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Abstract— Finding the location of binding sites in DNA is a 
difficult problem.  Although the location of some binding sites 
have been experimentally identified, other parts of the genome 
may or may not  contain binding sites.  This poses problems 
with negative data in a trainable classifier.  Here we show that 
using randomized negative data gives a large boost in classifier 
performance when compared to the original labeled data. 
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I.  INTRODUCTION 
Genes are regulated (turned on and off) according to 

whether specific sites on the genome have a regulatory 
protein attached to them, see Figure 1.  These sites, called 
binding sites (or more technically: transcription factor 
binding sites, TFBS), are therefore critical in the way cells 
and their genes interact.  Unfortunately locating the binding 
site(s) for a particular gene is difficult [1].  They maybe 
upstream or downstream of the gene and may be located 
some way from it.  Moreover a specific regulatory protein 

may have many sites that it binds to in the genome, but these 
sites will not have a unique genetic signature (common DNA 
sequence).  To experimentally find binding sites is costly and 
time consuming, so biologists use algorithms to predict 
where a binding site might be.  For example if a short 
sequence of base pairs (bp) occurs in the genome of several 
different species then it is probably important and could be a 
binding site.  In fact there are several different ways to 
predict the presence of a binding site [2, 3].  Here, and in 
earlier work [4], we combine the results of a group of 
different individual predictors to produce a prediction that is 
better than that of any of the individual predictions.    

The major problem with training a classifier on these 
combined predictions is that the data can be rather unreliable.  
Whilst the labeling of a known binding site is normally 
correct (as it has been experimentally verified), the labeling 
of the other class may be much more dubious.  This is the 
major issue we address here.   We find that changing the 
negative training vectors can give a large benefit in the 
performance of the classifier on unseen data.

 
 
 

A C T C A T A … … C C T G A

Binding Site for a protein 
to turn on/off the gene Gene, codes for a protein

CC CT CA CG CT CCCA AG G A T C … C A T A

These are located relatively close together, < 4000 bp apart  
 

Figure 1.   A gene and a binding site for a protein that regulates it. 



 
Figure 2.  The predictions of the algorithms over a stretch of 550 base pairs in a yeast promoter region.  The last row shows the actual position of the known 

binding sites 

 
 

II. BACKGROUND 
In this work we use data taken from the yeast genome 

and also from the mouse genome.  These two species were 
chosen firstly because a lot is already known about their 
genomes and also to test our method on both a relatively 
simple regulatory regime, as found in yeast, and on a 
complex cellular mechanism as found in the mouse.  We 
have discussed the data used in [5] so here just give a 
summary.   

For each gene there is a corresponding promoter region 
where the binding sites will probably be located.  The 
yeast data set consists of 112 of these regions, with 
average length 605 bps.  Moreover 400 binding sites are 
known to exist in this data set.  We also have the results of 
12 different binding site prediction algorithms for each bp 
position.  The algorithms predict the probability that a 
given bp is part of a binding site.  Figure 2 shows the 12 
algorithmic predictions together with the annotated 
binding sites.  None of the individual algorithms are very 
accurate, but we hope that collectively they will do better 
than individually. 

By simply concatenating the 12 prediction values we 
get a 12-ary prediction vector for each position and the 
label of each vector is the known status of that position: 
being in a binding site or not.  This is illustrated in Figure 
3. 

The yeast data set is summarized in Table 1.  As can be 
seen the proportion of locations that are part of a binding 
site is low, 7.8%.  This is therefore imbalanced data[6], 
and we have reported elsewhere [7] how we use sampling 
to deal with this problem 

 
 

Figure 3.  At each position in the yeast genome sequence we have an 
annotation and 12 algorithmic predictions of that annotation.  We train 

an SVM to produce the annotation given the 12 algorithmic predictions. 

TABLE I.  A SUMMARY OF THE YEAST DATA 

Total number of sequences  112 
Total sequence length  67,851 bp 
Average sequence length  605 bp 
Average number of TFBS sites per sequences 3.6 
Average TFBS width  13.2 bp 
Total number of TFBS sites  400 
Number of unique TFBS sites  69 
TFBS density in total dataset  7.8% 

 

The mouse data is summarized in Table 2.  For this 
genome we have 7 algorithmic predictions and again we 



concatenate them together to give a 7-ary prediction vector 
for each position.  This data set is even more imbalanced 
than the yeast data – here only 2.85% of the data belong to 
a binding site. 

TABLE II.  A SUMMARY OF THE MOUSE DATA 

Total number of sequences  47 
Total sequence length 60,851 bp 
Average sequence length  1295 bp 
Average number of TFBS sites per sequence 2.87 
Average TFBS width  12.78 bp 
Total number of TFBS sites  135 
TFBS density in total dataset  2.85% 
Total number of sequences  47 

 
A deeper problem with these data sets is that whilst 

one can be reasonably confident that the bps labeled as 
being part of a binding site probably are, no such 
confidence can be extended to the rest of the promoter 
region.  There may be many, as yet undiscovered, sites 
therein.  This implies that the 0 labels could be incorrect 
on many vectors.   

In both data sets there are a number of vectors that are 
repeated.  The large amount of repeating data comes about 
because the original algorithms often produce the same 
prediction over long sequences of the genome, and so for 
regions where none of the algorithms change their 
prediction the training vectors will all be repeats.  For 
example the all zero vector in the mouse dataset (in which 
all seven algorithms predict that the bp is not part of a 
binding site) occurs 6,356 and therefore makes up about 
20% of the data.  Moreover on 19 of these sites the 
biological annotation is that it is part of a binding site.  We 
call vectors of this type (repeats that occur in both classes) 
inconsistent vectors.  There are also repeats that occur in 
only one class and these we call simple repeats.  The 
breakdown of the two data sets is given in Table 3.  
Removing the repeats from the consistent data gives the 
unique data points. 

TABLE III.  VECTORS IN THE TWO DATA SETS 

Species #Original Inconsistent Consistent Unique 
Yeast 67,851 46,695 

(69%) 
21,156 
(31%) 

6,521 
(9.6%) 

Mouse 60,851 12,119 
(20%) 

48,732 
(80%) 

32,747 
(54%) 

 
It can be seen that the yeast data set has very many 

inconsistent data points, and this suggests that this data set 
is particularly unreliable.  In the work presented here we 
take the simplest approach to dealing with the inconsistent 
and repeated data – we remove all such vectors (whilst 
keeping one copy of the consistent vectors).  This means 
that we lose over 90% of the Yeast data and 46% of the 
Mouse data.  From a biological point of view this is 
unsatisfactory as a prediction is required for every base 
pair in the genome, but in this paper we are taking a 
machine learning perspective and want to evaluate our 
method on clean data.  After cleaning the data the yeast 

data 885 (14%) of the  6,521 vectors are in the binding site 
class and for the mouse data the binding site class has 
1,484 (4.5%) of the 32,750 vectors. 

As we have already discussed the negative data may be 
particularly unreliable.  So we investigated whether 
modifying the negative training data, so that it contained 
only vectors that were highly unlikely to be part of a 
binding site, could improve performance. 

So we construct a synthetic training set of negative 
examples.  It is important to note that the final test set is 
never altered in any way and therefore consists of unique 
vectors from the original data.  We place all the training 
vectors labeled with a zero in a matrix.  The matrix has 
one row for each prediction (7 for the mouse, 12 for yeast), 
and one column for each base pair. Each row is then 
independently randomly reordered.  This effectively 
randomizes each vector whilst maintaining the overall 
statistical properties of each algorithm.  For example if a 
particular algorithm produces a 0 prediction 95% of the 
time it will still do so after the randomization.  It is 
presumably unlikely that a real binding site would elicit 
such randomly joined predictions. Doing this is not 
without its price.  Although we can be reasonably 
confident that the vectors are now correctly labeled, all the 
information in the original non-binding site data has been 
completely lost.  Our results will indicate how much 
information was actually present. 

 

III. MEUSRING PEFORMANCE 
As the data is imbalanced simple accuracy is not an 

adequate messure of performance.  As is usual we take the 
confusion matrix and from it define the following 
measures. 

 
 Predicted Negatives Predicted Positives 

Actual Negatives True Negatives  False Positives  
Actual Positives False Negatives  True Positives  

 

! 

Recall =
True Positives

Actual Positives
Precision =

True Positives
Predicted Positives

FP _Rate =
False Positives

Actual Negatives
F _ Score =

2 "Recall "Precision
Recall +Precision

 

The Recall measures the proportion of the actual 
binding sites that are predicted, and the Precision 
measures the proportion of positive predictions that are 
correct. The FP-Rate measures the proportion of non-
binding sites that are incorrectly predicted as being in a 
binding site.  Biologists are keen to keep the FP-Rate low 
so as to avoid unecessary experimental testing.  Finally the 
F-Score is a single number that rewards both high Recall 
and high Precision.  Note that all four of these measures 
give values between 0 and 1, with in all cases except FP-
Rate the higher value being better. 

 



IV. THE CLASSIFIER 
We use a standard Support Vector Machine (SVM) 

with a Gaussian kernel.  As is well known such a classifier 
has two hyper parameters, the cost parameter, C, and 
gamma the width of the Gaussian kernel.  These two 
parameters affect the shape and position of the decision 
boundary and it is important to find good values for a 
particular data set, and this is normally done by a process 
of cross-validation.   

First a test set (1/3) is removed from the data.  The 
remaining data is used for training/validation. This training 
set/test set spit is also validated with the whole process 
being repeated 3 times, once for each of the 3 partitions 
The remaining 2/3 is then partitioned, here into 5 folds, 
and a search is done for a pair of hyper parameters that 
performs well on each of the 5 folds.  The full algorithm 
we use is as follows: 

 
1. Remove repeats and inconsistent vectors 
2. Split the data into 3 equal subsets, maintaining the 

relative frequency of each data class 
3. For each of these 1/3 2/3 test set / training set splits: 

a. Split the training data into 5 partitions 
b. This gives 5 different training (4/5) and 

validation (1/5) sets. 
c. Randomise the negative training data, if 

required 
d. Use sampling to produce more balanced 

training sets. 
e. For each pair of C/gamma values F 

For each of the 5 training sets 
Train an SVM 
Measure performance on the 
corresponding validation set, exactly 
as the final test will be measured.  So 
use the F-Score. 

 Average the F-Score over the 5 trials 
f. Choose the C/gamma pair with the best 

average 
g. Reform the complete training set and train 

an SVM with the best C/gamma 
combination. 

h. Test the trained model on the unseen test set. 
 
As described earlier in some of our experiments we 

replace non-binding site vectors, in the training set, with 
modified random vectors.  We only do this in training sets: 
validation and test sets are never modified in any way.  
This is important: the validation sets are being used to find 
hyper-parameters that may give models that not only 
perform well on the validation sets but may also perform 
well on the actual test set. 

V. THE EXPERIMENTS 

A. Exepriment 1 – The Original Yeast Data 
The original algorithms find it very difficult to predict 

binding sites correcty individually.  The best single 

algorithm has an F-Score of 0.25 and the worst an F-Score 
of 0.04.  Our first result, which repeats experiments 
previously published, shows that the combined predictor 
can give a small improvement in peformance, with an F-
Score of 0.29.  

TABLE IV.  THE RESULT USING THE ORIGINAL YEAST DATA 

Recall Precision FP-rate F-score 
0.77 0.19 0.57 0.29 

 
Note that the high recall is achieved by over predicting 

the binding sites, hence the relatively low precision and 
high FP-rate. 

 

B. Experiment 2 –Yeast Data with Randomised Negative 
Data 
As stated earlier the negative data may not be 

accurately labeled.  In this experiment the negative vectors 
in the training sets are replaced with randomized vectors, 
as described in the previous section. The results are shown 
in Table 5. 

 

TABLE V.  THE RESULT USING THE YEAST DATA WITH 
RANDOMISED NEGATIVE EXAMPLES 

Recall Precision FP-rate F-score 
0.63 0.51 0.08 0.56 

 
It can immediately seen that the change to the training 

set has had considerable impact on the classifier 
performance.  The F-Score has been increased from 0.29 
to 0.56.  The new predictions have reasonable Recall and 
Precision.  It is worth repeating at this point that the test 
set that the trained classifier is assessed on, has not been 
altered in any way, so that it has the same characteristics 
as the test set in Experiment 1.  The trained classifiers are 
finding around 63% of the binding sites with incorrect 
predictions of less than 50% (Precision over 0.51).  
Importantly the predictor makes relatively few false 
positive predictions – so a biologist will not find 
themselves investigating many false predictions, with all 
the waste of time and resource that entails. 

 

C. Experiment 3 –Mouse Data  
The location of the binding sites on the mouse genome 

are also hard to predict for individual prediction 
algorithms.  Using the seven algorithms together our best 
result is shown in Table 6. This result is not very good.  
The precision of the prediction is very low and the FP-
Rate is too high.  Many predicted binding sites in the test 
set are not so labelled. 

 

TABLE VI.  THE RESULT USING THE ORIGINAL MOUSE DATA 

Recall Precision FP-rate F-score 
0.49 0.09 0.35 0.14 

 



D. Experiment 4 – Mouse Data with Randomised 
Negative Examples  

As stated earlier the negative data may not be 
accurately labeled.  In this experiment the negative 
vectors in the training sets are replaced with randomized 
vectors, as described in the previous section.  The results 
are shown in Table 7. 

 

TABLE VII.  THE RESULT USING THE ORIGINAL MOUSE DATA 

Recall Precision FP-rate F-score 
0.77 0.68 0.03 0.69 

 
We found the result of this experiment to be very 

surprising.  The improvement in the performance of the 
classifier is even more pronounced here than on the yeast 
data.  Perhaps most interestingly the Precision of the 
prediction shows very marked improvement.  Unlike the 
yeast data this did not come at any cost to Recall which in 
fact also improves by roughly 50%.  The relatively high 
Precision of the predictions then gives rise to a much 
reduced FP-Rate – just 3% of the predicted binding sites 
are in error. 
 

VI. DISCUSSION 
Our major result here is obviously the considerable 

affect of changing the training data so that the non-binding 
site class consists of randomly assigned algorithmic 
results.  This was particularly pronounced with the mouse 
data.  In fact the result was so dramatic that we have 
repeated the whole experiment several times to make sure 
that the result was reliable.  How can this improvement in 
performance come about?   It certainly implies that the 
original negative data is,  in this case, actually unhelpful to 
the trainable classifier.  However great care needs to be 
taken in the interpretation of the results.  If it is the case 
that the negatively labeled vectors in the data (and 
therefore in the test set) are unreliable then any statistic 
using the first row of the confusion matrix is also 
unreliable.  This means that the Recall, Precision and F-
Score measures are probably reasonable, but also that the 
FP-Rate could be incorrect.   

Of course our approach is similar to using a one class 
classifier, such as an SVDD classifier [8].  However our 
attempts to use such classifiers have not been anything like 
as successful as the approach we have described in this 
paper.  The results obtained were similar to the original 
two class SVM. 

The sites where we predict the presence of a binding 
site, which are not labeled as such, could be of interest to 
experimental biologists as potentially interesting parts of 
the genome.  It would be interesting for us to find out if we 
were predicting the presence of previously unknown 
binding sites. 
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