K-epsilon diagrams. These diagrams show the changes in the distribution of point
density in local neighborhoods, with respect to the neighborhood radius. Datasets with
excessively unstructured neighborhood topologies are usually deemed poor candidates for
visualization through low-dimensional projections. By analyzing changes in neighborhood
topologies between the original space and the projection space, we can estimate how well
the low-dimensional projection preserves the point relations.

A desirable trait of a low-dimensional projection is intuitive visual separation of points
belonging to different classes. The degree of visual class separation is often used as a
measure of projection quality. In this paper we compare neighborhood topologies between
pairs of points in the same class with pairs of points in different classes. If these datasets
have a substantial number of points in different classes that are close by, projection
techniques that rely on distance and point neighborhood preservation will fail to visually
separate classes, because there is not enough class information contained in distances. In
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these cases additional information needs to be included in the computation of the low-
dimensional projection to properly separate classes of data.

We propose a technique that overcomes this topological obstacle by incorporating class
information into the data representation. The dataset is lifted to a feature space and points in
the feature space are rearranged using a force directed approach. The new representation,
called the force feature space (FFS), is designed to emphasize similarities between points in
the same class and to enhance class separability. We show that the FFS transform combined
with a distance-preserving low-dimensional projection significantly increases the quality of
the resulting visualizations. When used for classification, force feature space improves
performance of K-nearest neighbor classifiers.

1.1. Related work
This section presents related work in fields of dimension reduction and projection quality,
force directed placement (FDP), and semi-supervised clustering.

Commonly-used linear dimension reduction methods include principal component analysis
(PCA), multidimensional scaling (MDS) and independent component analysis (ICA). The
most popular nonlinear methods include isometric feature mapping (ISOMAP), locally
linear embedding (LLE), Laplacian Eigenmaps (LE), maximum variance unfolding (MVU)
and kernel PCA. Recently, Saul et al. [1] showed that these seemingly unrelated methods are
all rooted in spectral decomposition of various inner-product or distance based matrices.
Ham et al. [3] show that ISOMAP, LLE and LE can be viewed as special cases of kernel
PCA using data-dependent kernel matrices instead of predefined kernel functions. Xiao et al.
[4] show that ISOMAP, LE and LLE are strongly related to either the primal or the dual
MVU problem. Lespinats et al. [5] propose data driven high-dimensional scaling (DD-HDS)
algorithm, specifically designed to accommodate specific distance distribution of high-
dimensional data and minimize both tears and false overlaps in projections. Venna and
Kaski [6] propose a method called local multidimensional scaling that optimizes
trustworthiness and continuity of projections. A detailed comparative review with
applications to real and artificial data is given by [2]. The authors conclude that though
nonlinear methods work better on artificial data, PCA performs as well if not better on real
datasets.

Force directed placement (FDP) for graph visualization was first introduced by Eades in [7].
The technique models graph connections as springs and realigns positions of nodes based on
forces applied to each node. The FDP idea has recently been used by Lespinats et al. [5] to
compute the low-dimensional projection that minimizes tearing of neighborhood
connections. Omote et al. [8] apply a modification of the FDP method to draw intersecting
clustered graphs of complex structures. Noack [9] develop edge repulsion and energy based
clustering to find dense subgraphs using normalizing cuts. Wittkop et al. [10] introduce the
FORCE clustering algorithm for detecting groups of functionally related proteins. The
attraction and repulsion forces are calculated using a thresholded similarity function.
Santamaria et al. [11] develop a bicluster visualization tool that uses force directed graph
placement for cluster placement and visualization.

2. The K-epsilon diagram
This section introduces the K-epsilon diagram, a new visual approach for analysis of dataset
topology. The K-epsilon diagram intuitively represents dataset topology and provides
feedback on how the projection affects both small and large distances, as well as feedback
on the preservation of global neighborhood structure.
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Special cases of the K-epsilon diagram, called the intra-class and inter-class K-epsilon
diagrams, are used to evaluate whether the dataset topology carries enough class information
to produce a quality low-dimensional projection.

2.1. Definition
A K-epsilon diagram plots the two-dimensional histogram of distances of nearest neighbors.

Let X = {x1, …, xn} be a dataset in a D-dimensional space and let d(xi, xj) be the scaled
distance between point i and point j. All distances are scaled to be in the interval [0, 1].
Furthermore, let Ni(k) be the set of k nearest neighbors of point i. We define εi(k) as the
minimum radius of the ε-ball centered at point i that encapsulates all points in Ni(k):

Let b be the number of histogram bins in the K-epsilon diagram. The computed ε-ball radius
is discretized to a bin number by:

The K-epsilon diagram of the dataset X is defined as the cumulative two-dimensional
histogram H(pi(k), k) where i = 1, …, n and k = 1, …, n−1. For each value of i and k, the
corresponding histogram bin count H(pi(k), k) is increased by one. The vertical axis of the
K-epsilon diagram denotes the nearest neighbor number k, while the horizontal axis denotes
the radius of the smallest epsilon ball containing that neighbor pi(k).

The number of bins, b, affects the granularity of the diagram. A small value of b produces a
coarse diagram, while a large number of bins results in a histogram that has too few points
per bin. The diagrams shown in this paper have b = 100. A darker color indicates more
elements in the corresponding bin. The epsilon values are in the interval [0, 1]. The nearest
neighbor number ranges from 1 to the number of points minus 1.

2.1.1. Intra- and inter-class K-epsilon diagrams—To compare the topological
structure of points in the same class with that of points in different classes, we compute the
intra-class and inter-class K-epsilon diagrams.

Only neighborhood relations and distances between pairs of points belonging to the same
class are considered when computing the intra-class diagram. The algorithm in section 2.1 is
modified so that only points that are in the same class as the point i are included in the Ni(k)
neighborhood. The maximum value of k depends on the number of points belonging to the
corresponding class.

For the inter-class diagrams, only neighborhood relations and distances between pairs of
points belonging to different classes are considered. In this case, only points that are not in
the same class as the point i are included in the Ni(k) neighborhood.

2.2. Analysis of dataset topology
We illustrate the analysis of topological neighborhood structure with the Fisher iris dataset,
available from the UCI repository [12]. The dataset contains three classes, 50 instances each.
The dataset is four-dimensional, with each dimension measuring a single property of the
plant. The data is preprocessed by normalizing each dimension to have the zero mean and
unit variance. Topology is defined using the Euclidean distance.
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Fig. 1a shows the two-dimensional MDS projection of the complete iris dataset. Class 1
(red) is linearly separable from the other two, whereas classes 2 (yellow) and 3 (blue) have
significant overlap.

For illustration purposes, we also use a subset of the iris dataset containing only classes 1
and 2. These two classes are separable, as shown in Fig. 1b.

Fig. 2 shows the K-epsilon diagrams of the complete iris dataset. The top row shows the
neighborhood structure in the original space, and the bottom row shows the neighborhood
structure of the MDS projection. Intra- and inter- class diagrams for the iris dataset are
shown in the middle and right column of Fig. 2, respectively.

The top left panel of Fig. 2 shows that most points have nearest neighbors close by. This is a
desirable quality for computing low-dimensional projections, and confirms that point-
neighborhoods are well-sampled for this dataset.

The top middle panel shows that the majority of same-class nearest neighbors are close by
and that the distance between most same-class points is less than 50% of the maximum
dataset distance. Note that the top two thirds of the diagram contains no points. For each
point in the iris dataset, two-thirds of the points belong to a different class and are not shown
in the intra-class diagram.

The small gap between the diagram lines and the bottom-left corner in the top right diagram
indicates the existence of several pairs of inter-class points that are close by. Distance
preserving projections attempt to map these points close by, compromising class
separability.

The bottom row of Fig. 2 displays the corresponding K-epsilon diagrams of the two-
dimensional MDS projection. The similarity with diagrams in the original space indicates
that the MDS projection closely preserves the topological structure of the iris dataset.

To illustrate the desired structure of K-epsilon diagrams, we compute diagrams for the
partial iris dataset shown in Fig. 1b. The large gap in the inter-class diagrams of the reduced
dataset shows that the nearest neighbors of different classes are significantly separated (right
column of Fig. 3). The intra-class diagrams confirm that most of the same-class nearest
neighbors are close to one another (middle column of Fig. 3). The structure of these
diagrams indicates that distance-preserving projections will be able to preserve class
separability.

To illustrate topologies of more complex datasets, we compute the K-epsilon diagrams of
the liver and Monks2 datasets from the UCI database. The first column of Fig. 4 shows the
K-epsilon diagrams of the liver dataset in the original space. The poor quality of the
projection of this dataset, as seen in Fig. 12a, can be predicted by the lack of distinction
between the intra-class and inter-class diagrams. The steep curve of the K-epsilon diagram
of the complete dataset, shown in the left panel, indicates that there is not a significant
difference between distances to neighbors of various orders.

The diagrams in the second row correspond to the Monks2 dataset. The discontinuous shape
of the diagrams suggests a discrete distribution of distances. The steepness of the shapes
indicates the existence of several groups of neighbors of different orders that have nearly
identical distance to the base point. The gap in both of these diagrams is significant. Intra-
class and inter-class diagrams are almost identical. These properties of the K-epsilon
diagrams indicate highly overlaid classes and explain the poor classifier performance seen in
Table 2.
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2.3. Topology of low-dimensional projections
Finding reliable 2D or 3D projections is important for visualization of high-dimensional
data. In this section we compare the topology preservation of three commonly-used
dimension reduction techniques, MDS, ISOMAP, and LE. We apply these techniques to
visualize the diagnostic breast cancer data [12]. The dataset contains 569 samples, each with
30 attributes. All samples are classified as benign or malignant. The data in each dimension
is normalized to have zero mean and unit variance, and the topology is defined using the
Euclidean distance.

Fig. 5 shows the two-dimensional projections of the breast cancer dataset using the three
projection techniques. Class 1 (malignant) is shown in red, and class 2 (benign) is shown in
yellow. We set the number of nearest neighbors to 2 for ISOMAP and to 15 for LE. The
shapes and forms of the three projections vary, and the classes overlap.

We compare the neighborhood topologies of the three dimension reduction techniques using
K-epsilon diagrams. The first row of Fig. 6 displays the three K-epsilon diagrams of the
original breast cancer data. The smooth lines in the left panel indicate a consistent
topological structure. A gap between the beginning of the curve and the bottom left corner
indicates that even the smallest distances between nearest neighbors in this dataset are above
a certain threshold. High-dimensionality, noise and complexity of the data are the main
causes of this behavior. A big gap in the K-epsilon diagram indicates that a dataset is a poor
candidate for visualization using a distance-preserving dimension reduction technique. In the
breast cancer data, the gap size is not significant enough to affect the performance of
dimension-reduction algorithms.

The intra-class diagram in the middle panel consists of two well defined shapes, suggesting
existence of two data classes of different topologies. The inter-class diagram shown in the
right panel also suggests the presence of two classes. However, similar gaps in intra-class
and interclass diagrams indicate that strategies that only preserve distances will not be able
to separate the two classes.

Rows two to four of Fig. 6 show the corresponding K-epsilon diagrams of the two-
dimensional projections. The overall topological structure is best preserved with MDS. All
three projections somewhat preserve the intra- and inter- class topologies, which also
indicates that the projections fail to separate between data classes. Note that the projection
diagrams do not have a gap in the bottom left corner.

3. Force feature space
We propose a FDP-based transformation that emphasizes both similarities between intra-
class points and dissimilarities between inter-class points. Let X = {x1, …, xn} be the
original dataset in a D-dimensional space and let Y = {y1, …, yn} be the dataset after the
transform. We will refer to Y as the force feature space.

The algorithm proceeds as follows. Initially, . In each iteration, every point  in the

force feature space experiences a force from all other points, , i ≠ j. If point j is in the same

class as point i, an attractive force FA pushes  towards :
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Here t denotes the iteration number, v is a unit vector in direction yj − yi, and αA, and λA are
scale parameters. The first exponential function reduces the attractive force magnitude with
each iteration, ensuring convergence of the algorithm. The second exponential magnitude
function provides strong attractive forces for distant points in the same class. d(yi, yj) is the
scaled distance between yi and yj. We use Euclidean distance in this paper, but any
symmetric measure of similarity can be used. The distances are scaled to be in the interval
[0, 1].

If points  and  are not in the same class, a repulsive force FR pushes  away from :

where αR are λR scale parameters. The second exponential function provides strong
repulsive forces for neighboring points that are not in the same class.

The total force for  in iteration t, FT(i, t) is the sum of all forces acting on . The position
of each point is adjusted according to the total force acting on that point:

where Δ is the time increment. These steps are repeated for a preset number of iterations or
until the system becomes stable.

Let τ denote the final iteration. The value of yi is set as . The cumulative force FC on yi
is defined as the sum of total forces FT over all iterations:

Note that the cumulative force FC is equal to the force needed to move point  to its final
position yi:

3.1. Force feature space illustrations
We illustrate lifting to force feature space using the iris dataset with parameters λA = λR = 3,
αA = αR = 0.7, and Δ = 0.13. Fig. 7a and 7b show the MDS projection of the original and the
force feature space data, respectively.

Points in classes 2 and 3 of Fig. 7a are overlaid, while those of Fig. 7b show good class
separation. Furthermore, the shape and structure of the three clusters in Fig. 7a are well
preserved in Fig. 7b.

The top and bottom rows of Fig. 8 show K-epsilon diagrams of the FFS representation of the
iris data and its MDS projection. The K-epsilon diagram of the complete dataset, shown in
the top left panel, resembles a 3-step-function. This structure suggests existence of three
clusters with similar topologies, confirmed by Fig. 7b.
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The top middle panel of Fig. 8 is similar to the top middle panel of Fig. 2, indicating that
FFS transform preserves intra-class topologies. The top right panels in Fig. 2 and Fig. 8,
however, are significantly different. The diagram shown in Fig. 8 has a significant gap
between dark lines and the bottom left corner. The gap indicates that the distances between
nearest neighbors of different classes are above a certain threshold. The step-function shape
suggests the presence of three well-separated clusters in the force feature space. The bottom
row of Fig. 8 illustrates that the MDS projection of the force feature space preserves
neighborhood topologies.

Fig. 9a shows the MDS projection of the breast cancer data. Fig 9b shows the same dataset
lifted to the force feature space using λA = λR = 3, αa = αR = 0.7, and Δ = 0.12. The two
classes are clearly separated, and the cluster shape shown in Fig. 9a is preserved.

The K-epsilon diagrams of the breast cancer dataset in the force feature space are shown in
the first row of Fig. 10. The upper-left diagram reveals the existence of two clusters with
different local topologies. Each class is shown as a step-function, suggesting that points in
the same cluster are separated from those in the other. This observation is confirmed by the
intra-class and inter-class diagrams shown in the middle and right panels, respectively.
These diagrams show that same-cluster points have small epsilon-radiuses for nearest
neighbors, while points from the other cluster have large epsilon-radiuses for a significant
number of nearest neighbors. The shape of the intra-class and inter-class diagrams is well-
preserved between the original data and the feature space data, indicating preservation of
neighborhood topologies. Note that the force feature space diagram does not have the gap
visible in the original space diagram.

The bottom row of Fig. 10 shows the K-epsilon diagrams of the MDS projection of the force
feature space. As in the original data, the topology of the force feature space is well-
preserved in the MDS projection.

4. Classification using force feature spaces
Section 3 describes the use of force feature spaces for visualization of known classes. This
section applies the force feature space for classification.

Let X = {x1, …, xn} be the original dataset in a D-dimensional space and Y = {y1, …, yn}
be the corresponding set in the force feature space. Let z be a new point of unknown class.
We wish to find a point w in the feature space that best represents the point z.

The position of the point w is determined by an iterative algorithm that combines cumulative
forces of its k nearest neighbors. Let wt be the position of the point w in iteration t. Initially
w0 = z.

In the first iteration, the k nearest neighbors of point w0 are xj, j ∈ N0. Point w0 lies in the
original space, and its neighbors are selected from the original dataset X. The force G(0)
acting on the point w0 is defined as the average of cumulative forces of its nearest neighbors
scaled by a function of distance of w0 from that neighbor:

Here λ is mean of λA and λR, FC(j) is the cumulative force on the jth data element, and d(w0,
xj) is the scaled distance between point w0 and its jth nearest neighbor in the original space,
xj. All the distances have been scaled by the maximum distance to point w0.
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At the end of first iteration the point w0 is moved in the direction of the force G(0) and the
new position w1 is computed:

In iteration two and all subsequent iterations, the position of the point wt in the feature space
is adjusted using the cumulative forces acting on its current nearest neighbors yj, j ∈ Nt.
Note that wt now lies in the force feature space, so its neighbors are sought among points in
Y. In iteration t the force acting on point wt is similar to the force computed in the first
iteration:

Here β and γ are scale parameters, and d(wt,yj) is the scaled distance between points wt and
its jth nearest neighbor in the feature space. As in iteration one, these distances are scaled by
the maximum distance to wt. The new position wt+1 is computed as:

These steps are repeated for a preset number of iterations or until the system converges. Let
τ denote the final iteration. The value of w is set as w = wτ. Classification can then be
performed in the force feature space to estimate the class of the point z.

4.1. Results on real data
To demonstrate force feature space based classification we use selected datasets from the
UCI repository [12] with ten times 10-fold cross validation. The datasets and their
parameters are shown in Table 1. In all datasets αA = 0.7, and for the first five datasets τ = 6.
For the three Monk’s datasets τ = 9. We tested FFS-based classification using Matlab
implementations of the K-nearest neighbors classifier (KNN) with two nearest neighbors
and the support vector machine classifier (SVM).

Table 2 compares the performance of the KNN and SVM classifiers before and after
mapping to force feature space. Mapping to force feature space improved the performance
of the KNN classifier, making it competitive with the SVM. The FFS transformation does
not have as much of an effect on the correct rate of the SVM classifier in most datasets.
However, the FFS remapping makes the projections more understandable.

Fig. 11 shows the MDS projection of one fold of 10-fold cross validation of the breast
cancer data using the KNN classifier. The classifier output is denoted by shape: squares for
class 1, and triangles for class 2. The ground truth for all points is denoted by color: red for
class 1, and yellow for class 2. Fig. 11a shows the classification in the original space. The
classes overlap and the black arrow highlights a misclassified point. Fig. 11b shows the
classification in force feature space. The classes are well separated and form clusters in the
projection space. The KNN FFS-classifier has a high correct rate, which is expected because
the inter- and intra-class diagrams of the dataset show good class separability (Fig. 10).

Fig. 12 shows a similar MDS projection for the liver dataset. The classifier correct rate for
this dataset is significantly lower. The two classes have a significant overlap, and the force
feature space can not fully separate them without distorting the original intra-class
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topologies. Note that class 2 (yellow) is densely sampled while points in class 1 (red) are
scattered.

The top row of Fig. 13 shows the K-epsilon diagrams of the liver dataset in the original
space. The poor quality of the projection in Fig. 12a can be predicted by the lack of
distinction between intra and inter class diagrams. The step-shaped curve in the bottom left
panel of Fig 13 corresponds to the well-clustered yellow class after FFS mapping. The lack
of discontinuity in the other shape reflects the scattered structure of the red class. This
difference in structure is reflected in the middle panel.

4.2. Parameter selection
The flexibility of the force feature space transform lies in its many parameters. The FFS
transform can be optimized to fit any dataset by adjusting the parameter value.

The time interval Δ defines the length of the time interval in which forces act on each point.
A longer interval results in a bigger change of the point position. By increasing Δ the user
can increase separability of classes in the force feature space. A Δ which is too large will
result in severe distortion of the cluster shape. The default value for Δ is 0.1.

Parameters αA and αR define the falloff of the maximum magnitude of attractive and
repulsive forces in each iteration, respectively. The default value of these parameters is 0.7.
Decreasing the value of one of these parameters will increase the maximum magnitude of
the corresponding forces and, in turn, the effect of the said force on the transform. For
example, αR = 0.55 in the Monks2 dataset increases the effect of the repulsive forces and
boosts class separation. Because parameter αA remains the same, changes to attractive forces
and to the cluster structure are minimal.

Parameters λA and λR define the magnitude of the attractive and repulsive forces based on
the distance between the two points. The default value for these parameters is 3. Increasing
λA augments the magnitude of the attractive forces, while decreasing λR augments the
magnitude of the repulsive forces.

Changes in parameters β and γ have effects that are similar to the changes of parameters αR
and λR, respectively. The default number of iterations is 5, but this value can be increased if
greater precision is needed.

5. Discussion
This paper proposes lifting the dataset to a force feature space prior to projection and/or
classification to enhance visualization and improve classification. Similar ideas are seen in
kernel methods. In contrast to kernel methods, the force feature spaces are explicitly
represented and have the same dimensionality as the original space. When lifting the dataset
to a kernel space, the user has little control over the resulting space or its properties. In fact,
there is no proof that kernels unfold and simplify the data in the higher-dimensional space.

Linear discriminant analysis (LDA) uses class information to determine a linear low-
dimensional projection that maximizes class separability. If the classes are not separable,
LDA will fail to find a good projection. Furthermore, the projection dimensionality is bound
by the class number and can not be larger than the class number minus 1, making LDA
unsuitable for visualization of complex two-class datasets.

Force directed placement is often used to enhance an existing low-dimensional projection.
This approach is used in DD-HDS where FDP is employed to correct positions of projection
points whose original space and projection space distances were not proportional. DD-HDS
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uses only distance information from the original and the projected space to compute the
forces.

The technique introduced in this paper incorporates both class and distance information in
forming a feature space for visualization and classification. We use K-epsilon diagrams to
determine how well the FFS transform distinguishes between inter- and intra-class
neighborhoods. The quality of the FFS-classifier can be estimated by inter-class and intra-
class separation in the K-epsilon diagrams. We can use this information as a basis for
adjusting the algorithm parameters. The K-epsilon diagrams also provide information about
the complexity of the dataset.

FFS combined with distance preserving dimension reduction produces intuitive
visualizations that separate points belonging to different classes while preserving the
original class structure. Unlike support vectors in SVM classifiers, which are often difficult
to visualize, the FFS-based classifiers include intuitive visualization using force feature
space positions of the testing points.
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Figure 1.
(a) MDS projection of the complete iris dataset. (b) MDS projection of the subset of iris
dataset containing only two classes.
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Figure 2.
K-epsilon diagrams of the complete iris dataset. Left: complete diagrams. Middle: intra-class
diagrams. Right: interclass diagrams. Top row shows neighborhoods in the original space,
bottom row shows neighborhoods of the 2D MDS projection.
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Figure 3.
K-epsilon diagrams of the partial Iris dataset shown in Fig. 1a. Rows and columns same as
in Fig. 2.

Veljkovic and Robbins Page 13

Int Conf Digit Signal Process Proc. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
K-epsilon diagrams of the liver and Monks2 datasets.
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Figure 5.
Two-dimensional projections of the breast cancer data. (a) MDS. (b) ISOMAP. (c) LE.
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Figure 6.
K-epsilon diagrams of the breast cancer data and its projections.
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Figure 7.
(a) MDS projection of iris data in the original space. (b) MDS projection of iris data in the
force feature space.
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Figure 8.
K-epsilon diagrams of the FFS of the iris dataset.
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Figure 9.
MDS projection of the breast cancer data. (a) Original data. (b) Force feature space data.
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Figure 10.
K-epsilon diagrams of the force feature space of breast cancer data and its MDS projection.
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Figure 11.
MDS projection of the breast cancer dataset (a) in the original space, and (b) in the force
feature space. Classifier output is denoted by shape, ground truth is denoted by color.
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Figure 12.
MDS projection of the liver dataset with KNN (a) in the original space, and (b) in the force
feature space.
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Figure 13.
K-epsilon diagrams of the liver dataset. Top: original. Bottom: lifted to force feature space.

Veljkovic and Robbins Page 23

Int Conf Digit Signal Process Proc. Author manuscript; available in PMC 2010 July 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Veljkovic and Robbins Page 24

Table 1

Parameter description

Parameters

αR λA λR Δ k β γ

Breast 0.7 3 3 0.12 8 1 3

Cleveland 0.7 3 3 0.14 8 1 3

Echo 0.7 3 3 0.22 8 1 3

Ionosphere 0.7 2 5 0.185 8 1 3

Liver 0.7 1 4 0.22 8 1 2.5

Monks1 0.25 2.2 3.5 0.11 3 0.5 0.3

Monks2 0.55 2.5 3 0.99 1 0.7 1

Monks3 0.2 2.5 3 0.1 12 0.3 0.3
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Table 2

Comparison of classifier correct rate

KNN SVM

Org. FFS Org. FFS

Breast 95.2 97.3 97.2 97.2

Cleveland 75.5 81.7 82.7 83.0

Echo 88.9 92.1 97.2 96.0

Ionosphere 86.6 93.8 87.6 90.5

Liver 62.6 66.4 69.0 67.7

Monks1 27.0 40.3 42.6 35.9

Monks2 62.6 63.9 49.8 62.9

Monks3 14.7 38.6 44.2 38.2
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