
Learning Bayesian Networks for Improved
Instruction Cache Analysis

Mark Bartlett, Iain Bate and James Cussens
Department of Computer Science

University of York
Heslington, York, UK

Email: firstname.lastname@cs.york.ac.uk

Abstract—As modern processors can execute instructions at far
greater rates than these instructions can be retrieved from main
memory, computer systems commonly include caches that speed
up access times. While these improve average execution times,
they introduce additional complexity in determining the Worst
Case Execution Times crucial for Real-Time Systems. In this
paper, an approach is presented that utilises Bayesian Networks
in order to more accurately estimate the worst-case caching
behaviour of programs. With this method, a Bayesian Network
is learned from traces of program execution that allows both
constructive and destructive dependencies between instructions
to be determined and a joint distribution over the number of
cache hits to be found. Attention is given to the question of how
the accuracy of the network depends on both the number of
observations used for learning and the cardinality of the set of
potential parents considered by the learning algorithm.

Index Terms—bayesian networks; machine learning; instruc-
tion caches; worst case execution time

I. INTRODUCTION

For many computing applications, correct execution of a
program is equivalent to the correct functional behaviour of
the system. However in the domain of Real-Time Systems,
programs must not only have correct functional behaviour but
also correct temporal behaviour. For example, flight controls
in an aircraft must be guaranteed to respond within a given
period of time. Most commonly, such temporal constraints
consist of a deadline before which a task must be guaranteed
to terminate. In order to create schedules that guarantee these
deadlines are met, it is first necessary to obtain the Worst Case
Execution Time (WCET) of a task, that is, the greatest number
of clock cycles that the task could execute for given any input
and any initial hardware state.

Due to the infeasibly high number of possible combinations
of hardware state and inputs for many realistic programs,
it is impossible to determine the WCET exactly through
exhaustive testing. Similarly, the halting problem precludes
the exact determination of this quantity through reasoning
about the program structure and hardware configuration [1].
Instead the process of static analysis is commonly used,
which mathematically reasons about the behaviour of the
program and hardware, overcoming the halting problem by
specific generalisations of the mathematical operations which
are guaranteed not to underestimate the real execution time [2].
While this aproach is typically used academically, practical

issues mean that measurement-based approaches are com-
monly needed industrially. In any case, static analysis almost
inevitably leads to pessimism in the WCET estimate, resulting
in wasted resources or unnecessarily fast and expensive hard-
ware being purchased. This paper presents an approach using
Bayesian Networks which seeks to overcome one source of
this pessimism.

The rate at which processors can execute instructions has
long since outstripped the rate at which those instructions
can be retrieved from a computer’s main memory. One com-
mon solution to this problem has been the introduction of
instruction caches, which are small, fast areas of memory that
sit between a computer’s processor and its main memory.
Instructions which it is believed will be soon needed by
the processor are placed in the instruction cache, reducing
the amount of time needed to retrieve these instructions for
execution. While this results in a decrease in typical execution
time, it makes reasoning about the temporal behaviour of
programs much more difficult; the number of clock cycles to
fetch an instruction for execution can now vary by an order
of magnitude depending on whether or not it is already in
the cache when required. It is therefore important to estimate
accurately which instructions are in cache when needed in
order to avoid pessimism in the WCET estimate. It is this
problem that this paper seeks to address.

Traditional approaches to this problem have been based on
creating mathematical models of caches and modifications to
the static analysis techniques [3]. However, these have prob-
lems, as will be discussed in Section II. We therefore propose
an alternative technique which seeks to remove the need for the
manual creation of such models by the automated learning of
an appropriate model from suitable data. More specifically, we
outline a method by which a Bayesian network is learned from
data obtained during some example executions of the program.
This Bayesian network can then be utilised to determine which
instructions have an effect on the caching behaviour of which
other instructions, or that can be used directly to determine a
joint probability distribution over the number of instructions
not present in cache when needed. Through basic knowledge
of the functionality of caches, we are able to vastly reduce
the number of potential Bayesian network structures that form
valid models of the cache, making it feasible to exhaustively
search for the network with maximum likelihood given the

start
1

end
2

6

3

4
5

Fig. 1. The control flow graph for an example program.

observed data.
Building on this, two parameters affecting the learning of

the model are studied. Firstly, we assess the question of how
the quality of the learned network is related to the amount
of data from which it is created. Secondly, we look at the
trade-off between the accuracy of the learned network and the
number of potential parents considered for each node in the
network during the learning process. We evaluate these two
parameters in part by assessing the determinism of the learned
network. We know from the functionality of a cache that the
perfect network would consist of entirely deterministic nodes,
hence the degree to which the learned network possesses this
property is a good guide to quality of the learning.

The rest of this paper is organised as follows. Firstly,
section II presents an overview of the existing approaches to
WCET and cache analysis along with the issues that motivate
the need for this new approach. Section III then presents details
of this approach, focussing on the techniques used for the
construction of the appropriate Bayesian network. Section IV
evaluates the technique on an examples and studies the role of
two parameters associated with the learning. Finally, section V
concludes.

II. BACKGROUND AND RELATED WORK

A. Worst Case Execution Time Analysis

There are two major approaches to determining the WCET
of a program. For systems in which the WCET must be
absolutely guaranteed (such as safety critical systems), static
analysis [2] is used to reason about the code, approximat-
ing the behaviour of the code in a way that will give an
overestimate of the real WCET. This is safe, yet introduces
waste from the pessimism in the estimate. Where missing
deadlines is permissible but undesirable, such as in audio-
visual application, testing [2] allows a tighter estimate of the
WCET to be found, but this will in general occasionally be
exceeded during use.

Hybrids between the two approaches exist, in which high-
level analysis of possible paths through the programs are
combined with low-level timing information about these paths
obtained by execution [4]. A recent trend in this area has
been to attempt probabilistic WCET analysis [5] in which
rather than attempt to define an upper bound on the WCET,
an estimate is obtained such that it will only be exceeded with
a certain probability. By the correct choice of this probability,
a trade-off between high utilisation of the hardware and
infrequently missed deadlines can be obtained. This paper

demonstrates that the joint probability distributions represented
by Bayesian Networks can be useful in determining these
probabilities.

For both the static analysis and hybrid methods, the task
of determining the WCET estimate ultimately consists of
maximising an integer linear objective function subject to
constraints imposed by the program structure.

Total Execution Time =
∑
i∈I

TiCi (1)

where I is the set of all instructions in the program, Ti is the
time to execute instruction i and Ci is the number of times
instruction i is executed in the program. Constraints between
the various Cis are found by determining the structure of the
program in terms of all paths that can be followed through the
code. Such a structure is known as the control flow graph. For
example, for the program whose control flow graph is shown
in figure 1, it is possible to deduce amongst other constraints
that C1 = 1, C2 = C5 and C2 = C3 + C4.

B. Caches in Real-Time Systems

Most processors, including increasingly the simple proces-
sors found in embedded systems, now feature fast access
caches between themselves and the main memory in order to
decrease the time spent waiting for instructions to be fetched.
Instruction caches function by retaining a given amount of
the most recently executed instructions, on the assumption
that what has been recently used is most likely to be used
again soon. Instruction caches typically do not cache single
instructions at a time but rather, when an instruction must
be fetched from main memory, will retrieve and store a
contiguous set of instructions including the one requested. For
example fetching the instruction at address 1001 may cause
those at 1000, 1002 and 1003 to be retrieved and cached
as well. These fixed sets of instructions are known as cache
blocks. Most caches are arranged such that cache blocks are
always mapped to the same particular address (or small set of
addresses) in the cache, evicting whatever is currently present.

While these caches vastly improve the typical performance
of computer systems, they make reasoning about the WCET
of code executed on them significantly more complex. One
simple solution for static analysis is to assume that all in-
structions are fetched from main memory every time they are
needed. This guarantees the safety of the estimate, but makes
it so overly pessimistic that it becomes practically useless [6].

Static cache analysis that sought to reason about caches
rather than ignore them was first introduced by Mueller [3].
The technique consists of assigning a label to each instruction
in the program stating whether or not it can be found in the
cache when needed. These labels are shown in Table I. In order
to determine the correct labelling for each instruction, the
program is examined in conjunction with a model of the cache
to be used. Through determining what may or may not be in
the cache before the execution of each instruction, the correct
label may be determined. For those instructions assigned
the conflict label, the analysis was unable to determine that

TABLE I
LABELS FOR CACHING BEHAVIOUR OF AN INSTRUCTION.

Label Meaning
Always Hit The instruction is always in the cache when needed.

Always Miss The instruction is never in the cache when needed.
First Hit The instruction is in the cache when first needed, but

never when needed after that.
First Miss The instruction is not in the cache when first needed,

but always when needed after that.
Conflict The instruction cannot be statically determined to have

any of the other labels.

the instruction either was or was not in memory and thus
potentially pessimistic assumptions must be made, e.g. all
accesses are cache misses.

For systems with caches we can now modify the function
that WCET analysis seeks to maximise (equation (1)) to
become

Total Execution Time =
∑
i∈I

TiCi + Tmiss × Cmiss (2)

where Tmiss is the extra time taken to fetch an instruction
from main memory instead of cache (the cache miss penalty)
and Cmiss is the number of cache misses in the program.

There are problems with this technique however. The first
and most obvious is that for some instructions it is impossible
to state whether they will be in the cache or not when required.
For example, the contents of the cache will most likely be
different depending on which way the program has gone
through an if then else statement. This means that a
pessimistic assumption will need to be made about the cache
contents after the statement, making the WCET estimate less
accurate, or that both potential cache contents will need to be
stored, leading to a combinatorial explosion in computational
complexity.

We believe that more robust, probabilistic techniques which
do not rely on detailed knowledge of the hardware are clearly
needed. This position is backed by others [2].

C. Bayesian networks

Bayesian networks are a form of graphical model that
record a joint probability distribution over a set of random
variables [7]. A Bayesian network consists of a directed
acyclic graph (DAG) in which each node corresponds to a
random variable, and edges between nodes indicate conditional
dependencies between the appropriate variables. A conditional
probability distribution for each variable is associated with the
corresponding node in the network.

While Bayesian networks can be constructed analytically for
problems which are fully understood, it is also possible to infer
both the structure of the network and the associated conditional
probabilities from data [8]. For any Bayesian network without
a prior probability over the network structure, the structure for
which the actual data was most likely to have been observed
is the one that maximises the following quantity.

n∏
i=1

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

·
ri∏

k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

(3)

where there are n variables, qi is the number of combination
of values for the candidate parent nodes of the ith variable,
ri is the number of possible values for the ith variable, Γ(·)
is the gamma function, Nijk is the number of observations of
that particular combination of values in the dataset, Njk =∑n

i=1 Nijk, N ′
ijk is a constant commonly set to 1

qiri
, and

N ′
jk =

∑n
i=1 N

′
ijk.

As Bayesian networks can be used to reflect causal struc-
tures, they seem well suited for the task of cache prediction;
whether or not an instruction is present in cache is directly
related to what instructions have recently been executed.
Though ultimately the contents of the cache are entirely deter-
ministic, the inability to reason completely about them means
a probability distribution over the current state conditional on
that which has previously occurred is perhaps the fullest and
most useful representation possible.

Bayesian networks have previously been used in an attempt
to aid WCET analysis [9]. In that work, a Bayesian Network
was learned at a much higher level of analysis than in the
current paper. The aim was to characterise the way in which
the execution time of various parts of the code affected the
execution time of other code sections. Such timing effects
could be due to cache interactions as studied here, but may also
have been due to other hardware interactions such as through
the state of the pipeline or branch predictor, or due to software
interdependencies such as infeasible paths.

III. INSTRUCTION CACHE ANALYSIS USING BAYESIAN
NETWORKS

Having identified problems with the current approaches to
cache analysis and the use of probabilistic machine learning
as a potential solution, it is necessary to develop a method to
test this approach. The method presented here expands consid-
erably on a technique that has been presented elsewhere [10]
and develops that previous approach to increase the accuracy
of the learned networks.

Our approach consists of executing the program on a
subset of its possible inputs and then inferring the Bayesian
network which best explains the observed patterns of cache
hits and misses in this dataset. This network represents a
joint probability distribution over the cache hits and misses
of each instruction in the program and can therefore be used
to estimate the probability of a given number of cache miss
penalties being incurred. The rest of this section now explains
how the relevant data is obtained, processed and then used to
infer the appropriate Bayesian network. The issue of how this
network can be used to estimate the number of cache misses
and WCET is addressed in [10].

A. Obtaining observations

In order to learn a Bayesian network replicating the caching
behaviour, it is necessary to first obtain observations of the

behaviour. There are many ways that such data can be ob-
tained [11]. As the data required consists of the sequence of
instructions executed and whether they were fetched from the
cache or from the main memory on each execution, two major
options are possible.

The first is some manner of hardware instrumentation, such
as using a logic analyser, to monitor the address buses between
CPU and cache, and cache and main memory. However,
this is time consuming to set-up and ties one to a fixed
hardware architecture. A simpler method is to obtain results
from a hardware simulator, such as M5 [12]. For the simple
chips used in most embedded systems, these simulators give
highly accurate approximations of the real chips, but are
easier to monitor, allow for the collection of far more detail
about the operations occurring on chip (within the pipeline,
for example), and permit the hardware to be modified with
minimal effort.

B. Processing the observations

The output of the simulator is a sequence of instruction,
cache behaviour pairs whereas Bayesian Networks perform
analysis over a given set of variables. It is therefore necessary
to extract appropriate variables from this sequence.

An obvious representation of variables is to construct a
variable for each occurrence of each instruction. The first oc-
currence of instruction 3 is therefore 31, its second occurrence
32 etc. However, this creates a problem with the order in which
variables occur. For example, consider the program whose
control flow graph is shown in figure 1. On one execution
of this program, the program may execute instruction 3 on
the first iteration of the loop then instruction 4 on the next,
while on a separate execution, instruction 4 may be first
executed then instruction 3. For reasons that will be explained
in section III-C, the order of instruction execution is useful
in building the Bayesian network. A variable representation
is therefore needed that shows the first execution of 3 occurs
before the first 4 in the first example and after it in the second.

Therefore we choose a representation in which variables
are instead indexed not by the number of occurrences of
that instruction but instead by the iteration of the loop in
which they occurred. This necessitates the introduction of an
additional value for variables indicating that they were not
executed on that iteration. Returning to the example in the
previous paragraph, we can now have four variables in each
of the runs 31, 32, 41 and 42, where 41 and 32 take not-
executed values in the first run and 31 and 42 take that value
in the second.

In addition to these instruction variables, it should be noted
that the behaviour of some instructions are likely to depend
on what has happened not on the xth iteration, but on the final
iteration. Again, considering the example given in figure 1, if
the loop can execute a variable number of times, we might
reasonably expect the cache behaviour of instruction 6 to
depend on what has happened on the final iteration. This
may mean it sometimes follows 51, 52 . . . 5n (where n is the
maximum number of iterations). Learning such a structure is

intuitively complex and will lead to very few observations of
the behaviour for various 5i when i is a large value.

We therefore introduce additional variables for instructions
in loops, numbering them from the final iteration backwards.
This creates variables recording the behaviour of instructions
on the last iteration that the loop was executed, the second
to last, etc. For a given instruction, X , these variables will
be labelled with negative indices, X−1, X−2 . . . respectively.
In the previous example, this now means that the instruction
immediately preceding instruction 6 will be 5−1 regardless
of how many loop iterations occur in any given run of the
program.

Each execution of the program therefore becomes a collec-
tion of assignments of either hit, miss or not-executed to each
of the variables representing each instruction on each loop
iteration. A dataset of executions represented in this way then
becomes suitable input for the learning of a Bayesian network.

Once such a dataset is collected, some instructions in it will
be observed to always exhibit the same behaviour whenever
they are executed in each execution of the program. For
example, in figure 1, assuming that instruction 1 is not in
the cache when the program begins, it will always have the
value of miss regardless of the execution of the rest of the
program. As these instructions convey no information on how
other instructions may be affected if their value were different,
they can be removed from consideration when constructing
the Bayesian Network. It may or may not be that the same
behaviour would indeed be observed for all possible inputs;
without an exhaustive execution of all inputs, such a guarantee
could not be made using a testing-based approach. The fixed
behaviour exhibited by these instructions can be included
directly in the calculation of the WCET at the end of the
process.

C. Learning the Bayesian network

As the cache state does not depend solely on what instruc-
tion has just been executed but also on the path taken to
reach that point, we cannot construct a Bayesian network for
the cache that exactly replicates the structure of the control
flow graph. In other words, the outcome of a cache fetch is
not a Markov process of the current instruction, but depends
on potentially all previously executed instructions. Therefore,
a tree structure for the Bayesian network in which each
node represents an instruction execution and also the path
along with the program had travelled to reach that instruction
would be possible, but would also suffer from a combinatorial
explosion in the presence of loops in the control flow graph.
For example, in figure 1 there is one path that arrives at
instruction 3 on the first iteration of the loop, 2 paths by the
second, 4 paths on the next, then 8, 16, 32 If the program
could iterate thousands of times, such a network would be
too large to store, and would require an excessive number of
examples in order to produce conditional probability tables for
each node.

Instead, the structure of the Bayesian network is created by
a learning process. For each variable identified in the previous

stage, a node will be created in the final network, and parents
that may affect it are learned from other variables. For each
node, all sets of potential parents are generated and the set
which maximises a variant of the likelihood score given by
the equation in Section II-C is found by exhaustive search.

Using the equation given in Section II-C directly would
allow for all possibilities of value to be predicted for a
node (with certain probabilities). In fact, we wish to create a
network which assigns probabilities of each node being either
a hit or miss, but does not make predictions about whether
an instruction is executed or not. Such an issue is part of the
flow analysis of the problem and is determined by another part
of the WCET analysis. What is in fact desired is a network
in which each node predicts the probability of a hit or miss
given that the instruction is executed, but that still makes use
of whether other instructions are not-executed.

The appropriate quantity that each node, i, seeks to max-
imise in its choice of parents is therefore:

qi∏
j=1

Γ(N ′
ij)

Γ(N ′
ij +Nij)

·
r′i∏

k=1

Γ(N ′
ijk +Nijk)

Γ(N ′
ijk)

(4)

where r′i is the set {hit,miss} (i.e. the possible values of i
except not-executed) and all other symbols are as defined in
section II-C.

Conditional probability tables in the nodes are then com-
puted directly from the frequencies of the observations of each
combination of the values of the parents and the variable itself
in the dataset. Again these tables are computed such that they
represent the conditional probability of an outcome given that
the outcome is not not-executed.

The exception to this learning is the nodes calculated from
the final iteration backwards i.e. those nodes defined above
as having negative indices. These nodes may be used as
parents of other nodes, but are added to the Bayesian network
without having their own parents learned, but rather have
their parents set as all nodes that refer to the same number
instruction and which have positive indices. For example, the
parents of 4−1 (the last iteration of instruction 4) will be
set to {41, 42, 43 . . . 4n} where n is the greatest number of
iterations observed. The conditional probability distribution of
these nodes is set based on the probabilities of each parent
node and the probability of that parent node being the parent
with the largest index which does not have a value of not-
executed.

As even simple programs may consist of thousands of
instructions and the learning of the Bayesian network is NP-
hard in the general case [8], we introduce domain specific
knowledge into the learning process. This significantly reduces
the search space of potential Bayesian networks and hence
makes the learning feasible. The cache contents depend on
those instructions that have already been executed. Therefore,
the set of potential parents for each instruction can be limited
to only those which occur at some point before the instruction
being considered. This can be done without adversely affecting
the network learned, indeed it may improve the network by

start
73

end

8
14

68

15
23

64

36

60

126

132

151

933

952

953 1051

1125

Fig. 2. The control flow graph for the bubblesort program.

removing from consideration parents that could not possibly be
parents in the real world but that nevertheless have fortuitous
correlations with the node. It is for this reason that the repre-
sentation of variables adopted in section III-B was chosen. The
partial ordering of instructions that this representation permits
makes it possible to determine exactly those variables which
occur before others and hence may be parents to those later
nodes.

Observing that the cache contents depends most on those
instructions most recently executed, we may also limit the
set of parents to consider to those instructions that have
been executed within a given number of steps previous to
this instruction along all possible execution paths. Unlike the
previous limiting of parents to consider, this restriction may
result in some loss of precision of the learned network as
the functioning of caches occasionally allows for some long
since executed instructions to still be present in the cache. In
choosing the number of previous instructions to consider, there
is a trade-off to be made between the accuracy of the learned
network and the speed at which it is learned. This trade-off is
studied in greater detail in the next section.

The control flow graph of the program under consideration
can be used to identify those instructions whose potential
execution occurs within a set distance before the instruction
of interest.

IV. RESULTS AND EVALUATION

The technique was evaluated on a bubblesort routine adapted
from the collection of benchmarks held by Mälardalen Uni-
versity1 which are commonly used in evaluating WCET tech-
niques. Specifically, we use a version of the code which takes
an input vector containing between 10 and 100 integers in
the range [0,10] and rearranges them in ascending numeri-
cal order. This simple program inherently features different
paths through the main loop for different inputs (as, at each
comparison between two values, the program may take the
swap or not swap path). Through choosing to sort a variably
lengthened input, the number of iterations through the main
loops also varies between different runs. The control flow
graph associated with this program is shown in figure 2.

In this paper, the aim of the experiments was to assess how
the quality of the learning depended on two different factors.

1http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

Firstly, the effect of the number of observations of the program
executing on the final network. Generating traces of simulated
program is very time consuming and hence it would be better
to avoid performing more simulations than necessary. On the
other hand, without sufficient data, any learning process is
likely to notice spurious correlations in the dataset that would
not appear in the full set of all possible inputs. Reaching a
trade-off between these two competing pressures is essential.

The second issue to study is number of nodes to consider as
parents when learning the structure of the Bayesian network. In
section III-C that it was stated that the most recently executed
instructions would, in general, have the greatest effect on
whether or not an instruction could currently be found in
the cache. It was then noted that limiting the instructions
considered as potential parents of each node to just those
recently occurring was a possible way to reduce the number of
parent sets to consider and hence make the search for the best
parents feasible. However, as it is theoretically possible for any
previously executed instruction to affect the current contents
of the cache, such a reduction has the potential to adversely
affect the accuracy of the learned network. The issue of the
number of parents considered and how this affects both the
time taken for learning and learned network will therefore be
assessed here.

Experimental observations for these experiments were ob-
tained using the M5 simulator in its standard configuration for
the ALPHA processor. The settings for the instruction cache
used was a cache size of 1kB, cache blocks of 32 bits (equating
to 8 instructions) and a cache associativity of 4. These settings
were chosen such that the whole program didn’t fit in the
cache at once (making analysis unnecessary) but are otherwise
arbitrary chosen typical values.

An earlier version of this technique has been previously
evaluated against the program with the control flow graph
shown in figure 1 and found to correspond reasonably to the
ideal Bayesian network, albeit with some overfitting [10]. As
the bubblesort is a real example for which an ideal Bayesian
network was not known and very difficult to derive, it is
impossible to evaluate the network based on how closely it
corresponds to the ideal network. Instead it will be studied in
terms of two of its properties; the network structure and the
conditional probability tables associated with the variables.

Table II shows data on the structure of Bayesian networks
learned with various combinations of dataset size and for
various numbers of parent nodes considered. The parent nodes
are limited by only allowing those instructions that may have
been executed less than X instructions previous to the instruc-
tion of interest to be considered. This quantity is referred to
henceforth as the parent limit.

The data in table II shows two trends in the data. As the
parent limit increases, the number of nodes in the network
that are assigned no parents decreases and the number being
assigned a single parent increased. In all cases, no nodes were
found to have more than one parent for reasons that will be
discussed later. This trend is true for all data sets studied but
particularly pronounced for the smaller data sets.

TABLE II
NUMBER OF NODES WITH A GIVEN NUMBER OF PARENTS.

Dataset size Number of Parents Parent Limit
1 2 4 8 16

10 0 275 182 122 91 16
1 0 93 153 184 259

20 0 453 303 207 158 46
1 0 150 246 295 407

30 0 579 384 0 194 64
1 0 195 321 385 515

40 0 687 457 307 231 93
1 0 230 380 456 594

50 0 705 468 314 236 121
1 0 237 391 469 584

100 0 814 540 362 272 199
1 0 274 452 542 615

Secondly, as the size of the dataset is increased, the number
of nodes in the Network also increases. This is partially due
to the discovery and execution of instructions in the larger
data sets that have not been seen in the smaller data sets. This
may occur either through encountering a longer input list than
the previously longest seen, or through executing instructions
that were not executed on particular iterations in the smaller
data sets. The increase is also due to the increased chance
of observing some instructions exhibiting multiple caching
behaviours in a larger data set and hence being included in the
network, when in smaller data sets some instructions appeared
to have non data dependent behaviour.

The functionality of a cache is deterministic therefore the
ideal Bayesian network would actually have all conditional
probabilities set to either 0 or 1. As well as being a more ac-
curate model, this property would make it easier to incorporate
results into a WCET formulation. In addition to examining the
structure of the Bayesian network, this property can also be
examined. Table III shows similar data to table II but this time
focussing on the number of entries in the nodes’ conditional
probability table whose behaviour is either deterministic or
probabilistic. For behaviour that is deterministic, we cannot
say for sure that the behaviour learned is correct; we can
however state that any probabilistic behaviour is definitely
capable of being improved upon by the idealised correct
network.

The most notable result from table III is that all values in
the conditional probability tables of nodes without parents are
not 0 or 1, while almost all those in probability tables with
a parent are. This suggests that nodes without parents have
parents missing, while those nodes with a single parent are
mostly likely to have sufficient parents identified. As the parent
limit is increased and more nodes become available to act
as parents to a particular node, the number of underparented
probabilistic nodes decreases and nodes gain parents and
become deterministic.

This table also explains why nodes with greater numbers of
parents were not learned. One parent was almost always suf-
ficient to explain all the observed behaviour deterministically
for this example. There was no need therefore for additional
parents to be added to the network.

TABLE III
NUMBER OF ENTRIES IN CONDITIONAL PROBABILITY TABLES WHICH ARE DETERMINISTIC (D) OR PROBABILISTIC (P).

Dataset size Number of Parents Parent Limit
1 2 4 8 16

D P D P D P D P D P

10 0 0 0 0 0 0 0 0 0 0 0
1 0 0 186 0 306 0 368 0 517 3

20 0 0 72 0 48 0 32 0 24 0 8
1 0 0 300 0 492 0 590 0 808 8

30 0 0 207 0 138 0 92 0 69 0 24
1 0 0 390 0 642 0 770 0 1015 11

40 0 0 296 0 197 0 133 0 101 0 35
1 0 0 460 0 760 0 912 0 1178 10

50 0 0 351 0 234 0 156 0 117 0 49
1 0 0 474 0 782 0 938 0 1145 19

100 0 0 360 0 239 0 161 0 122 0 76
1 0 0 548 0 904 0 1084 0 1202 25

TABLE IV
DISTANCE FROM AWAY FROM AVERAGE PARENT NODE.

Dataset size Parent Limit
1 2 4 8 16

10 0 1 1.6 2.7 7.7
20 0 1 1.7 2.8 7.7
30 0 1 1.7 2.8 7.7
40 0 1 1.7 2.8 7.5
50 0 1 1.7 2.8 7.5

100 0 1 1.7 2.8 7.3

Those parented nodes which feature probabilistic entries
are all found when the parent limit was at the greatest
value studied. There are two explanations for this. Firstly,
some of the correct parents may have now been available,
so that some correct but imperfect correlation was found,
while other correct parents were still laying beyond the parent
limit threshold. This would mean the nodes’ parents were
underspecified. Secondly, as the number of potential parents
increases, spurious relationships may have been detected be-
tween the larger number of variables leading to erroneous
parents being assigned.

Finally, table IV shows the average number of instructions
between nodes and their parents for all experimental condi-
tions considered. As can been seen, as the parent limit is
increased, the average of the parents’ distance increases. This
is intuitive as more potential parents (correct or spurious) at a
greater distance become available as this quantity is increased.
In contrast, increasing data set size as very little effect on this
quantity. The values may be slightly smaller for large data sets
at high parent limits, but this does not appear significant from
the available data.

V. CONCLUSIONS

In this paper, we have shown how a Bayesian network that
models a cache could be automatically constructed with no
prior knowledge of the cache’s functionality. The control flow
graph representing the program has been used in order to guide
the search and make the learning far more feasible, despite the
fact that it does not possess the Markov property itself with
respect to the cache state. It was shown that as the number of

potential parent nodes that were considered in the learning
process increased, the network became more deterministic,
suggesting increased correctness of the network structure.
However, the greatest marginal benefits from increasing the
number of potential parents came at the lowest levels. This
means there may well be a good compromise between the
number of parents considered (and hence the feasibility of the
learning) and the quality of the learned representation.

REFERENCES

[1] P. Puschner and C. Koza, “Calculating the maximum execution time
of real-time programs,” Real-Time Systems, vol. 1, no. 2, pp. 159–176,
1989.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem — Overview of methods and survey of tools,”
Transactions on Embedded Computing Systems, vol. 7, no. 3, pp. 1–53,
2008.

[3] F. Mueller, “Static cache simulation and its applications,” Ph.D. disser-
tation, Florida State University, Tallahassee, Florida, 1994.

[4] R. Kirner, I. Wenzel, B. Rieder, and P. Puschner, “Using measurements
as a complement to static worst-case execution time analysis,” in
Intelligent Systems at the Service of Mankind. UBooks Verlag, 2005,
vol. 2.

[5] G. Bernat, A. Colin, and S. M. Petters, “WCET analysis of probabilistic
hard real-time systems,” in Proceedings of the 23rd Real-Time Systems
Symposium (RTSS), 2002, pp. 279–288.

[6] R. Chapman, “Static timing analysis and program proof,” Ph.D. disser-
tation, University of York, UK, 1995.

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Representation and Reasoning Series. San Fran-
cisco, California: Morgan Kaufmann, 1988.

[8] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian
networks: The combination of knowledge and statistical data,” Machine
learning, vol. 20, no. 3, pp. 197–243, 1995.

[9] M. Zolda, “INFER: Interactive timing profiles based on bayesian net-
works,” in 8th International Workshop on Worst-Case Execution Time
(WCET) Analysis, R. Kirner, Ed., 2008.

[10] M. Bartlett, I. Bate, and J. Cussens, “Instruction cache prediction
using bayesian networks,” in 19th European Conference on Artificial
Intelligence (ECAI 2010), 2010.

[11] S. M. Petters, “Comparison of trace generation methods for measurement
based WCET analysis,” in 3nd International Workshop on Worst Case
Execution Time Analysis, 2003, pp. 61–64.

[12] N. L. Binkert, R. G. Dreslinski, L. R. Hsu, K. T. Lim, A. G. Saidi, and
S. K. Reinhardt, “The M5 simulator: Modeling networked systems,”
IEEE Micro, vol. 26, pp. 52–60, 2006.

