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Abstract—In the domain of agricultural robotics, one major
application is crop scouting, e.g., for the task of weed control.
For this task a key enabler is a robust detection and classifi-
cation of the plant and species. Automatically distinguishing
between plant species is a challenging task, because some
species look very similar. It is also difficult to translate the
symbolic high level description of the appearances and the
differences between the plants used by humans, into a formal,
computer understandable form. Also it is not possible to
reliably detect structures, like leaves and branches in 3D data
provided by our sensor. One approach to solve this problem is
to learn how to classify the species by using a set of example
plants and machine learning methods.

In this paper we are introducing a method for distinguishing
plant species using a 3D LIDAR sensor and supervised learning.
For that we have developed a set of size and rotation invariant
features and evaluated experimentally which are the most
descriptive ones. Besides these features we have also compared
different learning methods using the toolbox Weka. It turned
out that the best methods for our application are simple
logistic regression functions, support vector machines and
neural networks. In our experiments we used six different plant
species, typically available at common nurseries, and about 20
examples of each species. In the laboratory we were able to
identify over 98% of these plants correctly.
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I. INTRODUCTION

In the domain of agriculture the concept of precision
agriculture is increasingly being recognized and gets more
and more important, e.g., for financial, time saving and
environmental protection reasons. Precision agriculture is
about applying the right treatment, at the right place and
at the right time [1]. To be able to make decisions about
such treatments, it is necessary to collect, store and process
crop field data at a subfield level. For that, an important
prerequisite is to reliably detect and classify the plants on
the field.

The individual plant inspection and treatment is a very
labor-intensive practice and brings a great need for automa-
tion, for instance by using autonomous vehicles. In the
future, such vehicles are needed for soil sampling, crop
scouting, and real-time data collection [2]. Small robots are
well suited for these tasks of individual plant care, such
as selective crop harvesting and individual crop rating as

(a) BoniRob

(b) Dracaena sanderina

Figure 1. (a) shows the BoniRob platform. (b) shows an example plant
and the corresponding point cloud. The point cloud is colored according to
the reflectance values using the HSV color space.

well as precise spraying, fertilization and selective weed
control, with the effects of reducing costs and consumption
of fertilizers and pesticides.

The work presented here is a part of the publicly funded
project BoniRob [3], a cooperation of academic and in-
dustrial partners, with the goal to develop an autonomous
mobile agricultural robot (see Figure 1(a)). The key objective
of BoniRob is the autonomous repeating phenotyping of
individual plants at different days, to track the growth stage
and the condition of the plants. For that it is necessary to
detect and map single plants. To map only the crops, the
robot has to be able to distinguish between different plant
species.

In a previous publication [4] we have already shown,
that we are able to detect and map single plants. We have
proposed an algorithm performing individual plant detection
and mapping using a 3D laser sensor on a mobile robot. Our
algorithm is based on an approach detecting the ground to



segment the point cloud into soil and other objects. In the
remaining point cloud the algorithm searches for clusters
representing individual plants using a model of a crop row.
We have shown that this task can be reliably carried out
using the 3D sensor with 59x29 rays. The 3D laser sensor
has also shown that it is robust against illumination and
atmospheric conditions, which enables the robot to operate
reliably at any weather condition even 24 hours a day.

For a species based mapping the next step is to clas-
sify the plants. In this paper we present an approach for
distinguishing different plant species using the 3D laser
sensor and machine learning methods. We are using the
above mentioned algorithm to detect the plants and use the
resulting clusters as input for the classification.

To associate a cluster with a plant species is a challenging
task. Some species look similar and in the sparsely populated
point cloud (see Figure 1(b)) it is not possible to reliably
recognize structures like leaves and branches. Furthermore,
it is difficult to translate the high level description used by
humans to identify plant species into a formal, computer
understandable description. Botanists are using field guides
to identify plants, but they are getting better and better
the more they observe samples of plant species—they are
learning the classification process. Because of these reasons
we are using supervised offline learning to classify the
species by using example plants. A further advantage of
the classification using machine learning methods is the fast
online processing.

To classify the species we have developed a set of simple,
easy and fast to calculate features to describe the plant
species. These features have been developed according to
our requirements: The classification should run in real-
time; we are also only using size independent and rotation
invariant features. The size independence is meaningful if
the plants looks similar at different growth stages. The
rotation invariance is important, because the plants should
be classified from different points of view. Our features
can be divided into two groups—in reflectance value based
and in geometrical features. Mainly we are using statistical
values describing the distribution of the data, like minimum,
maximum, standard deviation and histograms.

To learn and to compare these features, we have decided to
use the machine learning toolbox Weka [5]. We compared
the different groups of learners as well as the individual
learners, to find the best methods for our application. To
create a database for our experiments we have chosen
six different plant species, typically available at common
nurseries, and about 20 examples of each species. In the
laboratory we were able to identify over 98% of these plants
correctly.

This paper is organized as follows. In section II related
work, dealing with plant and object detection using differ-
ent sensor systems, is discussed. The plant classification
algorithm and the developed feature set are presented in

section III. Section IV shows the experimental results. The
paper closes with conclusions in section V.

II. RELATED WORK

In this section the related work dealing with crop/weed-
discrimination, plant detection and plant classification, using
different sensor systems, like vision, stereo-vision, laser
sensors and ultrasonic sensors are discussed. Further, works
dealing with 3D object recognition and feature-based learn-
ing of objects and structures are considered.

Tang et al. have introduced and compared two techniques
for corn plant and population sensing using stereo vision [6].
For corn plant identification they are using leaf detection
algorithms. To detect leafs in 3D images a high resolution
and complex algorithms are required. One big disadvantage
using vision or stereo vision is the influence by changing
lighting conditions, which are not uncommon in outdoor
applications like agriculture. Laser range finders are much
more reliable in such situations. Up to now, laser sensors
based applications are rare in this domain.

A work dealing with individual plant detection and map-
ping using a 3D laser sensor was proposed in [4]. We used
a 3D laser sensor and a highly precise RTK-GPS on a robot,
detecting the corn plants and determining their positions
to build-up crop maps of row cultivations. Even in dense
rows our approach achieved about 80% of correctly detected
plants, but we did not discriminate between crop and weed.

Paap et al. [7] used a spectral reflectance sensor for
ground-based plant detection and weed discrimination. They
used a laser sensor with different near infrared wavelength
and measured the slope between these wavelengths to deter-
mine the so called Normalized Differenced Vegetation Index
(NDVI) to discriminate between soil, crop and weed.

A method to classify plants using ultrasonic signals
accessible to bats was proposed in [8]. They are using
spectrograms of echoes of plants and calculate features
learned using a support vector machine. Works using such
biosonar sensors for natural landmark classification were
also proposed in [9] and [10]. Another method for plant
classification was proposed by Wu et al. [11]. They are using
a computer vision leaf recognition algorithm to determine
features describing the leaf’s shape and size, and a proba-
bilistic neural network (PNN) to learn the relation. For their
experiments they have used 32 kinds of plants and achieved
a detection rate of about 90%.

Besides the plant classification, there are many publi-
cations dealing with 3D object recognition and classifi-
cation. In [12] Böhm et al. are using CAD models for
curvature based range image classification. They extract
features from surface curvatures using dense 3D images,
and classify the objects using minimum distance matching.
Hetzel et al. developed a method for 3D object recognition
from range images using local multidimensional feature
histograms [13]. They only used features which are easy to



Figure 2. Algorithm overview: The grey box marks the learning and the
dashed box the classification process.

calculate and they did not need image segmentation for their
recognition algorithm. They were using histogram matching
and achieved a detection rate of about 90%.

Ghobadi et al. compared time-of-flight PMD cameras
and stereo vision systems for detecting and classifying
simple moving 3D objects using a multiclass Support Vector
Machine. They implemented and compared two methods
of feature generation. One automatically generates features
using a Principal Component Analysis (PCA), the second
uses human defined features. With the second approach
and a time-of-flight camera they got detection rates of
almost 100%.

Indeed, there are some works dealing with plant detec-
tion and classification, but they are not feasible for our
application. First, their sensors are not well suited for the
agricultural robotics application, and second, our method has
to run in real-time. The 3D laser sensor, used by us, has also
many advantages in this environment and the use of simple
and easy to calculate features is also advantageous.

III. PLANT CLASSIFICATION

In this section an overview of the classification and
learning algorithm is given. Further, the preprocessing of the
data and the features will be described. This section closes
with the selection of the learning methods.

(a) Laser coordinate system

(b) Plant coordinate system

Figure 3. Transformation into plant coordinate system

A. Algorithm Overview

Figure 2 shows an overview of the classification and
learning process. The input data are 3D point clouds with
range and reflectance values from a 3D laser sensor. First
some preprocessing techniques are applied to provide the
point cloud for further processing. Then relevant features
are derived. If the species of the sensed plant is known, the
extracted features are added as new data to the training set,
otherwise the features are used as input for the classification
process. For the training dataset different classifiers are
trained and stored in the classification model database. The
learned classifier is applied to the features of the unlabeled
3D data and the label of the object is returned.

B. Preprocessing

The preprocessing consists of three steps. The first step
is to detect the ground plane using a RANSAC algorithm
and eliminate the points belonging to this ground plane. In
the next step the remaining point cloud is clustered and
individual plants are detected. In the third step we determine
an individual coordinate system for each plant. The x- and y-
axis of these coordinate systems are placed on the ground,
the z-axis points upwards and is located at the center of
the plant (see Figure 3). Finally, the points are transformed
into the according plant coordinate system. This individual
plant detection algorithm was already proposed in [4]. We
showed that we are able to separate individual plants in
row cultivations. What is missing is to distinguish between
different plant species, e.g., between corn and weed.

C. Feature Extraction

Our 3D laser sensor provides two types of data: re-
flectance values and 3D coordinates. Using these data, we



developed a set of features which describes the appearance
of the plant species, with the criteria of size and rotation
invariance. The features must be simple and also be fast
to calculate, because our sensor has a low resolution and
the classification should run in real-time. Our feature set
can be divided into two main groups: Reflectance based
and geometrical features. The geometrical features can also
be divided into features considering the 3D distribution, the
distribution into the paraxial planes according to the plant
coordinate system, and the neighborhood of the points. In
this section the 83 developed features are described.

1) Reflectance Features: Our experiments have shown
that different plants species have broad variations with
respect to the reflectance values. The reflectance value
depend on the reflectance characteristic of the sensed object,
but also on the angle of impact. Despite the last property
the reflectance value is very useful for plant classification.
Although the angle of impact can not be measured, the
reflectance value encodes information about the leaf size
and shape.

To encode the reflectance properties of the plants we have
developed a set of statistical features. For each measuring
point a reflectance value between 0 and 1 is determined.

• Feature 1: Minimum reflectance value
• Feature 2: Maximum reflectance value
• Feature 3: Range of the reflectance values
• Feature 4: Mean of the reflectance values
• Feature 5: Median of the reflectance values
• Feature 6: Standard deviation of the reflectance values
• Feature 7: Variance of the reflectance values
• Feature 8-16: Histogram of the reflectance values

The optimal number of bins for a histogram can be calcu-
lated using the rule of Sturgess (|bins| = dlog2 n+ 1)e).
In our application |bins| depends on the average number
of points per plant. This number was experimentally deter-
mined and is about 243, which leads to |bins| = 9. This
value is also used for the geometrical feature histograms.

2) Geometrical Features: Besides the reflectance values
the laser sensor provides range data which can be trans-
formed into 3D coordinates. Using these coordinates we can
calculate values characterizing the shape, dimension and the
structure of the plant.

Let P = {(x1, y1, z1), (x2, y2, z2), . . . , (xn, yn, zn)} be
the 3D point cloud of a plant with respect to the plant
coordinate system, with n = |P | the number of points,
h = max({y1, y2, . . . yn}) the height of the plant, and
w = max

({√
x2 + z2 : (x, y, z) ∈ P

})
the width of the

plant. n, h and w are not size invariant and should not be
used as features if different growing stages of the plants are
expected. But by using these values, size invariant features
like the ratio and the density of the point cloud can be
determined.

• Feature 17: Ratio of height to width

(a) Front-view Px,z (b) Side-view Py,z

(c) Top-view Px,z

Figure 4. The images show the 2D projection on front-, side- and top-view.
The projections are created using the point cloud of a Guzmania Bromelia
plant (see Figure 5(c)).

• Feature 18: Density with respect to bounding cylinder

ρ =
n

π · w2 · h
Further 3D geometrical features depends on the distribu-

tion of the point cloud with respect to the cloud center C.
For that, let

D = {|C − p1|, |C − p2|, . . . |C − pn|}, with pi ∈ P.

By scaling D with 1
max(D) the distances can be transformed

into the size independent description:

D̄ =
{
d1

dmax
,
d2

dmax
, . . . ,

dn

dmax

}
, with di ∈ D.

Using D̄, similar to the reflectance based features, the
following statistical features can be calculated.

• Feature 19: Mean of the distances from C
• Feature 20: Median of the distances from C
• Feature 21: Variance of the distances from C
• Feature 22: Standard dev. of the distances from C
• Feature 23-31: Histogram of the distances from C

These features are describing the distribution inside the point
cloud.

Besides the 3D coordinates we have developed 2D based
geometrical features. For that, the projections on the paraxial
planes of the plant coordinate system are used. Figure 4
shows these front-, side- and top-view-projections. Despite
the low resolution, these projections show characteristic
structures, e.g. leaves. Due to the orientation of the sensor
according to the plant the front- and side-view are not
similar.



Although the elements of these sets are two-dimensional,
we can use the 2D distances from the center C and get fea-
tures analogical to the 3D geometrical features, respectively
for each projection. Again the distances are normalized.
These features are:
• Feature 32: Mean of the distances in Py,z

• Feature 33: Median of the distances in Py,z

• Feature 34: Variance of the distances in Py,z

• Feature 35: Standard dev. of the distances in Py,z

• Feature 36-44: Histogram of the distances in Py,z

• Feature 45: Mean of the 2D distances in Px,z

• Feature 46: Median of the 2D distances in Px,z

• Feature 47: Variance of the 2D distances in Px,z

• Feature 48: Standard dev. of the 2D distances in Px,z

• Feature 49-57: Histogram of the 2D distances in Px,z

• Feature 58: Mean of the 2D distances in Px,y

• Feature 59: Median of the 2D distances in Px,y

• Feature 60: Variance of the 2D distances in Px,y

• Feature 61: Standard dev. of the 2D distances in Px,y

• Feature 62-70: Histogram of the 2D distances in Px,y

The last group of features considers the distances to the
neighbouring points. To efficiently determine the nearest
neighbours and the distances to them, the points are orga-
nized in a kd-tree. In contrast to the features describing the
distribution of the point cloud, these features encode the
relations between neighbouring points.

Let d̃i be the distances to the nearest neighbour of pi and
D̃ the set of these distances:

D̃ = {d̃1, d̃2, . . . , d̃n}, with d̃i = min
i 6=j∈[1,n]

dist(pi, pj)

D̃ is normalized using the maximum distance between
two neighbours. Using the normalized set d̃i, the following
nearest neighbours (NN) features are determined:
• Feature 71: Mean of the distances to the NN
• Feature 72: Median of the distances to the nearest NN
• Feature 73: Variance of the distances to the NN
• Feature 74: Standard dev. of the distances to the NN
• Feature 75-83: Histogram of the distances to the NN

D. Classification

Our approach to learn to classify the plants is based on
supervised learning. For the learning process we generated
a training set with known samples and trained the classifiers
offline. The learning process is shown in Figure 2. For that
we used the machine learning toolbox Weka [5], which sup-
plies a large number of learning algorithms. Using the Weka
explorer the learning methods can be easily and efficiently
compared. Weka is Java based and outputs a model for each
classifier as a Java class file, but also the classifier in text
form as a function, tree, and so on, depending on the used
learning method. Using this output, a classifier can be easily
implemented. The classification process should run in real-
time and is also shown in Figure 2.

Which classifier is best for our application is hard to
predict, so we grouped them and compared the groups and
the individual classifiers empirically. The chosen classifier
groups and classifiers are listed in table II. The results of the
comparison between the groups and the individual classifiers
are shown in section IV.

IV. EXPERIMENTS

The main objective of this work is to show, that it is
possible to distinguish multiple plants using a low resolu-
tion 3D laser sensor and fast to calculate features. In this
section the used 3D laser sensor is introduced, further we
present the tested plants and describe how this dataset was
recorded. This is followed by the experimental results, with
the comparison of different classifiers and the evaluation of
the used features.

A. The FX6 3D laser sensor

The FX6 sensor by Nippon Signal [14] is a lightweight
3D laser sensor. Is consists of no rotational mechanical
parts and is thus robust against mechanical stress, but has
a low resolution (59x29 rays). It measures the distance and
reflectance intensity using an infrared pulsed laser light with
up to 16 fps, determining the time-of-flight at a smallest unit
of about 30 picoseconds, which leads to a ranging precision
of about 1 cm. The laser beam is reflected by a mirror os-
cillating independently into two directions. The combination
of these oscillations results in a Lissajous figure. The main
advantage of the FX6 sensor is its reliability under changing
lighting conditions, e.g., the sensor is not influenced by
the sunlight and by other weather conditions. Using a FX6
sensor it is even possible to operate 24 hours a day and
handle conditions like light fog and dust. In agricultural
environments such conditions may occur. A more detailed
description and comparison with other 3D technologies, like
PMD cameras and stereo vision, can be found in [4].

B. Tested plants

To generate a training set, we decided to use potted plants
available in common nurseries, and sensed them separately
from each other in the laboratory. This relieved the collection
of the data, and we got a good and clean database. For the
database we have chosen the plants shown in Figure 5. In
this figure an example image of each chosen plant species
and the corresponding point cloud is displayed.

To distinguish plant species it is not sufficient to use
one example per species, otherwise we would learn this
particular example plant. Due to that, we have used plants
from nurseries where greater quantities of one species are
available. In Table I the number of samples and the number
of datasets per species are stated. To generate the datasets
we have used different adjustments of the laser sensor and
also rotated the plants, to get different views of each plant.
Besides the plants, we also sensed the ground to be able to



(a) Cyperus Zumula (b) Dracaena Sanderina

(c) Guzmania Bromelia (d) Leucanthemum H.

(e) Nephrolepis Exaltata (f) Solanum Jasminoides

Figure 5. The images (a)-(f) show our six tested plants species.

Table I
NUMBER OF SAMPLES AND DATASET PER PLANT SPECIES

Plant species Number of Number of
samples datasets

Cyperus Zumula 20 140
Dracaena Sanderina 8 100
Guzmania Bromelia 20 158

Leucanthemum Hosmariense 23 100
Nephrolepis Exaltata 12 127

Solanum Jasminoides 24 100

determine the plant coordinate system, which is essential for
the feature calculation.

C. Classifier evaluation

In our first experiments we have compared the classifiers
listed in section III-D using the Weka explorer and all of the
83 features. To evaluate the performance of these classifiers
we ran a ten-fold cross-validation ten times and took the
mean of the percentage of correctly classified instances for
each classifier. Table II shows these results sorted by the
classifier groups. The classifiers of each group are sorted
according to the performances.

The evaluation has shown, that the classification perfor-
mance strongly depends on the classifier used. The best
classifiers achieved above 98% of correctly classified in-
stances, the worst just 34.46%. Each group has a classifier
with a detection rate above 87%, but the functions group
outperforms the others. Each of these classifiers achieved a
detection rate above 92%.

The best classifiers were LMT [15], a classifier for
building logistic model trees, which are classification trees
with logistic regression functions at the leaves, SimpleLo-
gistic [15], a classifier for building linear logistic regression
models, SMO [16][17] an implementation of John Platt’s

Table II
CLASSIFIER EVALUATION

Classifier Classifier Avg. Correctly
Group Classified [%]
Bayes BayesNet 89.62

classifier NaiveBayes 87.01
NaiveBayesUpdateable 87.01

NaiveBayesMultinomial 46.18
ComplementNaiveBayes 34.46

Trees LMT 98.8
RandomForest 92.97

J48 85.82
NBTree 85.68

REPTree 82.3
RandomTree 69.08

DecisionStump 37.85
Rules Nnge 89.53

PART 86.76
Jrip 85.06

Ridor 84.8
DecisionTable 74.76

ConjunctiveRule 38.21
Functions SimpleLogistic 98.8

SMO 98.37
MultilayerPerceptron 98.14

RBFNetwork 94.55
Logistic 92.46

Lazy IB1 92.04
classifier Ibk 92.04

Kstar 90.14
LWL 49.25

Misc. HyperPipes 87.84
VFI 84.79

sequential minimal optimization algorithm for training a
support vector classifier, which solves the multi-class prob-
lems using pairwise classification, and MultilayerPerceptron
a neuronal network which uses backpropagation to classify
instances. The two best classifiers, LMT and SimpleLogistic,
which achieved a detection rate of about 99%, are closely
related. The tree build by LMT uses SimpleLogistic at the
leaves, but in our case it turned out that the tree reduces to
one node.

Using the presented feature set the classification runs in
real-time for all classifiers. The time consuming task is the
feature extraction, but runs also in real-time. What takes time
is the training phase. Using the 725 instances in the database,
the training phase of SMO took less than one second, of
SimpleLogistic about 10 seconds, of LMT 30 seconds and
of MultilayerPerceptron about a minute in average. The high
detection rates and short computational time have shown that
the proposed method is sufficient for a reliable classification
of plant species in real-time.

D. Feature evaluation

We have used the entire set of 83 features to evaluate
the classifiers. To see which characteristics are particularly
important for the classification, these features were divided
into six groups as listed in table III. To compare these groups
we have used the above mentioned four methods, which



Table III
FEATURE EVALUATION

Feature Group
Avg. Correctly Classified Plants [%] using

LMT Simple SMO Multilayer
Logistic Perceptron

Entire Features Set (1-83) 98.8 98.8 98.14 98.37
Reflectance Based (1-16) 85.93 85.93 81.25 85.24

3D Point Cloud Distribution (17-31) 81.38 77.66 72.14 82.76
2D Projection on y-z-Plane (32-44) 61.24 54.21 51.45 57.93
2D Projection on x-z-Plane (45-57) 70.48 70.62 69.66 71.45
2D Projection on x-y-Plane (58-70) 50.07 49.93 51.03 50.46

3D Neighbourhood (71-83) 61.66 60.14 52.41 57.93

yielded the best results when using all the features, and
trained the classifiers again with each group. The comparison
shows that the most important features are the reflectance
based and the 3D point cloud distribution features. Each of
these groups yielded a detection rate of over 80% when used
alone.

V. CONCLUSIONS

In this paper we have introduced a method for distinguish-
ing plant species by using a low resolution 3D LIDAR sensor
and supervised learning. For this purpose we have developed
an easy to compute feature set with common statistical
features which are independent of the plant size. We have
trained and compared several classifiers with this feature set.
It turned out that the best methods for our application are
simple logistic regression functions, support vector machines
and neuronal networks. In the laboratory we used plants of
six different species and were able to classify nearly 99%
of these plants correctly.
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