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Abstract—In previous studies, performance improvement of
nearest neighbor classification of high dimensional data, such
as microarrays, has been investigated using dimensionality
reduction. It has been demonstrated that the fusion of di-
mensionality reduction methods, either by fusing classifiers
obtained from each set of reduced features, or by fusing
all reduced features are better than than using any single
dimensionality reduction method. However, none of the fusion
methods consistently outperform the use of a single dimen-
sionality reduction method. Therefore, a new way of fusing
features and classifiers is proposed, which is based on searching
for the optimal number of dimensions for each considered
dimensionality reduction method. An empirical evaluation on
microarray classification is presented, comparing classifier
and feature fusion with and without the proposed method,
in conjunction with three dimensionality reduction methods;
Principal Component Analysis (PCA), Partial Least Squares
(PLS) and Information Gain (IG). The new classifier fusion
method outperforms the previous in 4 out of 8 cases, and is
on par with the best single dimensionality reduction method.
The novel feature fusion method is however outperformed
by the previous method, which selects the same number of
features from each dimensionality reduction method. Hence, it
is concluded that the idea of optimizing the number of features
separately for each dimensionality reduction method can only
be recommended for classifier fusion.
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I. INTRODUCTION

Microarray gene expression technology has enhanced the
accurate identification of cancer. Great precision is essential
in many cases, since early identification of cancer may often
lead to proper choice of treatments and therapies [1], [2],
[3]. The accuracy of the k nearest neighbor classifier (kNN)
is generally low for classification of microarrays due to
the nature of these data sets, i.e., the number of instances
is very low compared to the number of dimensions [4].
To improve the classification accuracy of kNN, one may
employ dimensionality reduction to reduce the original high
dimensionality into lower numbers of dimensions.

In a previous study [5], three dimensionality reduction
methods, i.e., Principal Component Analysis (PCA), Par-
tial Least Squares (PLS) and Information Gain (IG), were
compared w.r.t. the classification accuracy when used in

conjunction with kNN. It was shown that all dimensionality
reduction methods improve the classification accuracy of
kNN compared to using the original features. The results
also showed that none of the single methods was able to
outperform the others, and therefore, feature fusion, i.e.,
combining feature subsets from different dimensionality
reduction methods, and classifier fusion, i.e., combining
outputs of the classifiers from each dimensionality reduction
were considered in a subsequent study [6]. In that study,
two methods were considered: simple straight forward com-
bination of features and combining classifier outputs using
unweighted voting. It was shown that the fusion methods
not only improve the performance of kNN, but also that they
were robust to changes in dimensionality, i.e., the choice of
number of dimensions did not affect the accuracy to a high
extent. However, none of the previous fusion methods were
shown to constantly improve the classification accuracy of
kNN compared to a single dimensionality reduction method.
One reason for this could be that the same number of
dimensions were chosen for all dimensionality reduction
methods, although previous studies have shown that the
best number of dimensions to choose for each individual
method may vary significantly. In this study, we address this
problem by extending the fusion methods by the capability
of searching for the optimal number of dimensions for each
dimensionality reduction method.

In the next section, the three considered dimensionality
reduction methods are described together with different
ways to fuse features and classifiers, including the proposed
method of searching for the optimal number of dimensions.
An experiment comparing the fusion and dimensionality
reduction on eight microarray data sets is presented in sec-
tion III. Finally, concluding remarks are given in section IV.

II. METHODS

A. Principal Component Analysis (PCA)

PCA is a classical dimensionality reduction method that
has been applied in many different contexts, including
face recognition, image compression, cancer classification
and applications related to high-dimensional data sets. This



method is well known for allowing the original dimension-
ality to be reduced a much smaller, uncorrelated feature
set with minimum information loss. Transformed features
are generally known as principal components, which are
weighted linear combinations of original features and which
are orthogonal to each other. The components are typically
ordered according to decreasing variability, i.e., the first
principal component has the highest variability in the data
set, the second principal component has the second highest
and so on.

Assume that the original matrix contains o dimensions and
n observations and that one wants to reduce the matrix into
a d dimensional subspace. Following [7], this transformation
can be defined by:

Y = ET X (1)

where Eo×d is the projection matrix containing d eigen
vectors corresponding to the d highest eigen values, and
Xo×n is the mean centered data matrix.

B. Partial Least Squares (PLS)

PLS was originally developed within the social sciences
and has later been used extensively in chemometrics as a
regression method [8]. It seeks for a linear combination
of features whose correlation with the output variable is
maximum.

In PLS regression, the task is to build a linear model,
Ȳ = BX + E, where B is the matrix of regression
coefficients and E is the matrix of error coefficients. In
PLS, this is done via the factor score matrix Y = WX
with an appropriate weight matrix W . Then it considers
the linear model, Ȳ = QY + E, where Q is the matrix of
regression coefficients for Y . Computation of Q will yield
Ȳ = BX +E, where B = WQ. However, we are interested
in dimensionality reduction using PLS and used the SIMPLS
algorithm [9], [10]. In SIMPLS, the weights are calculated
by maximizing the covariance of the score vectors ya and
ȳa where a = 1, . . . , d (where d is the selected number of
PLS components) under some conditions. For more details
of the method and its use, see [9], [11].

C. Information Gain (IG)

Information Gain (IG) can be used to measure the in-
formation content in a feature [12], and is commonly used
for decision tree induction. Maximizing IG is equivalent to
minimizing:

V∑
i=1

ni

N

C∑
j=1

−nij

ni
log2

nij

ni
(2)

where C is the number of classes, V is the number of values
of the feature, N is the total number of examples, ni is the
number of examples having the ith value of the feature and

nij is the number of examples in the latter group belonging
to the jth class.

When it comes to feature reduction with IG, all features
are ranked according to decreasing information gain, and the
first d features are selected.

It is also necessary to consider how discretization of
numerical features is to be done. Since such features are
present in all data sets considered in this study, they have to
be converted to categorical features in order to allow for the
use of the above calculation of IG. We used WEKA’s default
configuration, i.e., Fayyad and Irani’s Minimum Description
Length (MDL) [13] method for discretization.

D. Feature fusion (FF)

Feature fusion concerns how to generate and select a
single set of features for a set of objects to which several
sets of features are associated [14]. In this study, we have
investigated two possible feature fusion methods. The first
method has been investigated in [6] and the second method
is one of the two new extended fusion methods.

In the first method, which is denoted by FF1, an equal
number of features from each dimensionality reduction
method are considered for classification with kNN. There-
fore, the total number of dimensions selected for classifi-
cation is in the range d = 3 . . . 3 × (nt − 1)1 where nt is
the number of training instances. For each d, the first d/3
reduced dimensions are chosen from the output of PLS, PCA
and IG respectively.

In the second method, which is denoted by FF2, the
minimum number of features required to yield the highest
classification accuracy for each dimensionality reduction
method is considered. Cross-validation is performed to find
this number. For example, to find the minimum number of
features required to get the best performance for PCA, cross-
validation is performed to find which number of principal
components should be selected to get the highest accuracy by
kNN, when projecting the initial features to this set. During
the cross-validation, which uses only the provided set of
training examples, part of the examples are used to generate
the components, while the remaining part is used to estimate
the classifier’s performance.

E. Classifier fusion (CF)

The focus of classifier fusion is either on generating a
structure representing a set of combined classifiers or on
combining classifier outputs [15]. We have considered the
latter approach, i.e., combining nearest neighbor predictions
when used in conjunction with PLS, PCA and IG.

In the first method, denoted by CF1, for each dimension,
nearest neighbor predictions from each dimensionality re-
duction method are combined using unweighted voting, i.e.,

1(nt− 1) provides an upper bound on the number of features generated
by all three methods, since this is the maximum number of features
generated by PLS.



giving equal weight to the output of each nearest neighbor
classifier and selecting the majority output among them.
This method, which has been investigated in a previous
study [6], hence combines classifiers generated from differ-
ent projections into a specified number of dimensions, i.e.,
all combined classifiers reduce the original feature set into
the same number of dimensions similarly to the method FF1
above.

In the novel method, denoted by CF2, the number of
dimensions is selected that results in the highest accuracy
for each dimensionality reduction method, as estimated
by cross-validation on the training set. The outputs are
then fused using unweighted voting. Both classifier fusion
methods may lead to ties for multi-class problems which
are resolved by randomly selecting one of the class labels
achieving the highest number of votes.

III. EMPIRICAL STUDY

A. Data sets

The following eight microarray data sets are used in this
study:

• Central Nervous System [16], which consists of 60
patient samples of survivors (39) and failures (21) after
treatment of the medulloblastomas tumor (data set C
from [16]).

• Colon Tumor [17], which consists of 40 tumor and 22
normal colon samples.

• Leukemia [18], which contains 72 samples of two types
of leukemia: 25 acute myeloid leukemia (AML) and 47
acute lymphoblastic leukemia (ALL).

• Prostate [2], which consists of 52 prostate tumor and
50 normal specimens.

• Brain [16] contains 42 patient samples of five different
brain tumor types: medulloblastomas (10), malignant
gliomas (10), AT/RTs (10), PNETs (8) and normal
cerebella (4) (data set A from [16]).

• Lymphoma [19], which contains 42 samples of dif-
fuse large B-cell lymphoma (DLBCL), 9 follicular
lymphoma (FL) and 11 chronic lymphocytic leukemia
(CLL).

• NCI60 [20], which contains eight different tumor
types. These are breast, central nervous system, colon,
leukemia, melanoma, non-small cell lung carcinoma,
ovarian and renal tumors.

• SRBCT [3], which contains four diagnostic categories
of small, round blue-cell tumors as neuroblastoma
(NB), rhabdomyosarcoma (RMS), non-Hodgkin lym-
phoma (NHL) and the Ewing family of tumors (EWS).

The first three data sets come from Kent Ridge Bio-
medical Data Set Repository [21] and the remaining five
from the supplementary materials in [22]. The data sets are
summarized in Table I.

Table I
DESCRIPTION OF DATA

Data set Attributes Instances # of Classes

Central Nervous 7129 60 2

Colon Tumor 2000 62 2

Leukemia 7129 38 2

Prostate 6033 102 2

Brain 5597 42 5

Lymphoma 4026 62 3

NCI60 5244 61 8

SRBCT 2308 63 4

B. Experimental setup

First, raw features are transformed into a lower number
of dimensions using all reduction methods. PCA and PLS
transformations are applied to the training set and the
generated weight matrix is used to transform the test set.
In IG, features based on the information content are ranked
in decreasing manner in the training set and the same
rankings are used when classifying the test set. For kNN,
k=1 is considered, i.e., a single nearest neighbor is chosen.
To find the optimal number of features, cross-validation is
performed using the training set with the nearest neighbor
classifier. Then the optimal number of features for the
training set is selected for the final classification. Nearest
neighbor classification is performed on the reduced space
generated from the training set with optimal number of
features by PCA, PLS and IG.

Then, different ways of fusing features and classifiers are
considered. For each number of dimensions, straightforward
combination of features, which are generated by the three
dimensionality reduction methods, are considered by FF1. In
CF1, nearest neighbor classifier outputs generated by PCA,
PLS and IG are considered for each dimension. For each
output of CF1, the majority class among the three classifiers
generated by PCA, PLS and IG is considered. For each
training set, cross-validation is performed to find the optimal
number of dimensions.

In the new feature fusion approach, i.e., FF2, for each
dimensionality reduction method, the optimal number of
features that gives the best performance on the reduced
space generated by that method are found and then fused
together for classification. The same number of dimensions
are then selected in the test set and combined. In the new
classifier fusion method, i.e., CF2, the classifier which gives
the best performance using cross-validation on the training
set for each dimensionality reduction method is selected.
The output of the three best classifiers on the training set
are then fused together using unweighted voting, i.e., getting
the majority class among the outputs.

For overall validation, 10-fold cross-validation was em-



ployed, i.e., the data set is divided into ten folds and then,
in each iteration, nine folds are taken as the training set and
the rest as the testing set. To find the optimal number of
features in each training set, 10-fold cross-validation is used
again. PCA transformation is conducted using the Matlab’s
Statistics Toolbox and PLS transformation is conducted
using the BDK-SOMPLS toolbox [23], [24], which uses the
SIMPLS algorithm. IG and nearest neighbor classification
are performed using the WEKA data mining toolkit [12].

C. Experimental results

Table II lists the classification accuracies obtained using
original features, the three dimensionality reduction meth-
ods, the two feature fusion methods (FF1, FF2) and the two
classifier fusion methods (CF1, CF2).

As can be seen in Table II, the new methods, i.e., FF2
and CF2, outperform using the original feature set in 6 and
7 data sets respectively, out of 8. If one compares the two
methods, CF2 gets the best accuracy in four cases, while
FF2 gets the best accuracy in 3 cases. If one compares the
novel fusion methods with each individual dimensionality
reduction method, each novel method outperform PCA and
IG in 7 out of 8 cases whereas for PLS there is a tie
with CF2 in 5 out of 8 cases. The trend in the results are
quite different from the results reported in [6], mainly due
to the change of the experimental setting. We have here
only considered the optimal number of features for each
method whereas all dimensions are considered in [6] from
which the best individual result is selected and compared
to the other results. Although the results show that the
use of PLS outperforms raw accuracies in all cases, this
is not the case for PCA and IG, which also was observed
in [6]. Classification accuracy is statistically tested using
the Friedman test [25]. The null hypothesis, i.e., there is no
difference in performance between the eight methods, can
safely be rejected on the 0.05 significance level. However,
when testing the pair wise differences with a Nemenyi
test [25], no significant difference can be detected, most
likely due to the limited number of datasets considered.

IV. CONCLUDING REMARKS

Classification accuracy of nearest neighbor can be im-
proved using dimensionality reduction and further improved
by using different methods of feature and classifier fusion.
In this paper, we have investigated two novel methods for
fusing features and classifiers in conjunction with three
dimensionality reduction methods for nearest neighbor clas-
sifier in high dimensions.

The new methods, i.e., FF2 and CF2, outperform raw
classification accuracies in 6 and 7 datasets respectively,
out of 8. If one compares the novel fusion methods with
each individual dimensionality reduction method, the novel
methods outperform the use of PCA and IG in a majority
of the cases whereas there is a tie between using PLS and

CF2. It was observed that the novel methods perform partic-
ularly well when all the dimensionality reduction methods
outperform using the original feature set.

Although the fusion methods proposed in this study does
not outperform the fusion methods investigated in [6] for
all cases as expected, the novel classifier fusion method
outperforms the previous in 4 out of 8 cases. The novel
classifier fusion method also obtained the best accuracy of
all methods on the NCI data set. However, the novel feature
fusion method performed poorly and this might be due to
that it often results in a higher number of features compared
to the other methods. So even if the selected number of
features is optimal when considering each dimensionality
reduction method separately, the number of features obtained
from combining these may be far from optimal. Hence, the
idea of optimizing the number of features separately for each
dimensionality reduction method can only be recommended
for classifier fusion.
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