
RESEARCH Open Access

Building a biomedical tokenizer using the token
lattice design pattern and the adapted Viterbi
algorithm
Neil Barrett*, Jens Weber-Jahnke

From Machine Learning for Biomedical Literature Analysis and Text Retrieval in the International Conference
for Machine Learning and Applications 2010
Washington, DC, USA. 12-14 December 2010

Abstract

Background: Tokenization is an important component of language processing yet there is no widely accepted
tokenization method for English texts, including biomedical texts. Other than rule based techniques, tokenization in
the biomedical domain has been regarded as a classification task. Biomedical classifier-based tokenizers either split
or join textual objects through classification to form tokens. The idiosyncratic nature of each biomedical tokenizer’s
output complicates adoption and reuse. Furthermore, biomedical tokenizers generally lack guidance on how to
apply an existing tokenizer to a new domain (subdomain). We identify and complete a novel tokenizer design
pattern and suggest a systematic approach to tokenizer creation. We implement a tokenizer based on our design
pattern that combines regular expressions and machine learning. Our machine learning approach differs from the
previous split-join classification approaches. We evaluate our approach against three other tokenizers on the task of
tokenizing biomedical text.

Results: Medpost and our adapted Viterbi tokenizer performed best with a 92.9% and 92.4% accuracy respectively.

Conclusions: Our evaluation of our design pattern and guidelines supports our claim that the design pattern and
guidelines are a viable approach to tokenizer construction (producing tokenizers matching leading custom-built
tokenizers in a particular domain). Our evaluation also demonstrates that ambiguous tokenizations can be
disambiguated through POS tagging. In doing so, POS tag sequences and training data have a significant impact
on proper text tokenization.

Background
Natural language processing (NLP) is the computer pro-
cessing of human language [1]. It is a bidirectional chain
of transformation from speech to language understand-
ing - from sounds to semantics. Segments of this pro-
cessing chain are designed to address different NLP
problems, including audio to text transformation, text
processing and semantic recognition. This paper focuses
on text processing.
Tokenization typically plays a role in processing text.

Tokenization is broadly defined as the segmentation of

text for subsequent processing. The definition’s breadth
reflects the ambiguity and differences of tokenization
strategies. Tokenization strategies can vary depending
on language [2,3], software goals [4] and other criteria.
There is no widely accepted tokenization method for
English texts, including biomedical texts [2,4-7].
In contrast, there are widely accepted solutions to

other NLP tasks. The Viterbi algorithm is a widely
accepted solution for part-of-speech (POS) tagging [1].
POS tagging assigns tags to tokens, such as assigning
the tag Noun to the token paper. Similarly, the CKY
algorithm is a widely accepted solution for syntactic par-
sing [1]. Syntactic parsing constructs a syntactic* Correspondence: nbarrett@uvic.ca

Department of Computer Science, University of Victoria, Victoria, Canada
Full list of author information is available at the end of the article

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

© 2011 Barrett and Weber-Jahnke. This is an open access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:nbarrett@uvic.ca
http://creativecommons.org/licenses/by/2.0

structure such as a parse tree from a sequence (e.g. sen-
tence) of tagged tokens.
Although there is no widely accepted tokenization

method, tokenization is an important component of lan-
guage processing [2,8-10]. As Webster and Kit [2] argue,
tokenization identifies basic units on which further pro-
cessing depends. For example, tokenization segments a
sentence’s terminating symbol from its last word allow-
ing subsequent processing to identify a text’s sentences
(e.g. “He wrote a paper.” becomes “He wrote a paper .”,
tokenization of “paper.” to “paper .”).
Hassler and Fliedl [11] suggest that tokenization is

often perceived as a solved problem. For Tomanek,
Wermter and Hahn [5], tokenization can be perceived
as “unsophisticated clerical work”. On the other hand,
there is evidence to support that tokenization is not tri-
vial. A single Arabic word can be composed of four
independent tokens [3]. Chinese words do not have
obvious boundary markers [2]. Spanish and English can
be considered to flow across whitespace boundaries (e.g.
sin embargo [12] and New York). Biomedical names
pose tokenization difficulties because they often contain
special characters such as slashes or brackets [4]. Proper
tokenization in these contexts is a non-trivial problem
[2,4-6,9,13].
Within the domain of biomedical tokenization, He and

Kayaalp [7] applied 13 tokenizers to 78 MEDLINE
abstracts. Only 3 of the 13 tokenizers produced identical
results and the differing results varied widely. Given the
latter, He and Kayaalp advocate awareness of a tokeni-
zer’s details without clearly defining or specifying which
tokenizer details are important. Tokenizer details are
expected to influence whether a tokenizer is well suited
or adaptable to a particular language processing task. A
poor choice of tokenizer is expected to cause (uninten-
tional) information loss [7].
Several tokenizers examined by He and Kayaalp [7]

used simple rule based tokenization methods (e.g. regu-
lar expressions). Jiang and Zhai’s [4] empirical study of
rule based tokenization supports the use of rule based
tokenizers on specific texts. Rule based tokenization
methods may perform well for specific texts but these
methods appear to generalize poorly [4,7].
Other than rule based techniques, tokenization in the

biomedical domain has been regarded as a classification
task [5,6,13,14]. Classification assigns a label to objects.
For example, a classifier could assign a token-separator
label to the space character. Classification tokenizers dif-
fer in their choice of object and their method for learn-
ing and applying tags.
Biomedical classification-based tokenization can be

divided into two approaches: classifiers that classify tex-
tual objects as a token boundaries (or not) and classi-
fiers that reassemble primitive tokens. In other words,

classifier-based tokenizers either split or join textual
objects through classification. Split-join based tokeniza-
tion approaches have applied a variety of machine learn-
ing methods with success as exemplified below.
A classifier was used to label selected symbols such as

a space or a period as within a token or as a token
separator [6]. This split approach performed well on
named entity only data (e.g. person, organization) and
poorly on named entities in MEDLINE abstracts. This
approach neglects un-delimited tokens such as “2.5cm”.
McDonald, Crammer and Pereira [14] applied multi-

label classification techniques to tokenization. Their
classifier assigned beginning (B), inside (I) and outside
(O) labels to primitive token sequences. The segments
labeled with a B followed by consecutive I labels repre-
sented a single large token. This join approach might
also be considered as over-segment and repair because
their classifier reassembled incorrectly segmented
tokens.
Tomanek, Wermter and Hahn [5] trained two (split

approach) classifiers to identify sentence and token
boundaries using a corpus derived from the PennBioIE
and GENIA corpora. Input text was split into sentences
and sentences were split into tokens. The token-splitting
classifier used preset token boundary symbols and cor-
pus-based training to identify token boundaries.
Wrenn, Stetson and Johnson [13] used transitional

entropy and conditional probability to detect token
boundaries (split approach). They compared their toke-
nization method to human specified sentence bound-
aries and a rule based tokenizer that segmented
sentences by whitespace. The authors acknowledge that
the lack of a gold standard is the most important limita-
tion of their work. An example of this limitation is that
their method is not evaluated on whether punctuation
such as a comma is indicative of a token boundary.

Motivation
We attempted to select an existing biomedical tokenizer
for a biomedical text processing task. The idiosyncratic
nature of each biomedical tokenizer’s output, or docu-
mented output, complicated our selection. He and
Kayaalp [7] similarly found that output varied between
tokenizers (recall that only 3 of the 13 tokenizers He
and Kayaalp tested produced identical results). Further-
more, we found that existing biomedical tokenizers gen-
erally lacked guidance on how to apply the tokenizer to
new text. As an example of the guidance we sought,
consider the question of how improper tokenization of
tokens, existing only in the new text, should be resolved.
To address the above difficulties, we identify and com-

plete a novel tokenizer design pattern and suggest a sys-
tematic approach to tokenizer creation. In so doing, we
provide a definition of tokenization and describe

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 2 of 11

software components to accompany the proposed defini-
tion. We implement a tokenizer based on our design
pattern that combines regular expressions and machine
learning. Our machine learning approach differs from
the previous split-join classification approaches. We
evaluate our approach against three other tokenizers on
the task of tokenizing biomedical text.

Results
Algorithm and Implementation
In this section, we present a novel tokenizer design pat-
tern for biomedical tokenizers. According to Busch-
mann, Henney and Schmidt [15], “a design pattern
provides a scheme for refining elements of a software
system or the relationships between them. It describes a
commonly-recurring structure of interacting roles that
solves a general design problem within a particular con-
text.”. We present our tokenizer design pattern by defin-
ing a tokenizer’s input and output, by defining a
tokenizer’s software components and by presenting
related pseudocode. Our tokenizer design pattern is
named the token lattice design pattern.
Input and output
Current tokenizers generally compute on raw text (e.g.
[13]) or sentences (e.g. [14]). We restrict a tokenizer’s
input to raw text. If the text contains well formed sen-
tences then it may be possible to use existing software
that segments text into sentences with few errors (e.g.
Punkt [16]).
A tokenizer’s output definition should communicate a

tokenizer’s behaviour and foster tokenizer reuse. He and
Kayaalp [7] discuss the variability in tokenizer output.
Underlying this difference in output is a lack of agree-
ment on what constitutes a token. Furthermore, tokeni-
zers produce tokens based on an intrinsic token
definition. Tokenizer output is generally idiosyncratic (e.
g. format, token choices).
We restrict a tokenizer’s output to the most likely

POS-tagged sequence of tokens, given some language
model. This implies that a tokenizer outputs tokens tag-
gable with tags such as noun or adjective. It also implies
that a tokenizer must implement predefined POS tags
such as the Penn Treebank’s [17]. Lastly, it implies that
a tokenizer should produce a likely sequence of POS-
tagged tokens. For example, a tokenizer should not seg-
ment a chemical substance such as “3,4-epoxy-3-methyl-
1-butyl-diphosphate” into (space delimited) “3 , 4 epoxy
3 methyl 1 butyl diphosphate”. We define the concept
of POS-tokens as tokens that adhere to our stated output
restrictions. These restrictions blur the conventional
boundary between tokenizers and POS-taggers (the
tokenizer could easily tag tokens during tokenization).
We argue below that POS-tokens are expected to
increase tokenization accuracy and tokenizer reuse.

Chaining arbitrary tokens together is unlikely to form
a valid (English) sentence. Accordingly, knowing a
token’s POS tag indicates which POS tags and tokens
are likely to occur in the token’s vicinity [1]. For exam-
ple, it is likely that a noun follows after the word the (e.
g. the hands), whereas it is less likely that a verb follows
the (e.g. the wrote). POS-tokens inherit language charac-
teristics that are likely to increase tokenization accuracy
given that these characteristics have been successfully
exploited in the past (e.g. Viterbi algorithm).
Inter-annotator agreement can be measured for POS

tagging. This is a measure of agreement between people
performing manual POS tagging of text. For example,
the Penn Treebank’s inter-annotator agreement for POS
tagging is above 90% [17]. Since algorithms can mimic
human behaviour when assiging POS tags to tokens (e.g.
[18]), tokenizers that output POS-tokens are expected to
produce valid POS-token sequences and consequently
mimic human performance. For example, two tokenizers
adhering to Penn Treebank POS tags should segment
sentences with over 90% agreement given individually
successful implementations. POS-tokens should foster
consistent human-like tokenization behaviour. Such
behavior is expected to increase tokenizer reuse.
A tokenizer is a function that given some text and

context segments the text into tokens. In our approach,
the segmentation adheres to a language model and each
token maps to a POS tag.
The notion of a tokenizer can be formalized as T :=

(Σ, Lm, Γ)
• Σ is a finite set of symbols called the alphabet.
• S is the set of all finite strings over Σ and S′ := S +

{ε}, includes the empty string.
• Lm is a language model (e.g. a probabilistic model

for parsing sentences) that includes a finite set of POS
tags and a finite set of tokenization contexts.
• E(Lm) := E is a finite set of POS tags.
• C(Lm) := C is a finite set of contexts where a context

is a tuple of information specific to a tokenizer instance.
For example, a context could contain the previous sen-
tence’s parse or simply the previous token.
• Tt is the set of all tuples over S × E. These tuples

represent sequences of tagged tokens, excluding empty
tokens.
• Γ : C × S′ ® Tt

A good tokenizer is a tokenizer that chooses the most
likely sequence of tagged tokens for a given context,
input and language model. Thus, a good tokenizer
satisfies:
• ∀c ε C, s ε S′ Γ(c, s) = argmax ttεTt P(tt|c, s, Lm).
• where argmax is (customarily) defined as a function

that, given an expression resulting in a real-value and a
set of elements, returns the subset of elements that
maximize the expression’s value.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 3 of 11

Our design pattern and guidelines are expected to cre-
ate good tokenizers.
Components
Having defined a tokenizer’s input and output, we
further define a tokenizer by defining its internal struc-
ture; its software components. We separate a tokenizer
into three components: a token lattice and lattice con-
structor, a best lattice-path chooser and token transdu-
cers. Token transducers create candidate tokens from
text. These candidate tokens are assembled into a token
lattice by the lattice constructor. The best path (tokeni-
zation) is selected from the token lattice, tokenizing the
text. These components are illustrated in Figure 1. The
components are further explained below.
Text may have multiple segmentations caused by ambig-

uous token boundaries. For example, the sentence “The
patient’s 10mg tablet.” segments into eight token sequences
given that “patient’s”, “10mg” and “tablet.” could also be
interpreted as (space delimited) “patient ’s”, “10 mg” and
“tablet .”. The symbols ’ m and . ambiguously act as token
boundaries in English (e.g. “tablet.” versus “2.3”).
A bounded lattice [19] can represent a text’s segmen-

tations. In this context, a bounded lattice is a partially
ordered set of segmentations with a least and greatest
element (e.g. Figure 2). Such a lattice is referred to as a
token lattice. Conceptualizing a sentence’s segmenta-
tions as a bounded lattice has been suggested previously
[8,20,21], but has not been applied to biomedical tokeni-
zers or biomedical text. It is unknown whether or not a
token lattice is appropriate for biomedical tokenization.
We formalize and complete the token lattice design pat-
tern for the biomedical domain.
When converting text to a token lattice, it may be neces-

sary to transform a text’s raw candidate tokens into candi-
date tokens that increase the text’s POS-tag (sequence)
likelihood. For example, it may be necessary to transform
the token “mg” into “milligrams” to increase the POS-tag
likelihood of the sentence “The patient’s 10mg tablet.”.
Increasing POS-tag likelihood is meant to satisfy our toke-
nizer definition, that of likely POS tag sequences.

Token transducers identify and transform a text into
candidate token sequences for the token lattice. The
candidate token sequences are inserted into the token
lattice by the lattice constructor.
A token transducer is formally defined as follows:
Ttransducer := (Σ, Lm, τ)
• Σ is a finite set of symbols called the alphabet.
• S is the set of all finite strings over Σ and S′ := S +

{ε}, includes the empty string.
• Lm is a language model (e.g. a probabilistic model

for parsing sentences) that includes a finite set of toke-
nization contexts.
• C(Lm) := C is a finite set of contexts where a context

is a tuple of information specific to a tokenizer instance.
• Ts is the set of all tuples over S. These tuples repre-

sent token sequences.
• τ : C × S′ ® N0 × Ts. The transduce function

returns the length of text used and a corresponding
sequence of tokens.
Applying an implementation of the transduce function

to the example string “10mg of” might result in: τimpl(
null, “10mg of”) = (4, (“10”, “milligrams”)). The trans-
duce function’s output is restricted such that the quan-
tity of text used by the transducer is bounded by the
length of the input, l ε [0, length(s)], given (l, ts) ε N0 ×
Ts and some s ε S′. A value of (0, ∅) indicates that the
transducer could not be applied.
The token transducer formalization assumes that the

token transducer operates from the input string’s begin-
ning. An alternate formalization includes an index into
the input string specifying the location on which to
apply the transducer.
To complete the tokenizer’s components, an algo-

rithm is required that chooses the best path (tokeniza-
tion) from the token lattice and one that constructs
the token lattice from token transducer output. The
token lattice’s best path is the most likely path through
the token lattice given some language model. An algo-
rithm exists for best path selection (e.g. adapted
Viterbi [12]).

Figure 1 Tokenizer components and information flow A diagram illustrating the tokenizer’s components and information flow through these
components.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 4 of 11

To construct a token lattice, a lattice constructor
applies every transducer to each character position in
the input text. The result of applying a lattice construc-
tor on “The patient’s 10mg tablet.” is seen in Figure 2.
Given:
• Σ is a finite set of symbols called the alphabet.
• S is the set of all finite strings over Σ.
• G := (V, E) is a directed graph consisting of a finite

set of vertices and a finite set of labelled edges, E ⊆ V ×
S × V.
The token lattice G is constructed for some text s ε S

as follows:
• Let L := {i : i ε N0, 0 ≤ i ≤ length(s)}.
• s′ is a slice of s; s′ := s[i : length(s)] given an i ε L.
• vi ε V for i ε L. These vertices represent a position

between characters in s.
• For every slice of s and corresponding token trans-

ducer output τ(c, s’) = (l, (t0, …, tm)), a path of edges,
(e0, e1, …, em), in the token lattice, G, is constructed
where the first and last vertices of the path correspond
to a position between characters, e0[0] = vi and em[2] =
vi+l, and an edge is associated with a token by label(ej) =
tj.
Pseudocode
Of the three described software components, only the
lattice constructor’s pseudocode is presented. This is
due to token transducer code being specific to a token
transducer’s objective and due to existing documenta-
tion of a best-path selection algorithm (e.g. [12]).

Algorithm 1 The following algorithm con, ,constructLattice sstructs the token lattice using token transducer

output.

Reqquire: context text transducers

 G createDirectedGrap

, ,

← hh

 index to len text nodes represent positi

()

for do= ()0 oon between symbols

 createNode G index

{ }
(),

end ffor

for do

if

 index to len text 1

 index or

= () −

=

0

0 nodeInDegree G index path through lattice mus,() > 0 then tt exist

 td in transducers

{ }
for do

 updateContext context G td

 l toke

, ,

,

()
nn td C s index:len text

 updateL

seq = ()⎡⎣ ⎤⎦(),

aattice G index l token

, , , seq()
end for

 cleanup G length text

end if

end for

true(, ,)()
 Greturn

Algorithm 2 The following algorithm update, ,updateLattice ss the token lattice given token transducer

output requiredd by Algorithm 1

 graph index l sequence

().

, , ,Require:

iif then l transducer could not identify token sequence= {0 }}

←

 currentNode index

 lastNod

return

end if

ee index l

 length sequence empty edge

← +

() = { }if then0

 missingEmptyEdge graph currentNode lastNode if th, ,() een

 addEmptyEdge graph currentNode lastNode , ,())

←

 sequenceIndex

endif

return

endif

0

 sequenceIndex length sequence

 token s

while do< ()
← eequence sequenceIndex

 nextNode None

 seq

[]
←

if uuenceIndex 1 length sequence

 nextNode la

+ ≥ ()
←

then

sstNode

 edge findEdge graph currentN

end if

← , oode nextNode token edge could exist

 edge

, ,() { }
if == { }None edge missing create edge

 addEdge

then ,

 graph currentNode nextNode token

, , ,()
end if

 sequenceIndex sequenceIndex 1

 currentNode next

← +
= NNode

 end while

Algorithm 3 The following algorithm removes unne, ,cleanup eeded edges from the token lattice (required

by Algorithm 11

 graph node isStart

 isStart

).

, ,Require:

if then

 beforeLastNode node 1

 n beforeLastNode to

← −
=for 0 ddo work backwards through the nodes

 cleanup

{ }
ggraph n

 node i

, , false

end for

else

if

()

nn graph AND outDegree graph node lattice path ,() = 0 then ddoes not reach last node

 preds predecessors

{ }
← ggraph node

 removeNode graph node

,

,

()
()

 p in preds

 cleanup graph p

for do

, , ffalse

end for

end if

end if

()

A Systematic Approach to Creating a Biomedical
Tokenizer
Given our token lattice design pattern, a biomedical
tokenizer can be created by:
• Choosing a set of documented POS tags such as the

Penn Treebank’s.
• Choosing a best path selection algorithm. Implement

the algorithm, if necessary.
• Identifying the token transducers. Implement the

transducers, if necessary.

Figure 2 A bounded lattice representing a sentence’s segmentations An example of a bounded lattice representing a sentence’s
segmentations.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 5 of 11

Identifying Token Transducers
The proposed tokenizer design pattern does not provide
a method for identifying token transducers. Token
transducers will vary depending on the tokenizer’s input.
For example, the token transducers required for English
will likely differ from the token transducers required for
Spanish. In this section, we propose a systematic
approach to token transducer identification. The guide-
lines are as follows:
• Select a set of documented POS tags such as the

Penn Treebank’s.
• Collect text segments (e.g. sentences) from the input

texts that are representative of the input texts’ diversity.
This may be via random sampling or another method.
• For each text segment, identify its tokens.
– Adhere to POS tag definitions
– Insure that each token corresponds to at least one

POS tag.
– Do not segment text when segmentation results in

an unlikely POS-tag sequence such as segmenting “di-
trans,poly-cis-Undecaprenyl-diphosphate” into (space
separated) “di trans , poly cis Undecaprenyl dipho-
sphate”. This can be captured as P(tt|c, s, Lm) >t using
the introduced notation (the probability of a sequence
of POS-tagged tokens given some context, input string
and language model is greater than a threshold).
– Segment text when text ambiguously maps to multi-

ple POS tags and segmenting establishes a single POS
tag per token (e.g. “2.4kilograms” becomes “2.4” and
“kilograms”)
• Categorize the identified tokens into token classes (e.

g. “1”, “6.2”, “10 000” and “III” are numerical).
– Base classes on POS tag definitions, named entities

(e.g. person, organization, chemical substance), abbrevia-
tions and acronyms.
– Minimize the number of classes and multi-class

tokens.
• Create a token transducer for each class of token.

Example Token Transducer Identification
What follows is an example application of the token
transducer guidelines using the Penn Treebank’s POS
tag set, an author’s language model and the following
sample descriptions:
1. Entire upper dental arch (body structure)
Segmentation: Entire upper dental arch (body struc-

ture)
2. Royal Navy - non-commissioned personnel

(occupation)
Segmentation: Royal Navy - non-commissioned per-

sonnel (occupation)
3. Primidone 50mg tablet
Segmentation: Primidone 50 mg tablet
4. Primary Sjogren’s syndrome with organ/system

involvement (disorder)

Segmentation: Primary Sjogren ’s syndrome with organ
and system involvement (disorder)
5. Posterior cervical spinal cord injury, without spinal

injury, C1-4
Segmentation: Posterior cervical spinal cord injury ,

without spinal injury , C1 to 4
6. Precorrin-3B C17-methyltransferase
Segmentation: Precorrin-3B C17-methyltransferase
7. Salmonella III arizonae 47:k:1,5,7
Segmentation: Salmonella III arizonae 47:k:1,5,7
Item 1 is an example of a simple segmentation.
Item 2 includes two uses of the symbol -. The first use

is assigned the POS tag : whereas the second use, a
hyphen in the token non-commissioned, is more difficult
to assess. The hyphen could have been removed result-
ing in two tokens. Since hyphen removal might decrease
POS tag sequence likelihood, non-commissioned was
segmented as one token. For this limited example, either
segmentation could be considered acceptable.
The text 50mg of Item 3 is segmented because seg-

menting establishes a single POS tag per token. The text
would otherwise be a partial match to at least two POS
category descriptions. For similar reasons, C1-4 of Item
5 is segmented into multiple tokens.
The Penn Treebank specifies possessives as a separate

POS category. Given this definition, the possessive ’s is
split from Sjogren’s.
Items 4, 5, 6 and 7 are segmented to maintain likely

POS tag sequences. That is, 47:k:1,5,7, Precorrin-3B and
C17-methyltransferase remain as one token, whereas
organ/system and C1-4 are modified.
Given these segmentations the resulting token trans-

ducers are:
• Alphabetic (dental)
• Possessive (’s)
• Independents (- ,)
• Numeric (50)
• Abbreviations (- for to and / for and)
• Functional names (C1)
• Substances (Precorrin-3B, C17-methyltransferase, 47:

k:1,5,7)

Testing
We applied the design pattern and the token transducer
identification guidelines in the creation of a tokenizer
for biomedical concept descriptions and compared our
tokenizer to three other tokenizer methods.
Test Data
Biomedical concept descriptions were extracted from
SNOMED CT [22]. SNOMED CT (Systematized
Nomenclature of Medicine – Clinical Terms) is a clini-
cal terminology that contains approximately 387000
concepts, 1.4 million relationships and 1.1 million addi-
tional concept descriptions. SNOMED CT is described

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 6 of 11

as a comprehensive clinical terminology, with an objec-
tive of “precisely representing clinical information across
the scope of health care” [22]. The concept descriptions
were extracted from the January 2010 release’s current
concepts (as opposed to historical concepts).
We randomly selected 2781 current SNOMED CT

concept descriptions to create the ground truth (gold
standard) tokenizations. An example concept description
is “Posterior cervical spinal cord injury, without spinal
injury, C1-4”. An author manually segmented each
description by following our definitions and guidelines.
He is a native English speaker. A second individual also
segmented the concept descriptions after reading
instructions and practicing on several examples. The
instructions and examples can be found in Appendix .
The second individual has a health sciences background
but is not a native English speaker.
The second segmentor was provided with open-ended

segmenting instructions and five examples. The segmen-
tor read the instructions and segmented the examples,
after which the preferred segmentations were presented.
This was sufficient for the segmentor to conclude that
segmentation “separated units of meaning”. The seg-
mentor was encouraged to develop their own segmenta-
tion strategy given that this strategy included the two
rules provided in the instructions.
The greatest effect of our segmentation definitions and

guidelines was to expand closed-class words into their
regular form. For example, plus and slash separated lists
were converted to regular lists (e.g. “paracetamol + caf-
feine” became “paracetamol and caffeine”). Similarly,
dashes representing the word “to” were replaced (e.g.
“C1-4” becomes “C1 to 4”) and slashes representing the
word “per” were replaced (e.g. “ml/g” becomes “ml per
g”). Knowing that these abbreviated forms were gener-
ally absent in the training data, their expansion was to
satisfy the requirement of likely POS tag sequences.
Segmentation agreement is presented in Table 1.

Agreement was measured with Cohen’s Kappa (CK) [23]
- a statistic that accounts for chance agreement. The
probability of chance agreement was calculated as 0.5.
CK is typically calculated in context of categorical agree-
ment (e.g. POS taggers agree that a word is an adjec-
tive). In our case, agreement was defined as both
segmentors producing identical segmentations for a

given concept description. We modeled chance agree-
ment as a coin toss, where one side of the coin is
labeled agree and the other disagree. Thus, for each
concept description we could flip our coin to determine
whether the segmentations would agree by chance. The
expected probability of chance agreement is 0.5.
There was weak preliminary agreement (CK 0.139)

because descriptions ending with a parenthesized word
such as “(finding)” were considered one segment by the
second segmentor. She judged these parenthesized end-
ings to have a single meaning and thus a single segmen-
tation. (It is interesting to consider that parentheses and
punctuation in general have no explicit semantics.)
When the second segmentor encountered descriptions
ending with several words within parentheses, she opted
for segmentation consistency (not separating parenth-
eses) rather than changing completed segmentations
(changing single parenthesized words).
An author segmented the parentheses and agreement

was recalculated. This single change of separating par-
entheses from their adjoining words, for words located
at the end of concept descriptions, resulted in a CK of
0.888. Further minor corrections to both segmentor’s
results such as segmenting missed possessives resulted
in a CK of 0.916. The author’s corrected segmentations
were adopted for testing. These segmentations appear to
be reasonable segmentations given a CK of 0.916 with
another segmentor.
Tokenizer methods
We constructed a baseline whitespace-only tokenizer
and selected tokenizers specifically designed for biome-
dical text from the list provided by He and Kayaalp [7].
Specialist [24] and Medpost [25] were selected.
Specialist is written in Java. Specialist considers a con-

tiguous run of alpha-numeric characters bounded by
white space as a token, as well as individual punctua-
tion. Specialist over-segments and repairs the segmenta-
tion into meaningful tokens at a latter stage. For
example, “2.4” is tokenized as (space delimited) “2 . 4”
and corrected post-tokenization. Specialist was run
using the following command: java -classpath nlpPro-
ject.jar gov/nih/nlm/nls/utils/Tokenize –inputType=free-
Text –tokens.
Medpost is written in C++ and uses 33 interdepen-

dent heuristics to tokenize biomedical text. It segments
text for further processing which includes POS tagging.
Medpost’s POS tag set is based on the Penn Treebank’s
POS tag set. Medpost was run using the following com-
mand: medpost -text.
We implemented the adapted Viterbi algorithm [12]

to choose a best-path (tokenization) from the token lat-
tice. We created two variants of the algorithm’s hidden
Markov Model (HMM) [1]. These variants were a zero
order and first order HMM. The zero order HMM does

Table 1 Inter-segmentor agreement.

Description Percent Agreement Cohen’s Kappa

Preliminary 56.9 0.139

Parentheses corrected 94.4 0.888

Final corrected 95.8 0.916

Inter-segmentor agreement on SNOMED CT concept description
segmentations.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 7 of 11

not employ transitional probabilities whereas the first
order does. The first order’s transitional probability
relies on one previous state, P(state|state’).
Our tokenization methods are written in Python

(http://www.python.org) and use NLTK (http://www.
nltk.org, version 2.0b8) [26], a natural language toolkit
library. We trained our HMM’s on a sample (%10) of
the Penn Treebank corpus. The sample contains news-
paper text.
In one case, we augmented the sample Penn Treebank

corpus with %10 of the publicly available MedPost POS
tagged corpus [25]. The MedPost corpus contains 6695
sentences from MEDLINE abstracts. Its POS tag set is
based on the Penn Treebank’s. We ran a script provided
in the MedPost download to convert the MedPost POS
tag set to the Penn Treebank’s.
To identify token transducers, we segmented concept

descriptions by whitespace and constructed a set from
these segmentations. Prior examination of the concept
descriptions had shown that whitespace was rarely
found within a token. We randomly selected 1900 items
from the set of segmentations. These segmentations
were separated into tokens by following our guidelines
and using the Penn Treebank’s POS tags. Several seg-
mentations were tokenized in context of their associated
descriptions because the text segment contained insuffi-
cient information to perform tokenization (e.g. the “+”
in “Paracetamol + caffeine”). Table 2 summarizes the
resulting token classes.
Accuracy
The tokenizers were applied to our ground truth data
(45.5 percent of the data contained ambiguous token
boundaries). A segmentation identical to the ground
truth’s was considered successful and any other tokeni-
zation was considered in error. Table 3 summarizes the

results. Medpost and our adapted Viterbi tokenizer per-
formed best with a 92.9% and 92.4% accuracy respec-
tively. Confidence intervals (95% confidence) were
calculated using the normal approximation method of
the binomial confidence interval [27].

Discussion
Specialist performed poorly because it takes a different
approach to tokenization, that of over-segment and
repair. Specialist also removes symbols from the output
tokens, such as brackets, resulting in poorer perfor-
mance than the baseline whitespace-only tokenizer.
MedPost’s most consistent error was leaving a quan-

tity and its unit joined rather than segmenting them.
For example, MedPost would leave “10mg” as a token
whereas our approach was to segment “10mg” into “10”
and “mg”.
Our most accurate tokenizer’s most consistent error

was separating decimal numbers. For example, our algo-
rithm would separate “0.123” into “0 . 123” (space sepa-
rated). One explanation could be that our training data
contained an insufficient quantity of decimal numbers.
Unless the HMM had been trained with the decimal
number then the token was unknown to our HMM.
Training an HMM using token features as well as the
token itself would likely improve our most accurate
tokenizer.
The adapted Viterbi tokenizer, implemented using our

proposed design pattern and our token transducer iden-
tification guidelines, performed as well or better than
current biomedical text tokenizers. The results suggest
that the design pattern and guidelines are a viable alter-
native to current biomedical tokenization methods.
POS tag sequences and training data have a significant

impact on proper text tokenization. The 0-order HMM
disregards transition probabilities and consequently POS
tag sequences, whereas the 1st-order HMM considers
one previous state. Considering one previous state
improves tokenization by approximately 15%. A further
improvement of approximately 10% is achieved by train-
ing the HMM on data that has greater resemblance to

Table 2 Token classes derived from SNOMED CT concept
descriptions.

Class Examples

Whitespace

Independents [?)

Dash or Hyphen ACHE - Acetylcholine

Alphabetic Does or dental

Numeric 1500 1.2 10,000 III 1/2

Possessive ’s

Substances 2-chloroaniline

Serotypes O128:NM

Abbreviations L.H. O/E

Acronyms DIY

Lists Paracetamol + caffeine

Range C1-4

Functional names H-987

Token classes derived from SNOMED CT concept descriptions.

Table 3 Tokenizer results.

Tokenizer Accuracy (%) Confidence Interval,
95%

Whitespace 53.9 52.0, 55.8

Specialist 47.7 45.8, 49.6

Medpost 92.9 91.9, 93.9

Adapted Viterbi, 0-order HMM 70.8 69.1, 72.5

Adapted Viterbi, 1st-order HMM
(AV-1)

84.6 83.3, 85.9

AV-1 + random 10% of MedPost
corpus

92.4 (5 run
avg)

91.4, 93.4

Tokenizer results.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 8 of 11

http://www.python.org
http://www.nltk.org
http://www.nltk.org

the testing data. In other words, ambiguous tokeniza-
tions can be disambiguated through POS tagging.
Dividing software into well defined components can

increase software extensibility and reuse [28]. Our
design pattern should increase tokenizer extensibility
and reusability. For example, token transducers can be
reused in other token-lattice tokenizers. As an example
of extensibility, consider applying a token-lattice tokeni-
zer to new text. This should consist of identifying the
new text’s token transducers, including these transdu-
cers in the existing tokenizer and possibly training the
tokenizer with additional data. This is expected to be
less programming work than modifying a large number
of segmentation heuristics.

Conclusions
We presented our tokenizer design pattern named the
token lattice design pattern and associated token identifi-
cation guidelines. We described the tokenizer’s input,
output and components. The components are a token
lattice and lattice constructor, a best lattice-path chooser
and token transducers. Our evaluation of our design pat-
tern and guidelines supports our claim that the design
pattern and guidelines are a viable approach to tokeniza-
tion. The token lattice design pattern is expected to apply
to domains other than the biomedical domain.
Our evaluation demonstrates that ambiguous tokeni-

zations can be disambiguated through POS tagging. In
doing so, POS tag sequences and training data have a
significant impact on proper text tokenization. Our
approach of tokenization through POS tagging differs
from previous split-join classification approaches.
Our tokenizer formalization suggests how various bio-

medical text processing components such as machine
learning of named entities can interact cooperatively (as
token transducers). Our formalization also demonstrates
that machine learning algorithms are appropriate for
choosing the best-lattice path from a (biomedical text)
token lattice.
Our research results support further investigation of

machine learning on token lattices for selecting the
best-lattice path. Future work includes applying the
tokenizer pattern to other biomedical texts (e.g. pallia-
tive care consult letters) and testing new best lattice-
path chooser algorithms. Improvements to token trans-
ducers and the best lattice-path chooser are expected to
further improve tokenization.

Appendix - Secondary Segmentor Instructions
You are asked to segment a sentence into its tokens
(pieces). Here’s an example (sentence followed by
tokens, one per line):
A car, faster than lighting, was painted red.
A

car
,
faster
than
lighting
,
was
painted
red
.
When segmenting a sentence you are permitted to 1)

separate and 2) delete pieces of the sentence. In the
example above, spaces were deleted and punctuation
was separated from its adjoining word.
Tokens may have spaces (whitespace). Some people

may choose to do the following:
New York is a big city.
New York
is
a
big
city
.
Below are segmenting rules that you must follow,

These rules apply to very few situations. For most cases,
you will decide how to segment a sentence.
• Consider the following as separate tokens (upper or

lower case): ’ll ’re ’ve n’t ’s ’
• Abbreviations of closed-class words must be expanded.

Example: The sentence ”Jon/Roger are running.” would
become ”Jon and Roger are running.” Here is a list of
closed-class words: a about above across after against all
along although among an and another any anybody anyone
anything around as at because before behind below beneath
beside between beyond both but by despite down during
each either enough ever every everybody everyone every-
thing except few for from he her hers herself him himself
his how i if in inside into it its itself like many me mine
myself near neither no nobody none nor of off on once one
onto or ours ourselves out outside over past per several she
since so some somebody someone sufficient than that the
theirs them themselves these they this those though
through throughout till to toward under underneath until
up upon us we what whatever when where whether which
whichever while who whoever whom whomever with
within without yet you yours yourself yourselves
Apply what you’ve just learned to these examples:
Entire upper dental arch (body structure)
Entire
upper
dental
arch
(
body

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 9 of 11

structure
)
Royal Navy - non-commissioned personnel

(occupation)
Royal
Navy
-
non-commissioned
personnel
(
occupation
)
Posterior cervical spinal cord injury, without spinal

injury, C1-4
Posterior
cervical
spinal
cord
injury
,
without
spinal
injury
,
c1
to
4
Primidone 50mg tablet
Primidone
50
mg
tablet
Precorrin-3B C17-methyltransferase
Precorrin-3B
C17-methyltransferase

Acknowledgements
We would like to thank Stephanie Huang for segmenting our test data. This
research was funded by the Natural Sciences and Engineering Research
Council of Canada.
This article has been published as part of BMC Bioinformatics Volume 12
Supplement 3, 2011: Machine Learning for Biomedical Literature Analysis
and Text Retrieval. The full contents of the supplement are available online
at http://www.biomedcentral.com/1471-2105/12?issue=S3.

Authors contributions
NB is a PhD student at the University of Victoria. This work has been created
as part of his PhD research. JWJ is a faculty member at the university and
NB’s supervisor.

Competing Interests
The authors declare that they have no competing interests

Published: 9 June 2011

References
1. Jurafsky D, Martin JH: Speech and Language Processing. Prentice Hall;

2009.

2. Webster JJ, Kit C: Tokenization as the initial phase in NLP. Proceedings of
the 14th conference on Computational linguistics Morristown, NJ, USA:
Association for Computational Linguistics; 1992, 1106-1110.

3. Attia M: Arabic Tokenization System. Proceedings of the 2007 Workshop on
Computational Approaches to Semitic Languages: Common Issues and
Resources Prague, Czech Republic: Association for Computational Linguistics;
2007, 65-72[http://www.aclweb.org/anthology/W/W07/W07-0809].

4. Jiang J, Zhai C: An empirical study of tokenization strategies for
biomedical information retrieval. Inf. Retr. 2007, 10(4-5):341-363.

5. Tomanek K, Wermter J, Hahn U: Sentence and Token Splitting Based on
Conditional Random Fields. PACLING 2007 – Proceedings of the 10th
Conference of the Pacific Association for Computational Linguistics, Melbourne,
Australia, September 19-21, 2007 Melbourne: Pacific Association for
Computational Linguistics; 2007, 49-57.

6. Arens R: A preliminary look into the use of named entity information for
bioscience text tokenization. Proceedings of the Student Research Workshop
at HLT-NAACL 2004 on XX HLT-NAACL ’04, Morristown, NJ, USA: Association
for Computational Linguistics; 2004, 37-42[http://portal.acm.org/citation.cfm?
id=1614038.1614045].

7. He Y, Kayaalp M: A Comparison of 13 Tokenizers on MEDLINE. Tech. Rep.
LHNCBC-TR-2006-003 The Lister Hill National Center for Biomedical
Communications; 2006.

8. Grana J, Barcala FM, Ferro JV: Formal Methods of Tokenization for Part-of-
Speech Tagging. CICLing ’02: Proceedings of the Third International
Conference on Computational Linguistics and Intelligent Text Processing
London, UK: Springer-Verlag; 2002, 240-249.

9. Lavelli A, Califf ME, Ciravegna F, Freitag D, Giuliano C, Kushmerick N,
Romano L, Ireson N: Evaluation of machine learning-based information
extraction algorithms: criticisms and recommendations. Language
Resources and Evaluation 2008, 42(2):361-393.

10. Trieschnigg D, Kraaij W, de Jong F: The influence of basic tokenization on
biomedical document retrieval. SIGIR ’07: Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval New York, NY, USA: ACM; 2007, 803-804.

11. Hassler M, Fliedl G: Text preparation through extended tokenization. In
Data Mining VII: Data, Text and Web Mining and Their Business Applications.
Volume 37. WIT Press/Computational Mechanics Publications;Zanasi, A and
Brebbia, CA and Ebecken, NFF 2006:13-21.

12. Grana J, Alonso MA, Vilares M: A Common Solution for Tokenization and
Part-of-Speech Tagging: One-Pass Viterbi Algorithm vs. Iterative
Approaches. Text, Speech and Dialogue, volume 2448 of Lecture Notes in
Computer Science Springer-Verlag; 2002, 3-10.

13. Wrenn JO, Stetson PD, Johnson SB: An unsupervised machine learning
approach to segmentation of clinician-entered free text. AMIA Annu
Symp Proc 2007, 811-5.

14. McDonald R, Crammer K, Pereira F: Flexible text segmentation with
structured multilabel classification. HLT ’05: Proceedings of the conference
on Human Language Technology and Empirical Methods in Natural Language
Processing Morristown, NJ, USA: Association for Computational Linguistics;
2005, 987-994.

15. Buschmann F, Henney K, Schmidt DC: Pattern Oriented Software
Architecture: On Patterns and Pattern Languages. John Wiley & Sons; 2007.

16. Kiss T, Strunk J: Unsupervised multilingual sentence boundary detection.
Computational Linguistics 2006, 32(4):485-525.

17. Marcus MP, Marcinkiewicz MA, Santorini B: Building a large annotated
corpus of English: the penn treebank. Comput. Linguist. 1993,
19(2):313-330.

18. Brants T: TnT: a statistical part-of-speech tagger. Proceedings of the sixth
conference on Applied natural language processing San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.; 2000, 224-231.

19. Davey BA, Priestley HA: Introduction to Lattices and Order. Cambridge
University Press;, 2 2002.

20. Guo J: Critical tokenization and its properties. Comput. Linguist. 1997,
23(4):569-596.

21. Ma Y, Way A: Bilingually motivated domain-adapted word segmentation
for statistical machine translation. EACL ’09: Proceedings of the 12th
Conference of the European Chapter of the Association for Computational
Linguistics Morristown, NJ, USA: Association for Computational Linguistics;
2009, 549-557.

22. The International Health Terminology Standards Development Organisation:
SNOMED Clinical Terms - User Guide. 2009.

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 10 of 11

http://www.biomedcentral.com/1471-2105/12?issue=S3
http://www.aclweb.org/anthology/W/W07/W07-0809
http://www.ncbi.nlm.nih.gov/pubmed/2007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2007?dopt=Abstract
http://portal.acm.org/citation.cfm?id=1614038.1614045
http://portal.acm.org/citation.cfm?id=1614038.1614045
http://www.ncbi.nlm.nih.gov/pubmed/18693949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18693949?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21488138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21488138?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21207091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21207091?dopt=Abstract

23. Cohen J: A Coefficient of Agreement for Nominal Scales. Educational and
Psychological Measurement 1960, 20:37-46.

24. 2011 [http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/textTools/current/
index.html].

25. Smith L, Rindflesch T, Wilbur WJ: MedPost: a part-of-speech tagger for
bioMedical text. Bioinformatics 2004, 20(14):2320-1.

26. Loper E, Bird S: NLTK: the Natural Language Toolkit. Proceedings of the
ACL-02 Workshop on Effective tools and methodologies for teaching natural
language processing and computational linguistics Morristown, NJ, USA:
Association for Computational Linguistics; 2002, 63-70.

27. Mendenhall W, Sincich terry: Statistics for the Engineering and Computer
Sciences. Dellen Publishing Company; 1984.

28. Parnas DL: On the criteria to be used in decomposing systems into
modules. Commun. ACM 1972, 15(12):1053-1058.

doi:10.1186/1471-2105-12-S3-S1
Cite this article as: Barrett and Weber-Jahnke: Building a biomedical
tokenizer using the token lattice design pattern and the adapted
Viterbi algorithm. BMC Bioinformatics 2011 12(Suppl 3):S1.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Barrett and Weber-Jahnke BMC Bioinformatics 2011, 12(Suppl 3):S1
http://www.biomedcentral.com/1471-2105/12/S3/S1

Page 11 of 11

http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/textTools/current/index.html
http://lexsrv3.nlm.nih.gov/LexSysGroup/Projects/textTools/current/index.html
http://www.ncbi.nlm.nih.gov/pubmed/15073016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15073016?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Motivation

	Results
	Algorithm and Implementation
	Input and output
	Components
	Pseudocode

	A Systematic Approach to Creating a Biomedical Tokenizer
	Identifying Token Transducers
	Example Token Transducer Identification

	Testing
	Test Data
	Tokenizer methods
	Accuracy

	Discussion
	Conclusions
	Appendix - Secondary Segmentor Instructions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

