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Abstract—In this paper we propose a probabilistic classifi-
cation algorithm with a novel Dynamic Time Warping (DTW)
kernel to automatically recognize flight calls of different species
of birds. The performance of the method on a real world dataset
of warbler (Parulidae) flight calls is competitive to human expert
recognition levels and outperforms other classifiers trained on a
variety of feature extraction approaches. In addition we offer a
novel and intuitive DTW Kkernel formulation which is positive
semi-definite in contrast with previous work. Finally we obtain
promising results with a larger dataset of multiple species that
we can handle efficiently due to the explicit multiclass probit
likelihood of the proposed approach’.

Index Terms—Acoustic Signal Processing, Probabilistic Super-
vised Learning, Dynamic Time Warping, Kernel Machines

I. INTRODUCTION

Birds are sensitive environmental indicators and among the
first animals to respond to changes in local ecosystems and the
global climate. Tracking bird populations in space and time
is a central challenge for conservation science, particularly
in light of the potential changes to the present climate of
the planet, and the new field of computational sustainability
provides novel insight into pursuing these challenges [1], [2].
The migratory patterns of birds can produce data of interest
beyond the ornithological community, and therefore has been
the focus of much recent research [3]-[9].

Determining the migration paths of birds at the species level
is difficult but one of the most promising methods of tracking
avian migrations is by flight call recording. Many species
produce flight calls: species-specific vocalizations that vary
in duration, frequency, and contour, and are frequently given
during nocturnal migration by several hundred species in North
America. These signals are the only source of information, at
present, for reliably identifying passing nocturnal migrants.
Recording stations that can capture such signals are relatively
inexpensive and can be deployed remotely [5]. Additionally,

IThe data and codes are available at www.cis.cornell.edu/ics/projects.php
and www.dcs.gla.ac.uk/inference/pMKL
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these stations can be programmed to record autonomously,
facilitating data collection for extended, nocturnal periods.

One of the primary limiting factors to expanding networks
of recording stations from single station networks to thousands
of microphones is the classification process. Classification
of flight calls has traditionally been a labor-intensive and
expensive manual process consisting of inspecting spectro-
grams by trained professionals. In this paper we present a
method of automatically classifying such avian flight calls that
allows for the deployment of large scale systems of recording
stations, see Fig. 1, that have the ability to accurately track
the migrations of birds around the world.
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Fig. 1. Developing an efficient classification algorithm allows for large-
scale networks of recording stations to be built. This image (United States
Weather Surveillance Radar-88Doppler (WSR-88D) network) depicts a frontal
boundary with scattered, intense precipitation over Lakes Erie and Ontario,
spreading eastward into New York and New England. However, the image is
dominated by biological targets, mostly birds, visible across the Great Plains
south to Texas and east to the Southeastern Coastal Plain north along the
Atlantic coast to Maine. The areas of intense, uniform green representing
targets over the radars show bird densities close to 2.5 x 103 birds/km?3.

The contributions of this work are:

o Excellent recognition rates (97%) on automatic flight
call detection of 5 within-family species (classes), and
promising results on a larger dataset of 45 species within
and across families. To put the results in perspective



experienced observers classify on average 69% - 91%
correctly, while experts (of which there are very few)
can classify between 88% - 100% correctly.

e A novel DTW positive semi-definite (p.s.d) kernel
(DTWgiobar) that results in a very discriminative feature
space for detection of acoustic signals.

o A successful application of the variational Bayes proba-
bilistic classifier [10] to detect flight calls.

o Publicly available codes and real world datasets.

II. PREVIOUS WORK
A. Flight Call Classification

There have been attempts to automate flight call classifica-
tion in the past and the results were promising; but several
factors, including robust call measurement and representation
of intra- and inter-specific variation in calls, in a computa-
tional viable manner, were major unmet challenges. Successful
methodologies included template matching schemes [11], [12]
and statistical methods for classification [7], [8].

Flight calls must be extracted from the continuous audio
streams produced by recording stations. This process is es-
sential even for manual classification, so automated detection
and extraction of flight calls from the raw data generated from
individual recording stations has been the main focus of prior
research [7], [13]. Automatic flight call detection has chal-
lenges, in particular the abundance of additional confounding
signals in the frequency range of interest for flight calls, but
works sufficiently well for the samples discussed in this paper.
The detection algorithms are designed to identify high levels of
energy with user-defined characteristics in specific frequency
bands [5].

The microphones used to capture flight calls vary in type,
but an inexpensive and effective design is Pressure Zone
Microphones [8]. These microphones can be built with off-
the-shelf parts, costing as little as $50 and can easily be
deployed. For more information about the microphones used
to capture the raw data, details can be found at [7] and
http://www.oldbird.org.

B. Dynamic Time Warping Kernels

Dynamic Time Warping is a well-known dynamic pro-
gramming method [14] that has been extensively applied to
time-series and sequence-based problem domains. It operates
by stretching a sequence’ x; € RP¢ in order to match
another sequence x; € RP7 while calculating the cost of
alignment cy, x; based on an application-specific function
or some standard distance measure derived from the warped
path(s). A warping path 7;; of length |m;;| = p is a path in
the x;,x; graph, that can be seen [15] to define a pair of
increasing p-tuples (;, ¢;) as:

< Gp) =D; (1)

2As usual z denotes scalar, x column vector and X matrix.

Fig. 2. An example of two flight call signals that are out of phase. The
signals have similar structure but will appear very different if point to point
comparisons are made.

where (; is the warping transformation of the i sequence
when mapped according to the path 7;; and intuitively de-
scribes a matching between elements of x; and x;. D; denotes
the dimensionality of vector x;.

Recently there has been a great interest in constructing
kernels based on DTW measures [15]-[17]. All the proposed
approaches are developed within the Support Vector Machine
(SVM) framework and hence cannot explicitly handle un-
certainty due to their non-probabilistic nature. The previous
kernels are summarized in Table 1.

TABLE I
PREVIOUS DTW KERNELS

‘Work Kernel function
k(xi,x5) =

2
argmax L SUT exp(— Lz [[%i.¢, (o) — X5, () I7)
us

[16]

[15] > 02 exp(—Bl%i.c,) — X5, |12)

The kernel function proposed in [16] is not a p.s.d kernel in
general [17], and the kernel in [15] is p.s.d “under favorable
conditions” but can be diagonally dominant hence requiring
additional smoothing. Related past work [18], [19] on con-
structing kernels for sequence-based problems has employed
Hidden Markov Models (HMMs) as the generative (in contrast
with this work that does not model parametrically the gener-
ating distribution) underlying model and have been applied to
both supervised and unsupervised learning settings.

III. METHOD

In order to best present the approach, we first describe the
proposed DTW kernel in comparison with previous formula-
tions and then proceed to the adopted implementation for our
specific flight call application.

A. A Dynamic Time Warping Kernel from Global Alignment

Both previous approaches construct a DTW kernel by
effectively exploiting the path(s) constructed by the dynamic



programming steps within a single warping of sequences
X;i,X;. In [16] this results in a non-p.s.d kernel and in [15]
it requires the consideration of all possible paths within the
D; x D; matrix.

We instead construct a global alignment DTW kernel from
the minimum-cost alignment scores c; - of the optimal paths
{m; }N_, directly (and not the paths themselves), taking into
account the optimal N alignments of a signal x; with all the
available sequences in the training set {x,, tn}f:’:l. Hence we
can employ kernel functions that result in a p.s.d kernel, since
there is a common metric of alignment to /N sequences, such
as the Gaussian:

*

llex, —cx, |
k(xi,xj) =exp | ————— ] @)

DTWigha1 Kernel 7

where ¢} € RN is the vector of minimum-cost alignments
through the optimal N warping paths {7} }»_; and 6 € R
the bandwidth (isotropic case). In the next section we describe
explicitly how this cost is calculated in our implementation
for flight call detection. It is worth noting that the proposed
approach can exploit existing DTW implementations [20]
with different cost functions in analogy to the String kernels
proposed in bioinformatics and the availability of scoring
matrices [21].

B. Minimum-cost alignment for Flight Calls

Given a training set {x;,t;},, with sequence x; € RP"

belonging to class t; we first construct the spectrogram ma-
trices Sy, € RI*W of the signals where W is the number
of windows and F' the number of frequency bands from the
short time Fourier transformation (STFT).

Having obtained the N spectrograms, we can construct a
dissimilarity matrix D% € R >*W for sequences x; and x;
by one minus their (normalized) inner product:

Sx, (yw)' Sy, (5, 0)

DY (w,v) =1 — ,
VS (5 0) S, (5,0)8, (:,0) S, (5, 0)
N 3)
where Sy, (:,w) denotes the w ™ column of the D% matrix and
w,v € {1,...,W}. The dynamic programming operations of

standard DTW procedures can now operate on the dissimilarity
matrix D% in order to obtain the optimal warping path and
the minimum-cost alignment between sequences x; and X;:

T = argmax;— cx; x; ()
w |l
||
xiin; (1) = D_ Dy @
p=1
These are collected to complete the description:

*

T
Cx; = [Cxi,xl (W:I)a T Cxyxn (T(:N)] : (5)

Eq. 5 can be directly used as an “unkernelized” feature
construction (DTWiopa1) and it is worth noting that the cost is

symmetric, i.e. given optimal alignment paths 77; and 77;, the
cost is the same: cx, x, (7};) = ¢x; x, (75;) Vi,5 €{1,..., N}.

Fig. 3. Example of a spectrogram of the top signal shown in Fig. 2. The
x-axis shows the normalized frequency. The y-axis shows time. Each interval
on the y-axis represents a window. Shades of gray show the presence of a
frequency. Dark gray and black indicate strong presence of the frequency,
while light gray to white represents little to no presence of the frequency.

Fig. 4. The DTWygjopa kernel from the primary flight call data (N=200, class
sorted). The block structure captures the similarity of flight calls within and
across species.

C. Probabilistic Multiple Kernel Learning

Having described the underlying DTW kernel representation
we now turn to the probabilistic classifier that is adopted for
the flight call detection. We employ the variational Bayes
(VBpMKL) classifier recently proposed in [10] in order to take
advantage of the uncertainty quantification measures (posterior
variance) that are explicitly provided and can assist in decision
making (costs and risks of misclassification). Furthermore, the
methodology allows for inclusion of prior knowledge, which
is vital for the spatio-temporal migration patterns of species
of birds and their prior probability of being present and hence
detected by such flight call systems.

Finally, the multiple kernel learning capabilities of the
method provide a promising tool for integrating other sources
of information for flight call detection such as spatio-temporal
(time stamp and station that flight call is detected), radar traces,
and even weather based information.

The approach is a kernel formulation of a generalized linear
model (GLM) with an explicit multiclass probit likelihood that
can handle multiple classes with a single underlying model.
The likelihood is given by:



P(ti - m\w,kf"") = &wi 1 (I>(u + (W — W) k'?") :
l#m

6)
where w are the regression coefficients, 3 specifies the kernel
combination parameters for MKL that are not employed in this
work, @ is the normal cdf function, m,[ denote classes, and
u ~ N(0,1). Approximate Bayesian inference is performed
via a variational treatment for the posterior distribution which
is described in detail in [10].

IV. PSEUDO-CODE

The pseudo-code implementation of the proposed classifica-
tion method is listed in Algorithm 1. Standard cross-validation
procedures need to be adopted as usual.

Algorithm 1 Probabilistic DTW kernel classifier
1: Initialization and pre-processing
# STFT Spectrograms
2: for all X € RV*P=: (Flight call sequences) do
3: Sy, < spectrogram(x;)
4: end for
# Dissimilarity (Cost) Matrix and DP
5: fori=1to N do
6: for j=1ito N do
7: DY «+ Eq. (3)
3
9

cx, — Eq. (4,5)
. end for
10: end for
# Create the DTW Kernel
11: for i =1 to N do

122 for j=1ito N do

13: k(Xi,Xj) «— Eq )
14:  end for
15: end for

# Classifier (VBpMKL) [10]

V. EXPERIMENTAL SETUP AND FEATURE CONSTRUCTION

The performance of the proposed approach is compared to
several other classification methods and feature constructions
on real world flight call datasets. All the reported results are
for 10 replications of 10-fold Cross-Validation (10 x 10CV)
unless otherwise stated and baseline denotes performance by
assignment to largest populated class.

A. Data

Two flight call datasets are presented in this work. All the
samples were collected via extraction from recording stations,
recording captive birds, or recording and labeling via direct
observation. The primary dataset consists of 5 classes (species
of bird) with 40 samples (flight calls) from each class for a
total of 200 samples. The five bird species recorded for the
primary dataset are listed in Table II.

TABLE II
BIRD SPECIES

Common Name Scientific Name No. Samples
Magnolia Warbler Dendroica magnoliae 40
Nashville Warbler Vermivora ruficapilla 40

Chestnut-sided Warbler Dendroica pennsylvanica 40
American Redstart Setophaga ruticlla 40
Yellow-rumped Warbler Dendroica coronata 40

The data is digitized and stored as .wav files. The calls
range from between 1916 and 6037 features (sampling every
4.5x 1075 seconds); each call was padded with zeros to create
a uniform length dataset. As an extension to the primary data
set, an auxiliary data set consisting of 42 classes (species
information available from our data repository), 1180 samples,
and 15075 features. Samples per class range from 10 to 40,
and call lengths range from 1175 to 15075. Both datasets
are publicly available at www.cis.cornell.edu/ics/projects.php.
One of the challenges of the primary data set is that most of the
samples are warblers, which tend to have structurally similar
flight calls. The auxiliary data set contains a larger variety of
species, and therefore greatly varying samples of flight calls.

B. Global Features

When classifying flight calls, humans tend to look for a few
global features of the calls. These attributes were extracted as
an alternative feature construction to the proposed DTW gighal
features and kernel: average energy value of the call, length
of the flight call, maximum amplitude of the call and number
of peaks.

C. Down Sampling

Down sampling, by averaging the signal over fixed-length
intervals, can capture the general structure of the signal while
reducing the total number of features. Frequency based feature
extractions are based on standard Fast Fourier Transformations
(FFT) with best performing settings.

D. Competing Classifiers

In order to examine the performance of VBpMKL and
the various feature extraction methods, classification was per-
formed with several other Weka classifiers [22] and an SVM
Multiclass implementation [23]. The classifiers employed are
given below with their implementation details and cover a
range of popular classification techniques.

VI. RESULTS
A. Primary Data Set

The technique described in this paper produces excellent
results with a 97.6% average percent correct classification for
the primary dataset under consideration and promising results
with the 45 class flight call data. Furthermore, the underlying
DTWebal feature extraction method (kernelized or not) proves
to be very discriminative for most classifiers employed. For
Tables IV to VI we report only the mean of the 10 x 10CV as



TABLE III
CLASSIFIERS USED FOR COMPARISON
Classifier Type Implementation Reference

C4.5 Decision Tree J48 [24]

Nearest Neighbors Kstar [25]

Bayesian Network BayesNet [26]

Regression Simple Logistic [27], [28]

Decision Table Decision Table [29]

Ensemble Decision Tree Random Forest [30]

Boosting Decision Stumps Logit Boost [31]

Ensemble Decision Tree Rotation Forest [32]

Support Vector Machine SV Mmulticlass [23]

TABLE IV

AMPLITUDES AND DOWN SAMPLING, CORRECT CLASSIFICATION
Classifier 10 25 50 100 250 Raw
J438 57.5 66.0 61.0 60.0 53.0 55.0
Kstar 60.0 67.5 66.5 65.0 66.5 20.0
BayesNet 46.5 || 52.5 || 55.0 || 49.0 || 505 67.5
Simple Logistic 54.5 59.5 63.0 58.5 64.5 46.0
Decision Table 46.0 54.5 52.5 52.0 || 47.0 52.5
Random Forest 60.0 64.5 67.0 73.0 66.5 58.0
Logit Boost 58.0 59.0 62.5 60.0 55.5 66.5
Rotation Forest 61.5 67.0 68.5 66.5 66 69.5

the feature extraction methods are underperforming compared
to the proposed DTW based constructions.

In Table IV we report the recognition rates with varying
levels of down sampling and conversion to amplitudes. Each
column shows the results of different levels of down sampling
(varying the number of bins within which averaging takes
place). The column headers indicate the length of the feature
vector after down sampling occurs (e.g. 25 indicates a feature
vector of length 25) and the Raw column shows the results
when applying the various classifiers on the original data. Bold
fonts indicate best performance of a classifier within specific
feature extraction.

Table V presents results after FFT has been performed on
either the original signal (“All”) or in segmented versions
(bins) with varying levels of down sampling and conversion to
frequency. Again, the column headers indicate the length of the
feature vector after down sampling occurs. The final alternative
feature extraction in Table VI considers the aforementioned
“global features” of the signals. Combining these features with
FFT based extractions or amplitude information does not result
in statistically significant improvements.

Table VII shows the performance of the proposed method
and the best results for each classifier across feature extraction
approaches for the primary dataset. The best window size for
the DTWgjoha Was found by grid-search and cross validation
to be 450 with an associated bandwidth of 0.4. All methods
perform best with the DTW . feature construction and the
adopted VBpMKL method achieves above 97% average recog-
nition rate on the 5 class problem with the additional prob-
abilistic benefits for prior knowledge inclusion, uncertainty

TABLE V
FREQUENCY (FFT) AND DOWN SAMPLING, CORRECT CLASSIFICATION

Classifier 10 25 50 100 All
J48 73.35 74.65 73.65 73.65 75.2
Kstar 78.85 81.9 83.05 84.2 19.25
BayesNet 67.15 70.6 70.6 72.2 74.1
Simple Logistic 70.3 74.35 77.45 75.0 84.4
Decision Table 62.5 66.1 64.2 64.5 67.85
Random Forest 82.05 83.05 83.2 83.55 80.6
Logit Boost 80.25 80.9 82.1 80.75 82.0
Rotation Forest 83.35 84.9 85.6 84.8 86.7
TABLE VI
GLOBAL FEATURES, CORRECT CLASSIFICATION
Classifier 10 25 50 100 250
J48 62.5 71.0 63.5 60 61

Kstar 62.5 66.5 70.5 69.5 69.0

BayesNet 53.5 56.5 55.0 51.5 51.0

Simple Logistic 58.0 61.5 63.0 || 43.0 63.0

Decision Table 49.5 55 53.5 51.0 || 455

Random Forest 69.0 74.0 69.5 68.5 66.5

Logit Boost 64.5 65.5 69.5 64.0 59.5

Rotation Forest 70.5 74.5 70.5 72.5 70.5

quantification and data fusion. Considering the aforementioned
recognition levels of human experts this is a significant step
towards the development of automated flight call detection
systems.

The second dataset that we consider has flight calls from a
greater variety of species and hence poses a larger multi-class
problem. In fact the inter and intra family structure of the flight
calls can be exploited in a hierarchical manner that is ongoing
work. In Table VIII we report preliminary recognition rates of
VBpMKL with the proposed DTWjopa kernel. We achieve an
average of 74% accuracy which, considering the 42 different
classes of flight calls in the data, is a very good classification
level and a promising benchmark to improve upon.

VII. COMPUTATIONAL COMPLEXITY

The DTW routine has complexity O (|x;||x;|) and the
classifier a dominant term of O (C’N 3) where C, N, x; are
the number of classes, samples and the length of sequence
1. Both complexities can be improved via sparsity (sparsity
inducing priors or regularization) and faster implementations.

VIII. INDIVIDUALS

The experiments and results discussed thus far only consider
a sample’s species when splitting datasets for testing and
training. The true effectiveness of classification is revealed
when individual specimens are accounted for. Both the primary
and auxiliary datasets contain multiple flight call recordings
produced by a single bird (an individual). An individual’s
flight calls contain less variation than that of flight calls
from multiple individuals of the same class. Fig. 6 and Fig.
7 illustrates this point. They show four samples from the



TABLE VII
BEST RESULTS FOR EACH CLASSIFIER (BASELINE = 20%)

Classifier Feature Extraction Method 10 x 10CV %
J438 DTWgiobal 87.1 + 1.14
Kstar DTngobal 96.6 + 0.65
BayesNet DTW iobal 93.2 + 0.27
Simple Logistic DTWgiobal 94.9 + 0.55
Decision Table DTWigiobat 72.8 + 3.82
Random Forest DTWgiobal 93.2 £ 0.84
Logit Boost DTWgiobal 91.7 + 1.64
Rotation Forest DTWgiobat 94.5 + 1.06
SV Mmulticlass DTW,iopa1 Kernel 95 + 0.43
VBpMKL DTWgopar Kernel 97.6 + 0.68
TABLE VIII
VBPMKL & DTWg, 081 ON AUXILIARY DATA SET (BASELINE = 3.4%)
Window Size || Bandwidth 5CV %
450 0.00004 72.45 £+ 12.39
450 0.00005 74.07 + 13.64
650 0.00001 74.49 £+ 12.50

same individual and four samples from separate individuals of
the same species. There is noticeably more variation among
individuals as is shown in Fig. 7. Datasets containing the same
individual in both testing and training do not accurately rep-
resent a “real world” scenario and can produce unrealistically
high correct classification rates, therefore test and training sets
must be designed to ensure that the same individual does not
occur in both.

All results discussed below are generated with individuals
split; all samples from a single individual form a test set and
samples from all other individuals form a training set. The
primary dataset is well balanced consisting of four individuals
per class, and 10 samples per individual for a total of 20
individuals and therefore 20 test sets. Results shown in Table
XI show the result of 10 repetitions of 20-fold cross validation
(10x20CV). The auxiliary dataset does not contain an even
number of individuals per class or samples per individual and
in total consists of 795 individuals. Table XXIII shows the
individuals for the auxiliary dataset. Due to the computation
time required to perform classification, one fold per individual
is not practical for the large dataset as it would require 795 test
sets and therefore 795 folds. Instead the data is split into test
sets containing one individual per class until all individuals
of each class have been tested. The result is 40 test sets
and therefore 40 fold cross-validation. The results shown in
Table XII are therefore result of a single repetition of 40-
fold cross validation (1x40CV). The introduction of splitting
for individuals produces two noticeable results, a drop in
correct classification and an increase in standard deviation. The
decrease of correct classification is a result of the increased
difficulty, and the increase in standard deviation is due to the
way in which test sets are created. Individual classification
rates tend to be at one of the two extremes, all correct or all
incorrect, and since each test set contains a single individual

(or a set of individuals) the standard deviation increases.
This is illustrated in Fig. 5, where it shows the correct
classification for each individual of the auxiliary dataset. The
x-axis indicates individual number and the y-axis indicates
correct classification rate. Notice how most individuals are
either at the top or the bottom. Few individuals are in the
middle indicating that few individuals have classification rates
between the two extremes.
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Fig. 5. The correct classification rates for each individual of the large dataset.
The x-axis shows the individual number and the y-axis shows the correct
classification rate.

Due to the introduction of individuals as well as new
information on how to identify classes the statistics of the
auxiliary dataset have changed slightly. Information about the
auxiliary dataset is summarized in Table X and more detailed
information can be seen in Table XXIII. The primary dataset
remains unchanged, see Tables IX and XXIV for information
about the primary dataset.

TABLE IX
PRIMARY DATASET INFORMATION

Number of Samples 200
Number of Classes 5
Number of Individuals 20
Signal Length Range 2241 - 6037
Average Signal Length 3265.52
Average Spectrogram Size (windowSize = 250) 129x25
TABLE X
AUXILIARY DATASET INFORMATION
Number of Samples 1178
Number of Classes 47
Number of Individuals 795
Signal Length Range 2559 - 15075
Average Signal Length 3496.6084
Average Spectrogram Size (windowSize = 250) 129x26

IX. CONSTRAINED DYNAMIC TIME WARPING

To improve correct classification rates the Dynamic Time
Warping (DTW) process can be modified, in particular the
warp paths can be restricted. Traditionally restricting warp
paths (applying DTW constraints) has several advantages. First
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Fig. 6. An example of four flight call signals produced by the same individual.
Each signal is structurally more similar than the signals shown in 7.
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Fig. 7. Examples of a signals produced by different individuals of the same
species. The variation among flight calls of different individuals is greater
than the variation among the flight calls produced by the same individual as
shown in 6.

constraints can produce better results. “Pathological warping”
(warping one signal to the point where comparisons are mean-
ingless) can be prevented and more informative warp paths are
explored [33]. Secondly DTW constraints can improve the run
time of DTW; restricting warp paths to follow the diagonal
decreases the computational complexity from O (|x;||x;|) to
O(n), where n is the size of the diagonal of the dissimilarity
matrix, D* [33]. Fig. 8 shows an example of the area where
warp paths are allowed with constrained DTW. Warping is
restricted to the light area, and as the area is restricted to the
diagonal the allowable warp area shrinks. As the warp area
shrinks so does the computational complexity since less paths
need to be considered and less point-to-point comparisons
need to be made.

Constraining DTW requires modifying two steps in the
DTW routine. First the paths considered are restricted. This is
accomplished by modifying the dynamic programming routine
to only consider non-restricted paths. More precisely, let A
define the area where warping is allowed. A is defined as a
set containing pairs of values ((;, ;) that define points within
D% (w,v). Eq. 4 should be modified as show in Eq. 7.

* ___
T;; = argmax

1
mcxi,xj- (m) 5. Y(Gin G)r €T, (Cis G € A
(N
The implementation of Eq. 7 will vary depending on the
constraint used, but the paths considered must be limited in

order properly determine the minimum cost warp path, 7*

TABLE XI
PRIMARY DATASET INDIVIDUALS SPLIT

Window Size Bandwidth 10x20CV %
100 0.00005 77.00 + 34.50
200 0.00005 77.50 + 35.37
221 0.00005 77.85 + 34.49
221 0.00004 76.80 + 35.15
300 0.00005 76.50 + 31.99
400 0.00005 75.50 + 32.84
500 0.00005 71.00 + 35.23

TABLE XII
AUXILIARY DATASET INDIVIDUALS SPLIT

Window Size Bandwidth 1x40CV %
50 0.00005 54.82 4+ 19.05
100 0.00005 53.17 + 16.77
150 0.00005 56.41 + 15.28
175 0.00005 55.84 + 17.53
200 0.00005 57.72 + 19.04
225 0.00005 53.34 + 17.11
250 0.00005 56.31 + 19.79
275 0.00005 54.47 + 19.66
300 0.00005 53.19 + 19.25
400 0.00005 49.9 + 21.26
500 0.00005 4531 + 17.66
600 0.00005 44.94 + 20.08

Second, although not essential the construction of the dis-
similarity Matrix D% (w, v) should be modified from Eq. 3 to
the procedure shown in algorithm 2. Constructing D% (w, v)
in this way reduces the computations required and produces a
significant speed increase of the DTW routine.

Algorithm 2 Modified Dissimilarity Matrix Construction
1: if (w,v) € A then

2. Di(w,v) +— Eq.3
3: else
4
5

D (w,v) + oo
: end if

A. Sakoe-Chiba Band

A Sakoe-Chiba (S-C) Band [34] is one of the simplest DTW
constraints. S-C bands restrict the warp path to stay within a
distance k of the diagonal. Fig. 9 shows all possible com-
parisons necessary to calculate all possible warp paths for a
single point with varying S-C band sizes. As k decreases bands
become tighter and less warping is allowed causing a decrease
in the number of warp paths and necessary comparisons. The
possible widths of an S-C band ranges k=0 to k=n/2 (where n
is the length of the signal). When k=0 the Euclidean distance
between two signals is calculated and when k=n/2 we have
unconstrained warping with no restrictions. Fig. 8 shows S-
C bands of varying sizes, warping is only allowed in light



areas. The results of S-C bands with individuals split is show
in Table XIII.

Fig. 8. An Example of two Sakoe-Chiba (S-C) bands of varying sizes. The
top SK Band is size 2, the bottom is size 10. Warp paths are restricted to the
light gray areas.
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Fig. 9. As the size of an Sakoe-Chiba band increases more warping and
therefore more comparisons can be made among elements of each signal.
The effect of increased band size and number of necessary comparisons is
shown above. As the band size increases so does the number of necessary
comparisons.

TABLE XIII
SAKOE-CHIBA BAND RESULTS

Window Size Bandwidth Band Size 10x20CV %
200 0.00007 4 75.00 £+ 36.49
200 0.00007 10 77.5 £+ 34.01
200 0.00007 16 76.50 + 34.07
100 0.00007 10 72.50 £ 38.09
300 0.00007 10 76.50 £+ 33.29
200 0.000001 10 17.50 £+ 33.70
200 0.001 10 73.00 £ 34.96

B. Ratanamahatana-Keogh Band

S-C bands are the simplest of DTW constraints and only
allow for a small subset of available bands to be explored.
Band shapes can vary much more than S-C bands, and
the tractability of finding an optimal band shape becomes
questionable for large datasets containing long signals (such
as the auxiliary dataset). In such cases as with many large
optimization problems a heuristic search can be used to find
a solution. Ratanamahatana-Keogh (R-K) bands [34] allow
arbitrarily shaped bands to be learned with a heuristic search.
R-K Bands like S-C bands follow the diagonal, but rather than
defining the band shape with a single value, k, it is defined by a
vector of values, b, where b is the same length as the diagonal
and each element, b; defines the width of the band at that point
in the diagonal. Niennattrakul et al. describes the learning
technique in detail, but essentially an optimal band shaped
is learned via a binary search of the solution space (possible
band shapes). The cost of each band shape is determined by
the correct classification rate achieved with that band shape.
The end result of the heuristic search is a DTW constraint
that restricts some parts of the signal more than other parts
allowing flexibility in parts of the signal where more variation
occurs and forcing conformity where little variation occurs.
An example of an R-K Band is show in Fig. 10, where warp
paths are restricted to the light gray area.

Fig. 10. An example Ratanamahatana-Keogh (R-K) Band, warping is
restricted to the light gray area. An R-K band can take many shapes and
is defined by the band size at each point in the diagonal.

Our implementation of R-K bands varies slightly from
the technique described by Niennattrakul et al. A modified
hillclimbing heuristic is used to overcome plateaus (areas
where cost stays the same as band size increases) in the



solution space, and a single band shape is learned for the
entire dataset as opposed to learning a different band shape for
each class as Niennattrakul et al. and Ratanamahatana et al.
propose. The implementation of the learning algorithm for R-
K bands is outlined in algorithm 3. These modifications were
necessary because the solution space contains many plateaus
and the large number of classes and computation time limit
the practicality of finding R-K Bands for each class. Plateaus
often occur because the optimal warp path may not change
until certain parts of the signal are made allowable for warping.
This causes the optimal warp path and therefore the correct
classification rate to jump from one value to another with
plateaus in between jumps. Our search ends when costs begin
to decrease as opposed to ending when costs stop increasing
allowing the search to continue past plateaus, and as with
Niennattrakul et al. and Ratanamahatana et al. we favor tight
bands by selecting band shapes that occur at the start of
plateaus. Using R-K Bands achieve a correct classification rate
of 24.00 % on the primary dataset.

Algorithm 3 Ratanamahatana-Keogh Band Learning Tech-
nique
1: Initialization and pre-processing
# STFT Spectrograms
2: for all X € RV*P=: (Flight call sequences) do
3: Sy, < spectrogram(x;)
4: end for
# Initialize R-K Bands
5:b* — 0
6: tree «— createBinarySearchTree
7: enqueue(tree.root))
# Find Global Best R-K Band
8: while notEmpty(queue) do
. current «— pop(queue)
10: [start,end] «— current.range
11:  biemp — b*
# Find Best Band Within Range
12:  while ¢ > c¢* do

13: for ¢ = start to end do
14: biempli] ++

15: end for

16: c = evaluate(biep,p)

17:  end while
#Update Global Best Bands
18:  if ¢ > c* then

19: c*+—c
20: b* < biemp
21:  end if

22:  enqueue(current.children)
23: end while
# Constrained DTW
24: k « perform DTW with b*
# Classifier (VBpMKL) [10]

C. Box Constraint

Both S-C and R-K bands fail to significantly improve correct
classification rates because both techniques fail to address the
root of the problem: paths closely following the diagonal are
often not the most informative paths. Both banding techniques
assume that a diagonal path is favorable and restrain the warp
path around the diagonal. Diagonal warp paths are often the
lowest cost but not the most informative. This is caused by
noise bands, manifestations of background noise that was not
removed during feature extraction. An example of a noise band
is shown in Fig. 11.
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Fig. 11. An Example of a noise band. The noise band is shown as the dark
band located at the far left of the spectrogram, and the frequency band is
shown as the dark shape in the center of the spectrogram.

Due to the implementation (inner product) of DTW noise
bands are indistinguishable from frequency bands (the most
informative aspect of signals). A more informative warp path
must be found that encourages comparisons between frequency
bands and ignores noise bands. To accomplish this we propose
a box constraint. A box constraint blocks some diagonal
paths and therefore promotes non-diagonal warp paths. A sub-
optimal warp path stresses comparisons between frequency
bands because near-diagonal warp paths are often the result
of noise bands corrupting the data. Fig. 12 shows the results
of a box constraint. The sample is incorrectly classified using
unconstrained DTW, but it is correctly classified with a box
constraint. The lines show how the frequency band is warped
and what comparisons are made using each DTW technique.
Without a box constraint the frequency band of the first signal
is warped and compared to a non-informative part of the
signal, but with a box constraint the frequency bands are
compared directly.

Fig. 13 shows an example of a box constraint; warp paths
are allowed between all points on a signal except for pairs
of points within the dark box. Box shapes are defined by the
area outside of the box because this easily translates to new
datasets with different signal lengths. Also optimal boxes for
both the primary and auxiliary datasets have roughly the same
number of data-points outside the box even though optimal
box dimensions vary. Box constraints are defined by box top
and box right where box top defines the area above a box and
box right defines the area to the right of the box. All boxes
are assumed to begin at the lower left of a dissimilarity matrix

(Eq. 3).
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Fig. 12.  An example showing the effect of a box constraint. The top shows
the warping of the frequency bands when unconstrained DTW is performed,
and the bottom shows warping with a box constraint. The frequency bands
are correctly compared when a box constraint implemented.

Fig. 13.  An example of a box Constraint. Warping is not allowed within the
dark box, so comparisons between pairs of points falling within the box are
not made forcing a non-diagonal warp path.

Determining the values of box top and box right is problem
dependant but generally a box that covers a small portion of
the diagonal for the majority of signals is favorable. This is
accomplished by choosing a box right that is about the average
length of a non-zero-padded spectrogram and a box right that
allows some warping at the end of signals while still creating
a box of sufficient size to cover the diagonal. We found that
small values of box right and a box top of around 29 worked
well.

Box Constraints produce excellent results. Results generated
with a box constraint are shown in Tables XIV and XVI. The
correct classification rate is high and certainty (probability it
belongs to the classified class) of both correctly and incorrectly
classified samples are generally favorable. Fig. 14 shows the
discretized count of certainty for each sample of the primary
dataset. Each bar indicates the number of samples classified
with a certainty range of 10%. The indexes shown correspond
to the ranges: [0,10), [10,20), [20,30), [30,40), [40,50) [50,60),
[60,70),[70-80),[ 80,90), [90-100] respectively. The top graph
shows certainty of samples that were classified correctly, and
the bottom shows certainty for incorrectly classified samples.
Certainty of misclassified samples centers around 50-60%
indicating that there is little correlation between the sample
and the classified class. This indicates that the classifier is
unsure of its prediction and is essentially guessing. Low
certainties for incorrectly classified samples is favorable, since
with the addition of more data-sources the certainty for the
true class can be increased allowing the sample to then be
correctly classified. Certainty for correctly classified samples
is generally high with the majority of samples falling in the

90-100% certainty range. This is also favorable since samples
with high certainty are also less likely to be misclassified with
the inclusion of more, possibly misleading data. The auxiliary
dataset has similar certainties as is shown in Fig. 15.

TABLE XIV
PRIMARY DATASET WITH BOX CONSTRAINT

Box Top || Box Right || Window Size 10x20 %
24 5 250 85.50 £ 23.28
29 1 250 91.00 + 17.75
29 5 250 93.00 + 12.61
29 10 250 88.50 £+ 18.430
39 5 250 77.00 £+ 33.10
29 5 150 75.00 + 35.31
29 5 350 80.50 £ 32.20
TABLE XV

AUXILIARY DATASET WITH BOX CONSTRAINT

Box Top || Box Right || Window Size 1x40 %

32 5 250 88.66 + 10.45
30 5 250 89.51 £ 9.78
29 5 250 90.4 £ 9.47

28 5 250 89.63 £+ 10.43
26 5 250 89.26 + 11.64
24 5 250 88.83 £+ 10.67
29 5 150 88.08 £+ 11.67
29 5 350 84.33 £+ 13.53
29 5 450 74.81 + 17.48
29 5 550 68.43 + 21.78
29 2 250 90.28 + 8.81

29 4 250 89.96 + 8.91
29 6 250 90.18 £+ 11.85
29 8 250 90.43 + 10.53
29 10 250 90.29 + 9.72
29 15 250 90.55 + 9.43
29 20 250 89.55 £ 10.21
29 25 250 88.71 £+ 12.02
29 30 250 87.01 £+ 14.18
29 35 250 85.69 + 12.80

TABLE XVI

AUXILIARY DATASET WITH BOX CONSTRAINT

Box Top || Box Right || Window Size 1x795 %
31 5 250 84.27 £+ 36.00
29 5 250 86.93 + 33.22
27 5 250 84.60 & 35.72
29 5 200 86.55 + 33.38.72
29 5 300 84.60 £ 35.72

Tables XVII and XVIII display precision, recall, and F;
scores. The scores for for table XVII were generated using the
primary dataset with 10 repetitions of 20 fold cross-validation,
and the scores for table XVIII were generated using the
auxiliary dataset with 1 repetition of 795 fold cross-validation.



Fig. 14. Certainty of classification for the primary dataset. The top graph
shows certainty for correctly classified samples and the bottom graph shows
certainty for incorrectly classified samples.

For both tables default parameters (shown in Table XIX) were
used.

TABLE XVII
PRIMARY DATASET RESULT STATISTICS WITH DEFAULT PARAMETERS
Class Label Recall Precision F1 Score
AMRE 0.83 0.92 0.87
CSWA 0.93 0.95 0.94
MAWA 0.95 0.81 0.87
NAWA 0.93 1.00 0.96
YRWA 1.00 0.98 0.99

Fig. 16 shows the misclassifications for each class. Each
row indicates the misclassifications for a single class with
the column indicating the predicted class. Dark boxes indicate
many misclassifications as that class and light boxes indicate
few misclassifications as that class. For example in Fig. 16 the
black box on the top row is at location (1,3), this indicates that
class 1 (American Redstart) had many samples misclassified
as class 3 (Magnolia Warbler). Table XXIV can be used to
determine the species indicated by class labels of each row
and column. Similarly Fig. 17 shows misclassification for the
auxiliary dataset and Table XXIII can be used to determine
species from class number and label. More detailed mis-
classification information for several classes of the auxiliary
dataset with high rates of misclassification are shown in Fig.
18. The figures show the classes and exact count for which

Fig. 15. Certainty of classification for the auxiliary dataset. The top graph
shows certainty for correctly classified samples and the bottom graph shows
certainty for incorrectly classified samples.

misclassified samples were classified.

AMRE

CSWA

MAWA

True Class

MNAVWA

YRWA

Predicted Class

Fig. 16. Misclassified samples for each class and a count of the number
of samples misclassified as each class for the primary dataset. Light boxes
indicate few misclassifications, dark boxes indicate many misclassifications.

X. DEFAULT PARAMETERS

The results for both datasets converge to a maximum cor-
rect classification with similar parameters: box sizes, window
sizes, and bandwidths. An optimal window size of around
250 creates spectrograms that can accurately represent the
frequencies present without being redundant. A bandwidth of
around 0.00007 separates the sample enough to distinguish
between classes while still creating strong correlation between
similar signals. The optimal boxes found both have around 29
data-points above them and 5 to the right (an optimal shape of
29x15 was found for the auxiliary dataset but the results are
not significantly different than that of a 29x5 box). The default



TABLE XVIII
AUXILIARY DATASET RESULT STATISTICS WITH DEFAULT PARAMETERS

Class Label Recall Precision Fy Score
LOWA 0.72 0.42 0.53
GRWA 0.74 0.89 0.81
BTYW 0.00 NaN NaN
CONW 0.90 0.84 0.87
MGWA 0.80 0.33 0.47
TEWA 0.26 0.75 0.39
OVEN 0.51 0.62 0.56
AMRE 0.83 0.63 0.71
AUWA 0.76 0.87 0.81
BAWW 0.73 0.80 0.76
BBWA 0.98 0.87 0.92
BGHE 1.00 0.97 0.99
BLBW 0.42 1.00 0.59
BLPW 0.90 0.84 0.87
BTBW 0.95 0.83 0.88
BTNW 0.84 0.94 0.89
BWWA 0.78 0.94 0.85
CAWA 0.93 0.76 0.83
CERW 1.00 1.00 1.00
CMWA 0.93 0.77 0.84
COLW 1.00 1.00 0.94
COYE 0.76 0.94 1.00
CSWA 0.95 0.93 0.77
GCWA 1.00 1.00 0.67
GWWA 0.89 1.00 0.94
HEWA 1.00 1.00 1.00
HOWA 0.73 0.83 0.77
KEWA 0.80 0.57 0.67
KIWA 0.00 NaN NaN
LUWA 1.00 0.93 0.96
MAWA 0.89 0.82 0.85
MOWA 0.60 0.69 0.64
MYWA 1.00 0.87 0.93
NAWA 0.88 0.88 0.88
NOPA 0.46 0.75 0.57
NOWA 0.95 0.88 0.92
OCWA 1.00 0.86 0.92
PAWA 0.93 1.00 0.96
PAWH 1.00 1.00 1.00
PIWA 0.90 0.95 0.93
PRAW 0.00 0.00 NaN
PROW 0.57 0.44 0.50
SWWA 1.00 0.80 0.89
TOWA 1.00 1.00 1.00
VIWA 1.00 1.00 1.00
WIWA 0.75 0.60 0.67
YEWA 0.54 0.78 0.64
YRWA 0.94 0.89 0.92

parameters found to work well with both dataset are shown
in table XIX and can serve as a starting point for additional
datasets.

TABLE XIX
DEFAULT PARAMETERS FOR FEATURE EXTRACTION
Parameter Value
Box Top 29
Box Right 5
Window Size 250
Bandwidth 0.00007

XI. DIFFERENT SIGNAL LENGTHS

The feature extraction method proposed in this paper begins
by padding signals with zeros to create a uniform length
dataset. Alternative feature extraction methods are proposed by
Ratanamahatana et al. A uniform length dataset is unnecessary
as DTW can operate on different length signals, and a uniform
length dataset can be created by“stretching” the signals via
linear interpolation. To evaluate the effectiveness of zero-
padding we consider both keeping the signals the same length
and stretching the signals as alternate feature extraction pro-
cedures. The results of unconstrained DTW using these three
techniques are shown in Table XX. These three techniques
were also applied to DTW constrained by S-C bands and
box constraints, results of which are shown in Tables XXI,
XXII respectively. R-K Bands with different lengths was not
performed since it requires uniform length datasets.

TABLE XX
DIFFERENT LENGTH TECHNIQUES WITH UNCONSTRAINED DTW
Length Technique WindowSize 10x20CV %
different Lengths 300 75.5 £ 33.16
interpolation 100 68.5 £+ 35.88
zero padding 221 77.85 + 34.49
TABLE XXI
DIFFERENT LENGTH TECHNIQUES WITH SAKOE-CHIBA BANDS
Length Technique || Window Size || S-C Band Size Best Result
different Lengths 300 4 26.50 £+ 35.43
interpolation 100 12 37.00 £ 41.81
zero padding 221 16 76.5 + 33.92

XII. DISCUSSION AND FUTURE DIRECTIONS

The immediate extensions of this work are to deal with the
streaming nature of the flight call sensor data and to integrate
spatio-temporal and ecological (GIS) information into the
model. Scalability becomes an important aspect of an online
system, and sparsity can reduce the computational complexity
of kernel based methods via only retaining a few representative
samples (e.g. relevance vectors) [35]. In the larger picture,
interesting computational problems come into play as (near)
optimal sensor placements for flight calls becomes an exciting
direction for research that can couple predictive models of
species distributions to flight call detection; and human obser-
vation locations (e.g. eBird: http://ebird.org) to acoustic sensor
placements.



The development of a successful feature construction and
classification methodology for flight call detection is an im-
portant step towards the overall goal of understanding bird
migration. Increasing automation of the flight call analysis
work flow for detection and classification will allow for the
processing and reporting of increasing amounts of audio data
in increasingly rapid and efficient analyses. This, in turn,
will lead to more efficient use of trained experts’ time in
interpreting the acoustic record; and it follows that more timely
and relevant analysis and interpretation of nocturnal migration
is possible.

The proposed method, and specifically the DTW,,,, kernel
construction, appears to be generalizable to a larger class
of sequence-based problems. The flexibility of being able
to use different scoring functions within DTW routines is a
further benefit for other applications where different scoring
approaches can prove to be more beneficial.

Finally, recent developments in DTW banding and time-
series research such as the LB-Keogh indexing [36] and the
MCFF motif discovery approach [37] are very promising
directions for improving computational complexity and recog-
nition capabilities.
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TABLE XXII
DIFFERENT LENGTH TECHNIQUES WITH BOX CONSTRAINTS

Length Technique || Window Size || Box Top || Box Right Best Result

different Lengths 200 31 5 85.50 £ 27.43
interpolation 100 19 2 64.5 £ 36.02
zero padding 250 29 5 93.00 + 12.61




TABLE XXIII
AUXILIARY DATASET

Class Label Species Name Class Number || # Samples || # Individuals
AMRE American Redstart 8 42 15
AUWA Yellow-rumped ”Audubon’s” Warbler 9 17 17
BAWW Black-and-white Warbler 10 11 11
BBWA Bay-breasted Warbler 11 40 40
BGHE ”Dendroica virens” group warbler 12 34 34
BLBW Blackburnian Warbler 13 12 9
BLPW Blackpoll Warbler 14 40 40
BTBW Black-throated Blue Warbler 15 40 40
BTNW Black-throated Green Warbler 16 38 37
BTYW Black-throated Gray Warbler 3 3 3
BWWA Blue-winged Warbler 17 40 13
CAWA Canada Warbler 18 27 27
CERW Cerulean Warbler 19 2 2
CMWA Cape May Warbler 20 40 40
COLW Colima Warbler 21 9 9
CONW Connecticut Warbler 4 41 11
COYE Common Yellowthroat 22 38 15
CSWA Chestnut-sided Warbler 23 40 10
GCWA Golden-cheeked Warble 24 10 10
GRWA Grace’s Warbler 2 42 6
GWWA Golden-winged Warbler 25 9 9
HEWA Hermit Warbler 26 70 36
HOWA Hooded Warbler 27 40 12
KEWA Kentucky Warbler 28 10 10
KIWA Kirtland’s Warbler 29 4 4
LOWA Louisiana Waterthrush 1 11 11
LUWA Lucy’s Warbler 30 12 12
MAWA Magnolia Warbler 31 36 9
MGWA MacGillivray’s Warbler 5 5 5
MOWA Mourning Warbler 32 15 15
MYWA Yellow-rumped “Myrtle” Warbler 33 12 40
NAWA Nashville Warbler 34 40 11
NOPA Northern Parula 35 13 11
NOWA Northern Waterthrush 36 40 40
OCWA Orange-crowned Warbler 37 12 12
OVEN Ovenbird 7 41 19
PAWA Palm Warbler 38 40 13
PAWH Painted Redstart (Whitestart) 39 13 13
PIWA Pine Warbler 40 21 21
PRAW Prairie Warbler 41 4 4
PROW Prothonotary Warbler 42 7 7
SWWA Swainson’s Warbler 43 4
TEWA Tennessee Warbler 6 23 14
TOWA Townsend’s Warbler 44 13 13
VIWA Virginia’s Warbler 45 36 36
WIWA Wilson’s Warbler 46 4 4
YEWA Yellow Warbler 47 13 13
YRWA Yellow Rumped Warbler 48 36 8




TABLE XXIV
AUXILIARY DATASET

Class Label Species Name Class Number || # Samples || # Individuals
AMRE American Redstart 1 40 10
CSWA Chestnut-sided Warbler 2 40 10
MAWA Magnolia Warbler 3 40 10
NAWA Nashville Warbler 4 40 10
YRWA Yellow-rumped Warbler 5 40 10




