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Abstract—Although Optical Music Recognition (OMR) has
been the focus of much research for decades, the processing of
handwritten musical scores is not yet satisfactory. The efforts
made to find robust symbol representations and learning method-
ologies have not found a similar quality in the learning of the
dissimilarity concept. Simple Euclidean distances are often used
to measure dissimilarity between different examples. However,
such distances do not necessarily yield the best performance.

In this paper, we propose to learn the best distance for the
k-nearest neighbor (k-NN) classifier. The distance concept will
be tuned both for the application domain and the adopted
representation for the music symbols. The performance of the
method is compared with the support vector machine (SVM)
classifier using both real and synthetic music scores. The synthetic
database includes four types of deformations inducing variability
in the printed musical symbols which exist in handwritten music
sheets. The work presented here can open new research paths
towards a novel automatic musical symbols recognition module
for handwritten scores.

I. INTRODUCTION

Music has been shared and remembered by aural transmis-
sion, common to folk and popular musical genres, and in the
form of written documents normally called musical scores.
Prior to music typographical systems, all music was copied
manually including large scores and each and every part for
the players and singers. Publishers have typeset a large body
of historical musical scores, principally from what is known
as classical music. However, there remains a substantial and
important corpus of works that exist as original handwritten
manuscripts (or facsimiles of these manuscripts such as photo-
copies). The problem is not restricted to historical documents:
many contemporary compositions also exist only in handwrit-
ten or facsimile format. These important cultural artifacts are
in danger of being lost through the normal damages caused
by time. Some form of typesetting, or, ideally, a computer
system capable of automatically decode the symbolic images
and create new scores is required to preserve the music (rather
than the documents themselves). Programs for optical music
recognition (OMR) have been under thorough expansion for
many years; however, the results still need improvement.

An OMR system has three main objectives: the recognition,
the representation and the storage of musical scores in a
machine-readable format. Hence, an OMR program should be
able to detect the musical content and to interpret each musical
symbol of a musical work. The output format containing all

the musical information should be easily understandable by a
computer.

A typical OMR framework for the automatic recognition
of a set of music sheets has three principal modules after the
image preprocessing (see Fig. 1): (1) recognition of musical
symbols; (2) reconstruction of the musical information in order
to build a logical description of musical notation; and (3)
construction of a musical notation model to be represented
as a symbolic description of the musical sheet. The first
module is commonly subdivided into three stages: staff lines
detection and removal to obtain an image containing only
the musical symbols; symbols primitives segmentation and
recognition. In the Musical Notation Reconstruction module
the symbols’ primitives are merged to form musical symbols.
Graphical and syntactic rules can be used to introduce context
information to validate and solve problems that can occur on
the previous module of music symbol recognition. Detected
symbols are interpreted and assigned a musical meaning. In the
third module of final representation construction, a format of
musical description is created with the information previously
produced.

The focus of this paper is in the symbol classification step
on the music symbol recognition stage. More specifically, we
will learn a Mahalanobis distance for k-nearest neighbor (k-
NN) classification applied to music symbol recognition.

An overview of the existent works in the classification
area for music symbols is addressed in Section II followed
by a brief background knowledge overview in Section III.
The metric learning process is described in Section IV. In
Section V we present the metric learning in the OMR context
using k-NN and in Section VI we extend it to Support Vector
Machines (SVMs). In Section VII, the dataset adopted and
the experimental results obtained in this comparative study
are presented. Finally, conclusions are drawn and future work
is outlined in Section VIII.

II. RELATED WORKS

The recognition of musical primitives is often preceded
with the detection and elimination of staff lines and with the
detection and extraction of the music symbols.

The operation of symbol classification is in many works
linked with the process of segmenting the objects from the
music score [2], [3]. For the pattern recognition phase, many
problems result from the difficulty in obtaining individual
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Fig. 1. Typical architecture of an OMR processing system. From [1, Fig.1].

meaningful objects. This is typically due to the printing and
digitalization, as well as the paper degradation over time.
In addition, distortions caused by staff lines, broken and
overlapping symbols, differences in sizes and shapes or zones
of high density of symbols, contribute to the complexity of
the operation.

One of the techniques used to isolate the musical symbols
is related to the the bounding box size, the number and orga-
nization of their constituent sections [4]. Other authors [5], [6]
have chosen to apply projections to detect symbols’ primitives.
The recognition is done using features extracted from the
projection profiles. In [5], the k-nearest neighbor rule is used in
the classification phase, while neural networks is the classifier
selected in [6]. The extraction of symbol features, such as
width, height, area, number of holes and low-order central
moments were proposed by [7]. Taubman et al. [8] preferred
to extract standard moments, centralized moments, normalized
moments and Hu moments. Both systems classify the music
primitives using the k-nearest neighbor method.

Rossant [3] proposed a fuzzy model supported on a robust
symbol detection and template matching for the extraction and
recognition symbols. The method also incorporates graphical
and syntactic rules in an effort to improve robustness. A
structural method based on the construction of graphs for
each symbol is adopted by [9]. Coüasnon [10] suggested a
recognition process entirely controlled by grammar, which
formalizes the musical knowledge. In [11] the segmentation
and classification were performed simultaneously using Hid-
den Markov Models (HMMs).

Decision trees and clustering methods were used in [12] to
recognize music notation. For the experimental comparison,
the symbols were distorted by noise, printing defects, different
fonts, skew and curvature of scanning. In [1] SVMs, neural
networks (NNs), k-NN and HMMs were applied for music
symbols classification. Elastic deformation technique [13] was
applied to the original music symbols in order to augment the
training dataset.

Other methods use classifiers with reject option [14]. The
technique integrates in the classification model a confidence
measure in order to reject uncertain patterns namely broken
and touching symbols. The advantage of this approach is
mainly the opportunity to label critical items for manual
revision, instead of trying to automatically classify every item.

For the best of our knowledge there are no conducted exper-
iments using metric learning in music symbols classification.
We believe that taking advantage of distance learning can
significantly improve the classification accuracy. The learnt
distance metric will be directly connected with the application
domain and the adopted symbol representation. Armed with

this metric, the classifier has the potential to achieve a better
recognition task.

III. BACKGROUND KNOWLEDGE

Classifiers are built by taking a set of labeled examples
that are used to construct a rule that will assign a label to
any new example. In other words, if we consider a general
situation, we will have a training data set {xi, yi}, where xi
is a feature vector for an object i, and yi is the label associated
with the object class. The relative costs of mislabeling each xi
are known and must be used to generate a decision criterion
that can take any new observation vector xj and assign it a
class label ŷj .

A. Support Vector Machines

One of the most widely adopted techniques by the pat-
tern recognition community is the Support Vector Machines
(SVM). This procedure has as its main idea the margin maxi-
mization having an hyperplane as the decision surface [15].
More formally, given the training set {xi, yi}Ni=1 with in-
put data xi ∈ Rp and corresponding binary class labels
yi ∈ {−1, 1}, the maximum-margin hyperplane is defined by
g(x) = wtϕ(x)+ b where ϕ(x) denotes a fixed-feature space
transformation and b a bias parameter; x is assigned to class
1 if g(x) > 0 or to −1 if g(x) < 0. The maximization of the
margin is equivalent to solving

min
w,b,C,ξi

1

2
wtw + C

N∑
i=1

ξi

s.t

{
yi[w

tϕ(x) + b] ≥ 1− ξi, i = 1, . . . , N

ξi ≥ 0

(1)

where parameter C > 0 controls the trade-off between the
classification errors and the margin. The slack variables ξi,
i = 1, . . . , N are introduced to penalyze incorrectly classified
data points. The dual formulation in Equation (1) leads
to a dependence on the data only through inner-products
φ(xi)

tφ(xj). Mercer’s theorem allows us to express those
inner products as a continuous, symmetric, positive semi-
definite kernel function k(xi,xj) defined in the input space.
In this work, a radial-basis function kernel was used, given
by k(x,xi) = exp(−γ‖x − xi‖2), γ ≥ 0. The binary SVM
classifier can be extended to multiclass scenarios. Of the
multiple extensions available in the literature [16], we used
the one against one methodology.
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B. K-Nearest Neighbor

The k-nearest neighbor algorithm is amongst the simplest
of all machine learning algorithms [17], [18]. This method
belongs to a set of techniques called Instance-based Learning.
It requires no training effort and critically depends on the
quality of the distances measures among each instances. It
uses the heuristic that sample points near an unclassified point
should indicate the class of that point. In this manner, a k-
nearest neighbor classifier finds the k data points from the
training set closest to the point being considered, and classifies
the object with the most frequent class amongst its k-nearest
neighbors.

IV. METRIC LEARNING

Recently, the distance metric problem has received much
attention in the machine learning community [19]–[21]. The
performance of all machine learning algorithms depend criti-
cally on the metric that is used over input space. Some learning
algorithms, such as K-means and k-nearest neighbors, require
a metric that will reflect important relationships between each
classes in data and will allow to discriminate instances belong-
ing to one class from others. Depending on the availability of
training examples, distance metric learning algorithms can be
divided into two main categories: supervised distance metric
learning and unsupervised distance metric learning. Supervised
distance metric learning can be further divided into global
distance metric learning and local distance metric learning. In
global case constrains are applied to all pairwise of examples,
while in local approach only local pairwise are taken into
consideration.

A. Metric Learning for k-NN

As already mentioned previously, in the k-nearest neigh-
bor algorithm the decision about classifying new query is
determined by the labels of the k training examples with
shortest distance. Conventionally those distances are defined
by the Euclidean distance between examples. Decision rule
classifies unlabeled inputs by the majority label of their k-
nearest neighbor in the training set.

Our approach is based on work conducted by [21]. The
authors proposed a distance metric learning algorithm for
Large Margin Nearest Neighbor classification (LMNN). The
main idea behind is to learn a Mahalanobis distance function
by minimizing an objective function that is set up with local
and global constraints. This optimization results in bringing
k-nearest neighbors from the same class closer (i.e. shrinks
the distances between nearby examples from the same class)
and to separate examples from other classes by a large mar-
gin (expands the distances between examples from different
classes). We introduce the idea of LMNN as follows:

Let the {xi, yi}Ni=1 denotes a training set of N labeled
examples with inputs xi ∈ Rp and discrete class labels yi.
The Authors also introduced a binary matrix τij ∈ {0, 1},
which indicates wherever or not the labels yi and yj match.
The main goal is to learn a linear transformation L, which will

optimize k-NN classification: L : Rd → Rd. Transformation
L is used to calculate squared distances as:

D(xi,xj) = ‖L(xi − xj)‖2 (2)

For each input xi authors introduced k other inputs, called
target neighbors, that share the same label yi. These target
neighbors after transformation will have minimal distance
to xi. In the situation where any prior knowledge is not
available, target inputs can be identified as k-nearest neighbor,
determined by the well known Euclidean distance. Authors
also introduced ηij ∈ {0, 1} in order to indicate whether xj
is a target neighbor of xi. Both matrices τij and ηij are fixed
during learning stage. Formally, the cost function is defined
as:

ε(L) =
∑
ij

ηij‖L(xi − xj)‖2 + c
∑
ijl

ηij(1− τil)[
1 + ‖L(xi − xj)‖2 − ‖L(xi − xl)‖2

]
+

(3)

where [z]+ = max(z, 0) denotes the standard hinge loss and
c > 0 is a positive constant. There are two competing terms in
this equation. The first one penalizes large distances between
each input and its target neighbors. The second term penalizes
small distances between each input and all other inputs that do
not share the same label. For each input xi, the hinge loss in
incurred by differently labeled inputs by one absolute unit of
distance. The learning idea behind this approach is presented
on Fig. 2.

Fig. 2. Schematic illustration idea behind LMNN. Left side shows traditional
approach, under Euclidean distance, where xi has three target neighbors.
Right image shows the new discriminator after the Mahalanobis distance being
learnt. From [22, Fig.1].

The Equation (3) can be reformulated as an instance of
semidefinite programming (SDP). As SDPs are convex (linear
costs and constraints are replaced by convex costs and con-
straints) the global minimum can be efficiently computed [23].
In order to obtain SDP Equation (2) needs to be rewritten as:

D(xi,xj) = (xi − xj)
TM(xi − xj) (4)

where the matrix M = LTL parametrizes the Mahalanobis
distance induced by the linear transform L. In order to mimick
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the hinge loss, slack variables ξij were introduced for all pairs
of differently labeled inputs. Finally, the resulting SDP is given
by:

min
∑
ij

ηij(xi − xj)
TM(xi − xj) + c

∑
ij

ηij(1− τil)ξijl

s.t


z ≥ 1− ξijl

ξijl ≥ 0

M � 0
(5)

where z = (xi − xl)
TM(xi − xl)− (xi − xj)

TM(xi − xj).

V. METRIC LEARNING FOR KNN IN OMR

Most authors use margin-based multi-class classification
method, for instance SVMs, as a benchmark for classifying
music scores. This is a common approach and can be identified
in the state of the art. However, it is possible to find strong
similarities between LMNN and SVMs [21]. The competing
terms in Equation (3) are analogues to these present in
cost function at SVMs. One term penalizes the norm of the
parameter vector (linear transformation in distance metric,
or (in SVM) the weight vector of the maximum margin
hyperplane). The second terms are responsible for hinge loss
over the examples that violate the condition of unit margin (the
goal of margin maximization and a convex objective function
are based on hinge loss). Moreover, LMNN has no explicit
dependence on the number of classes, while in SVMs (multi-
class classification) the training time scales at least linearly
in the number of classes. For these reasons we decided to
perform comparative study between LMNN and SVMs.

For this comparative study, each image of a symbol was
initially resized to 20 × 20 pixels and then 7 music symbol
features were extracted for each image. The extracted seven
features were based on the Gamera project1 and were the
following:

1) the percentage of black pixels in the 20 × 20 pixels
window of the image;

2) the orientation of the symbol;
3) the number of vertical holes;
4) the number of horizontal holes;
5) the compactness (the ratio between volume and con-

nected components area);
6) the number of end points in the object skeleton;
7) the number of intersections in the object skeleton.

A Blurred Shape Model (BSM) descriptor [24] was also used
and added to the previous features. The aim was to increase the
final performance of the classifier by including characteristics
that distinguish similar objects. A BSM descriptor encodes the
probability of pixel densities of image regions and hence sym-
bols are described by a probability density function. Through
the high gradient magnitude of the pixels the shape of the
symbol can be codified in terms of a set of key points. Then
a grid comprised by a set of spatial regions is defined by the
BSM descriptor. In the end, the spatial relations among key

1http://gamera.informatik.hsnr.de

points from neighbor regions are established and features are
computed. The output descriptor is a vector histogram where
each position represents a distribution of probabilities of the
symbol structure considering spatial distortions encompassing
four possible sizes: 8× 8, 16× 16, 32× 32 and 64× 64 [24].
We opted for a feature vector histogram of the size 16 × 16,
not only due to the computational effort, but also because a
higher definition grid would not provide a richer information
(contours, structure, etc) due to the already working image
size (20× 20).

VI. METRIC LEARNING FOR SVM

An intuitive extension of the metric learning on k-NN
described in this manuscript is its application to SVMs. The
kernel trick, i.e., the mapping of patterns of the input feature
space to a higher dimensional space, can be considered as a
(dis)similarity measure. Thus, kernels can be seen as a way of
a general metric learning approach [25], [26].

In this work we apply the concept introduced in [22] in
order to assess the benefit of LMNN to SVMs on OMR. Our
approach consisted on the strategy one-against-one where a
matrix L is learnt for each discriminant. We used a kernel
derived from the RBF presented in Equation (2) which
resulted in D(x,xi) = exp(−γ‖L(x− xi)‖2), γ ≥ 0, dRBF.

VII. EXPERIMENTAL TESTING

A data set of both real handwritten scores and synthetic
scores was adopted to perform the comparative study between
LMNN and SVMs. The real scores consist on a set of 65
handwritten scores from 6 different composers. Images were
previously binarized with the Otsu threshold algorithm. In the
synthetic data set, a number of distortions were applied. This
set consists on the fraction of the dataset, available from [27],
written on the standard notation. The deformations applied to
these printed scores were curvature, rotation, Kanungo and
white speckles – see [27] for more details. In total, 380
distorted images were generated from 19 original scores.

The relevant classes for handwritten/printed music symbols
used in the training phase of the classification models are
presented in Table I. The symbols are grouped according to
their shape. The rests symbols were divided into two groups
– RestI and RestII. In total the classifiers were evaluated on a
database containing 7128 examples divided into 20 classes.

For evaluation of the pattern recognition processes, the
available dataset was randomly split into three sub-sets: train-
ing, validation and test sets, with 25%, 25% and 50% of
the data, respectively. This division was repeated 20 times in
order to obtain more stable results for accuracy by averaging
and also to assess the variability of this measure. No special
constraint was imposed on the distribution of the categories
of symbols over the training, validation and test sets; we
only guaranteed that at least one example of each category
was present in the training set. The best parametrization of
each model was found using the training and validation sets
being the expected error estimated on the test set by a 4-cross
validation scheme. In this manner, for SVM classifier C and
γ values were obtained based on a grid search. In LMNN
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Accent BassClef Beam Flat Natural Note NoteFlag NoteOpen RestI RestII

Sharp TimeN TrebleClef TimeL AltoClef Relation Breve Semibreve Dots Barlines

TABLE I
FULL SET OF HANDWRITTEN AND PRINTED MUSIC SYMBOLS CONSIDERED.

algorithm the same grid search was also conducted in order to
obtain the optimal value of the nearest similar labeled vectors.
A confidence interval as the one presented in [1] was estimated
for the mean of the error of the model on the test set.

In this work the different classifiers were tested using
different sets of features extracted: 7, 16, and 23 features.
Tables II and III present the results obtained applying LMNN
and SVMs classifiers in the OMR database. The accuracy rates
were compared using Euclidean and Mahalanobis distances.
According with our expectations using information about the
metric improved the results of prediction error. The first
assessment is that LMNN achieved the best results where
the highest gain was obtained using 23 features with LMNN
against k-NN. Moreover, within SVM methodology, an overall
improvement on using the metric learning on SVM can be
stated with exception for the set using the 23 features. Even
though existing a continuous improvement by consistently
adding new features when using dRBF, one can assess that
the overall performance is higher when using 23 features
with the standard RBF. By not performing a cross validation
on k in dRBF (due to time constrains) could be the reason
behind this behavior. Furthermore, since we first optimize a
distance during the metric learning phase which will be used to
construct the kernel SVM, resulting thus in a similarity kernel,
this transformation could also produce performance losses.

VIII. CONCLUSION

In this article a distance metric learning was successfully
applied in the k-NN classifier to recognize music symbols. The
results achieved in our experiments showed an improvement
in comparison with k-NN with the simply Euclidean distance.
We have also applied this method to derive a RBF SVM ker-
nel (dRBF) which provided significant improvements. Recent
works have focused in the application of metric learning in
more advanced classifiers than k-NN, which is the classical
and the simplest method for pattern recognition. Nguyen
and Guo [26] proposed a metric learning support vector
machine (MLSVM) method, where the problem of metric
learning is formulated as a quadratic SDP problem for local
neighbors constraints. Notwithstanding, k-NN is still the most
basic application for metric learning, because we can easily
demonstrate that with a proper distance metric, the process can
improve the accuracy. In the future, we are planning to adapt
other metric learning algorithms2, for instance Probabilistic
Global Distance Metric Learning (PGDM) or Active Distance
Metric Learning, to other classification methods.

2http://www.cs.cmu.edu/˜liuy/distlearn.htm
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