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Abstract—Appearances of objects lie in high-dimensional
spaces. For a given recognition task, feature selection aims to
select most effective features in order to reduce the recognition
cost and improve recognition accuracy. Feature selection can
be achieved by a bottom-up scheme, e.g., using spatial infor-
mation, or a top-down scheme, e.g., using class information.
In this paper, we propose a model to integrate spatial and
discriminant influence for appearance based recognition, where
locality oriented Fisher score is introduced to estimate the
discriminant influence. We use Lipschitz regularity to construct
image representation. We present a case study of embryo stage
recognition to test the performance of the proposed method.
We also obtain new insights on the comparison between spatial
and discriminant influence.
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I. INTRODUCTION

Appearances of objects lie in high-dimensional spaces.
For a given recognition task, feature selection aims to select
most effective features in order to reduce the recognition
cost and improve recognition accuracy. Feature selection
can be achieved by a bottom-up scheme, e.g., using spa-
tial information [7], [10], [12], [18]. For example, Harris
detector [7] uses gradient auto-correlation to define spatial
influence. Bottom-up scheme aims to output features (in-
terest points) repeatable across different image/illumination
transformations, which helps construct robust and compact
representation of image data. Bottom-up scheme has a wide
range of applications, such as object recognition [8], image
retrieval [13]. Bottom-up feature selection is an important
step to build a generative model for object recognition [19],
[3]. A generative model is basically a graph model with a
relatively small number of features [8]. Generative models
are strong in addressing “weak-alignment” recognition tasks
where the shapes of different objects contain significant
variations.

Feature selection can also be achieved by a top-down
scheme, e.g., using class or context information [5]. Gao
and Vasconcelos [5] argued that spatial information (such as
edge, corners) may not always reveal good saliency of visual
objects, and thus proposed a discriminant top-down selection
method for visual recognition, where the discriminancy is
computed via maximum marginal diversity [16].

Recently, integration of bottom-up and top-down feature
selection received attention in the area of visual classifica-
tion, including object detection [14] and object recognition
[8]. (Object detection is a binary classification problem.)
To speedup object detection, Navalpakkam and Itti [14]
proposed a model to integrate bottom-up and top-down
attention, where the top-down component uses accumulated
statistical knowledge of the visual features of the desired
search target and background clutter, to optimally tune
the bottom-up maps such that target detection speed is
maximized. In the context of object recognition, Holub and
Perona [8] proposed a model to combine the generative
model and Fisher kernels, which brings considerable im-
provement of the performance of generative models.

In this paper, we propose a model to integrate bottom-
up and top-down feature selection for appearance-based
recognition. A motivation of our study comes from the
insight that the appearances of certain objects are weakly-
textured, and a few of features may not be robust with
respect to the imaging variations, such as illuminations or
even image noise. Thus, we explore the opportunity of using
relatively large numbers of features (in the magnitude of
hundreds), compensated with an assumption that images re-
quires alignment in our study. We introduce locality oriented
Fisher scores to estimate the top-down influence, where
locality is characterized by wavelets. For the robustness with
respect to illumination, we use Lipschitz regularity based
representation.

We present a case study to show the effectiveness of the
integrated model. The case study is on the recognition of
developmental stage of an embryo based on gene expression
pattern images [9], [6], which is an important step towards
gene expression analysis. The study convinces us the effec-
tiveness of the integration of spatial (bottom-up) influence
and discriminant (top-down) influence in selecting good
features for appearance based recognition. The studies also
bring us new insight on the comparison between bottom-up
and top-down feature selection schemes.

The rest of the paper is organized as follows: Sec-
tion II gives related work. Section III introduces locality
oriented Fisher discriminant scores. Section IV proposes an
integrated model, and Lipschitz regularity regularity based



representation. Section V presents three case studies. Finally,
conclusion is given in Section VI.

II. RELATED WORK

Walther et al. [18] proposed a bottom-up model for
selective attention, where bottom-up saliency map is con-
tributed by the color feature maps, intensity feature maps,
and orientation feature maps. They showed the proposed
bottom-up visual attention can strongly improve learning and
recognition performance in the presence of large amounts of
clutter.

Vasconcelos [16] proposed a discriminant feature selec-
tion via maximization of marginal diversity (MMD); for
multi-class problems, one-verse-all strategy is applied. N.
Vasconcelos and M. Vasconcelos [17] proposed an informa-
tion theoretic feature selection to achieve a good balance be-
tween maximizing the discriminant power of selected (local)
features and minimizing their redundancy. The method is
tested on image retrieval, where the comparison between two
images is achieved by the comparison of Gaussian mixtures
of the compact sets of discriminant (local) features detected
from the images. Gao and Vasconcelos [5] presented a
discriminant saliency method, based on MMD [16], to detect
visual objects from cluttered backgrounds.

Navalpakkam and Itti [14] proposed a SNR based model
to integrate bottom-up and top-down attention for optimizing
detection speed, where SNR (signal-noise-ratio) character-
izes the discriminant ratio of spatial influence of target ob-
jects over the spatial influence of distractors. Navalpakkam
and Itti showed the model, with little computational cost
in the form of multiplicative top-down gains on bottom-up
saliency maps, predicts many reported bottom-up or top-
down influence on human visual search behavior.

Holub and Perona [8] proposed a model to combine
generative model and Fisher kernels for object recognition.
The generative model used in [8] is a constellation model
that aims to find optimal appearance and shape parameters
{θa, θs} during the mapping of interest points to model
parts. A Fisher kernel is a gram matrix constructed by
“Fisher score” feature that is the derivative of log likelihood
of the parameters of a generative model. (Note that Fisher
score used in [8] is different from Fisher criterion score used
in this paper.)

Fisher criterion score [1] has been widely used for feature
selection. In [4], Fisher criterion score is used to select
most discriminant features of microarray expression data and
achieved substantial improvement of recognition accuracy.

III. LOCALITY ORIENTED FISHER SCORE

Fisher score was proposed to maximize the ratio of
between-class variation over within-class variation. More
specifically, given an attribute p, its Fisher criterion score

is defined as follows:

score(p) =
∑
c |vc(p)− vt(p)|2∑

c

∑
j∈c |vj(p)− vc(p)|2

, (1)

where c is a class label, vc is the mean of all training
instances of attribute p in class c, vt is the (total) mean of all
instances of attribute p, and vj is the instance of j-th training
item. The most discriminant attribute is assigned by the
highest Fisher score. Thus by sorting attributes according to
their Fisher scores, a number of most discriminant attributes
contribute a good feature vector for recognition, e.g., the
use of nearest neighbor under Euclidean distance as a
classifier. The number of most discriminant attributes is
usually determined via cross-validation.

We introduce locality oriented Fisher scores to estimate
discriminant influence where the locality is captured by
wavelets. This score aims to maximize the ratio of local
between-class variation and local within-class variation:

D(p) =

∑
c |gc(p)− gt(p)|l∑

c

∑
j∈c |gj(p)− gc(p)|l

, (2)

where l is a positive number, c is a class label, gj(p)
is the wavelet coefficient of j-th training instance (i.e.,
the convolution of the neighborhood of p in j-th training
instance with a wavelet filter), gc(p) is the mean of the
wavelet coefficients of training instances in class c, and gt(p)
is the overall mean of wavelet coefficients in p.

It is known that wavelets have several desirable prop-
erties: compact supports, symmetry, and/or high-vanishing
moments, orthogonality, etc. Given a wavelet ψ (for sim-
plicity, let us assume it is on IR), compact support indicates
ψ(x) ≡ 0 out of some finite interval; symmetry indicates
ψ(x0 − x) = ψ(x), for some x0 ∈ IR; vanishing moment
k indicates

∫
xlψ(x)dx, l = 0, . . . , k; orthognality indicates∫

ψ(x)ψ(x − j)dx = 0,∀j ∈ ZZ. Compact support is the
key property for a wavelet technique to perform the local
analysis. Vanishing moment is also a useful property for
local analysis. Note that if a local region is smooth, it can be
approximated by some low-order polynomials. Convolving
with a wavelet of some-degree vanishing moment, its as-
sociated wavelet coefficients are small. Thus the magnitude
of wavelet coefficients can characterize the smoothness of a
local region. The work in signal or visual processing has
found the importance of symmetry. Orthognality may be
arguable depending on what space the data lies in. If the
data is in L2, it is desirable; Otherwise, it may be worthless.

We will use least asymmetric Daubechies wavelet to
capture the locality in determining the Fisher criterion score.
The least asymmetric Daubechies wavelet is constructed by
constraining the phase of the so-called transfer function as
close to linear as possible. (More details can be found in
Chapter 8 of [2].)

It is worth noting that in our Fisher score formulation, we
introduce the norm parameter l. In standard Fisher score, l



is always fixed as 2, i.e., Euclidean norm. It is known that in
resisting outlier attributes, Euclidean norm may not perform
best. In the later case study, we will observe the value of
this generalization.

IV. INTEGRATING SPATIAL AND DISCRIMINANT
INFLUENCES

Denote p as an image point, J a set of training data, and
i the index of a certain spatial filter such as Gradient auto-
correlation [7], [15], Laplacian [12], and DoG [10]. Denote
{Sij}j∈J as the spatial influence maps of all training images
associated with a certain spatial filter. Denote T 0 as the
unsupervised operator T 0({Sij(p)}j∈J) = 1

|J|
∑
j∈J S

i
j(p),

which gives bottom-up feature selection. Denote T i>0 as a
supervised operator, such as locality oriented Fisher score
with a certain norm l, which gives top-down feature selec-
tion.

Our model integrates a set of unsupervised and supervised
operators that are applied to a set of spatial influence maps
as follows:

influence(p) =
∑
k,i

αk,iT
k({Sij(p)}j∈J),

subject to
∑
k,i

αk,i = 1,

where the weight parameters αk,i reveal the prior of different
bottom-up and top-down influences in a specific appear-
ance based recognition task. The weight parameters can be
learned by applying cross-validation to training data, i.e.,
optimal weights are decided by the recognition accuracy on
validation data.

After each image point is assigned with a certain influence
value, best features can be selected according to the order
of their influence. Fig. 1 shows the influence maps of
embryo images overlaid by fifty best feature points (i.e.,
pixels of strongest influence), illustrating the integration of
two popular spatial influences— gradient auto-correlation
and Laplacian—with discriminant influence, respectively.
We can observe that feature points under gradient auto-
correlation influence spread in the entire embryo plane
with any specific concentration, and feature points under
integrated influence have better concentration. (The higher
recognition accuracy achieved by integrated features, shown
in later experiments, explains the value of the concentration.)

With a set of feature points P , we can construct fea-
ture vectors (compact image representations) for appearance
based recognition. A convenient and efficient way for con-
structing feature vectors is to use the intensities of those
feature points, i.e., {I(p)}p∈P . In the following, we have a
comparison among the linear separability of these feature
vectors where the feature points are selected via spatial,
discriminant and integrated influence, respectively. (Note
that linear separability is desirable to support efficient classi-
fiers.) We use embryo images as examples, and apply Linear

Discriminant Analysis (LDA) to visualize the feature vectors
in 2-D plane. The dimension of embryo image is 320×128.
Our data contains three classes (leading to two-dimensional
LDA space). We will show a PCA+LDA representation as a
comparison. Fig. 2 shows four different LDA representation.
The first two classes of embryo data are shown for the clarity
of comparison of the representation. The bold labels indicate
the data items violating linear separability. From Fig. 2, we
can see that the integrated influence contributes to feature
vectors of best linear separability. This example gives us
an insight of the effectiveness of integrating spatial and
discriminant influences in improving the linear separability
of the image representation.

We introduce Lipschitz regularity based feature vectors
to improve the robustness with respect to illuminations. An
image I is pointwise Lipschitz α ≥ 0 at p, if there exists
K > 0 and a polynomial fp of degree m = bαc such that
|I(q)−fp(q)| ≤ K‖q−p‖α,∀q. Furthermore, if I has a Lip-
schitz α regularity at P that is isolated and non-oscillating,
it is uniformly Lipschitz α in the neighborhood of p. Mallat
and Zhong [11] gave a method to estimate the Lipschitz
regularity of an image point p by the decay of associated
wavelet coefficients across scales. More specifically, they
perform a regression on the following formula:

log2 |WI(q, s)|

= log2(K) + (α+ 1/2) log2 s−
n− α
2

log2(1 +
σ2

σ2s2
),

where s is a scale factor, K is a constant, n is an integer, and
the wavelet transformation W is contributed by the deriva-
tive of Gaussian of variance σ2. Intuitively, the Lipschitz
regularity at p is the maximum slope of log2 |WI(q, s)| as
a function of log2 s along the maxima lines converging to
p. In our experiments, the scale factor s is from 20 to 24.

V. EXPERIMENTS

In this section, we test the proposed method by a case
study of recognition of embryo stages. Our dataset has 500
images of fruit fly embryo, in three classes. The goal of clas-
sifying embryo images is to identify embryo developmental
stages that is an important step towards gene expression
analysis. The raw images contain severe illumination varia-
tions. We apply histogram equalization method to normalize
embryo images. Recall that the nature of weak texture of
embryo images motivates us to explore the opportunity of
using relatively large number of features.

In our experiments, a dataset is randomly split into two:
one half is used as training and validation set, and the other
half as the test set. We run 5-fold on training and validation
data to decide the optimal parameters: weights (bottom-up
and top-down priors) and the number of feature points. To
reduce the variability, the splitting is repeated 5 times and
the resulting accuracies are averaged. The number of feature



(a) Spatial (b) Integrated (α = 0.5) (c) Discriminant
Figure 1. Influence maps of embryo images overlaid by 50 best feature points. First row = gradient auto-correlation; Second row = Laplacian.

(a) PCA (b) spatial influence

(c) discriminant influence (d) integrated influence
Figure 2. Visualization of 4 different feature vectors. The bold labels indicate the data items violating linear separability. The integrated influence
contributes feature vectors of best linear separability.

points (n) in our experiment is from 400 to 2000. We use
nearest neighbor as the classifier.

A. Fisher score: standard versus locality oriented

First, we present a comparison between the standard
Fisher score and the locality oriented Fisher score (l=1 or
2) in three different appearance based recognition tasks.
Table I shows the results, and it is clear that the locality
oriented Fisher score outperforms the standard Fisher score.

We observe that the performance of norm l = 2 is slightly
better than norm l = 1, in the case of pure discriminant
selection. However, as we will see soon, the observation
will be different when the locality oriented Fisher scores
are integrated with a certain bottom-up scheme, which in
turn leads to the use of both norm in the integrated model.

Furthermore, we measure the performance of locality
oriented discriminant influence with different norms inte-
grated with a certain bottom-up scheme. Fig. 3 illustrates the



discriminant methods Embryo
standard Fisher score 0.80
LO Fisher score (l=1) 0.83
LO Fisher score (l=2) 0.84

Table I
RECOGNITION ACCURACY. A COMPARISON BETWEEN STANDARD

FISHER SCORE AND LOCALITY ORIENTED FISHER SCORES.

behavior under a simple version of integrated model (spatial
influence is contributed by gradient auto-correlation only).
We can observe that highest accuracy is achieved by the
integrated influence associated with norm l = 1. It is worth
noting that this interesting observation occurs consistently
across varied n, which reveals the benefit of introducing
l in the locality oriented Fisher criterion score. In the later
experiments, we use two discriminant operators, i.e., T 1 and
T 2 are associated with norm 1 and 2, respectively.

B. Main results

Fig. 4 shows the validation accuracy in cross-validation,
where X-axis indicates the weight α, Y-axis indicates the
length of feature vectors, and Z-axis indicates the validation
accuracy. Fig. 4 (a) and (b) are associated with gradient
auto-correlation, and Laplacian (two spatial influence as-
signments), and the norm l in the discriminant influence
is 2. First of all, Fig. 4 gives an example that discriminant
influence does not always outperform spatial influence. More
importantly, Fig. 4 shows the mutual benefit of spatial and
discriminant influences, for example, the highest accuracy
is always achieved by a certain degree of integration of
spatial and discriminant influence. The optimal parameters
for gradient auto-correlation are (α = 0.5, n = 400), and
the ones for Laplacian are (α = 0.6, n = 2000).

Tables II shows the performance of the integrated model
on three datasets, including the recognition accuracy and the
deviation. The first row is associated with the vectors con-
sisting of selected features, and the second row is associated
with LDA (Linear Discriminant Analysis) representation of
the feature vectors. In the second and third column, the
model uses gradient auto-correlation and Laplacian, respec-
tively. In the last column, the model uses both influence
maps. The model uses the unsupervised operator, and two
supervised operators. The results convince the effectiveness
of the model in integrating different spatial influence maps,
i.e., higher accuracy and smaller deviation. It is also worth
noting that the integrated model outperforms some baseline
methods. The results from Table II show LDA representation
degrades the performance of the feature vectors. After all,
the dimension of the LDA representation is much lower than
the the dimension of the feature vectors.

VI. CONCLUSION

In this paper, we introduced a locality oriented Fisher
scores via wavelet, and proposed a model to integrate

methods GA Laplacian All
selected feature 0.93(0.04) 0.91(0.05) 0.94(0.03)
feature+LDA 0.83(0.04) 0.82(0.05) 0.85(0.03)

Table II
RECOGNITION ACCURACY (WITH DEVIATION) ON EMBRYO STAGES OF

INTEGRATED MODEL. THE BEST RESULT REPORTED BEFORE IS AROUND
70%.

spatial and discriminant influence. A motivation of our study
comes from the insight that the appearances of certain
objects are weakly-textured, and a few of features may
not be robust with respect to the imaging variations. We
explore the opportunity of using relatively large numbers
of features. In experiments, we verified the effectiveness of
the locality oriented Fisher scores, and showed the promise
of the integration model with the tests on three different
applications.
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