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Abstract—Numerical simulation has become an inevitable
tool in most industrial product development processes with
simulations being used to understand the influence of design
decisions (parameter configurations) on the structure and
properties of the product. However, in order to allow the
engineer to thoroughly explore the design space and fine-tune
parameters, many – usually very time-consuming – simulation
runs are necessary. Additionally, this results in a huge amount
of data that cannot be analyzed in an efficient way without
the support of appropriate tools. In this paper, we address the
two-fold problem: First, instantly provide simulation results if
the parameter configuration is changed, and, second, identify
specific areas of the design space with concentrated change
and thus importance. We propose the use of a hierarchical
approach based on sparse grid interpolation or regression
which acts as an efficient and cheap substitute for the sim-
ulation. Furthermore, we develop new visual representations
based on the derivative information contained inherently in the
hierarchical basis. They intuitively let a user identify interesting
parameter regions even in higher-dimensional settings. This
workflow is combined in an interactive visualization and
exploration framework. We discuss examples from different
fields of computational science and engineering and show how
our sparse-grid-based techniques make parameter dependences
apparent and how they can be used to fine-tune parameter
configurations.

Keywords-feature identification; visual analytics; sparse
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I. INTRODUCTION

A central task in data mining is feature identification
in large collections of multivariate data stemming from
observations of discrete events. Another field in which
a similar task is lately pursued is simulation technology.
Here, each data ”point” is a full simulation corresponding
to a set of parameters. The data mining task translates
into identifying parameters and parameter ranges where the
simulation exhibits interesting features. Furthermore, this
should be done with as few expensive simulation runs as
possible. This requires an appropriate, interactive exploration
and investigation environment which helps the engineer to
identify important features in the data. We present such an
environment based on so-called sparse grids, a numerical
discretization technique for high-dimensional problems [1].
They allow us to efficiently substitute the original simulation
and offer valuable indicators with respect to interesting
parameter constellations and parameter relevance.
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Figure 1. Workflow for interactive exploration and visualization with
sparse grid surrogate models.

Figure 1 shows the workflow of our exploration frame-
work. To accomplish an interactive exploration, we can-
not run a full numerical simulation for every parameter
change. Hence, we employ model reduction and distin-
guish between Offline and Online phases. In the Offline
phase, we pre-compute and store (full) simulation runs
{u(µ1), . . . , u(µM )} ⊂ RN for several parameter config-
urations PS = {µ1, . . . , µM} ⊂ P ⊂ Rd in a sparse grid
repository and build a surrogate model ũ : P → RN based
on sparse grid interpolation or regression. The dimension
d equals the number of parameters and is usually in the
range 1 < d < 10. The surrogate model ũ is by far
cheaper to evaluate than the full model, but we still assume
that ũ(µ) approximates the full simulation u(µ) sufficiently
well for any µ in the parameter domain P . In contrast to
many other model reduction methods, we do not have to
change the underlying simulation code to build our surrogate
model. In practice, this is a huge advantage because it
cannot be expected that engineers – working years on their
simulation code – change them in order to use a visualization
framework. In the Online phase, the user has access to
the sparse grid surrogate model through the visualization
block as shown in Fig. 1. By changing the parameters (e.g.
through slide bars), an approximation of the corresponding
simulation is immediately computed and displayed.

The sparse grid surrogate model is a linear combination
of hierarchical (or multi-level) basis functions. The abso-
lute values of the hierarchical coefficients of this linear
combination can be related to the intensity of changes
in the simulation entailed by changes in the parameters.
By appropriately visualizing these coefficients, we can hint
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Figure 2. One-dimensional hierarchical basis (left) and regular sparse grid
of level 3 (right).

regions in the parameter domain P where the surrogate ũ
changes heavily. This indicates interesting parameter regions
which should be explored in more detail and thus is an
important tool for the engineer to better understand the
simulation or fine-tune parameter configurations.

In [2] an overview of data mining methods for simulation
data can be found. There a bridge simulation is investigated
with similar goals – efficiency and insight. It follows a more
standard data mining approach while we propose methods
from the model reduction community for more robustness
and efficiency. In [3], surrogate models are coupled to
visual analytics tools but with the purpose of semi-automated
optimization.

II. SPARSE GRIDS

In data mining it is very common to represent a function
as a linear combination of kernel functions centered at data
points. We employ a grid-based approach, i.e., we represent
a function fN as a linear combination with coefficients αi,

fN (x) =

N∑
i=1

αiφi(x) , (1)

where the basis Φ := {φi}Ni=1 stems from a grid and
spans the function space VN . Straightforward conventional
discretizations with N grid points in each dimension are
not feasible in higher dimensions because the number of
grid points is of the order O(Nd), depending exponentially
on the dimension d. Note that in our case the dimension d
equals the number of parameters of our simulation, cf. Sec. I.
For sufficiently smooth functions, sparse grids enable one to
reduce the number of grid points by orders of magnitude to
only O(N log(N)d−1) while keeping a similar accuracy as
in the full grid case [1].

The underlying principle of sparse grids is a hierarchical
system of basis functions, see Fig. 2 (left), which is then
extended to the d-dimensional case via a tensor product
approach. A basis function is denoted by φl,i where l is the
level and i the index. In the d-dimensional case the level
l = (l1, . . . , ld) and index i = (i1, . . . , id) become vectors
and the corresponding basis function φl,i is the product of
the one-dimensional basis functions φl1,ii , . . . , φld,id . This

leads to a set of subspaces Wl, the hierarchical increments,
for which the grid points are the Cartesian product of the
one-dimensional ones on the respective one-dimensional
levels. We can select only those subspaces that contribute
most to the overall solution. The solution of this optimization
problem for a certain discretization level ` is the space

V
(1)
` :=

⊕
|l|1≤`+d−1

Wl , (2)

if the error is measured in the L2- or maximum norm
[1] and where |l|1 denotes the sum of the one-dimensional
levels. A regular sparse grid of level 3 is shown in Fig. 2
(right).

We can use spatial (local) adaptivity to further reduce the
number of unknowns needed to solve a problem up to some
required accuracy. We start with a rather coarse sparse grid
and use a suitable adaptivity criterion to add points in those
regions of the domain that are most important. A simple
– though typically very effective – criterion for adaptive
refinement is to select the refinement candidates with the
highest absolute values of their hierarchical coefficients αi.

III. SPARSE GRID INTERPOLANTS AS SURROGATES

In [4] we proposed to use a sparse grid interpolant as a
surrogate model for high-resolution computational steering.
This method is non-intrusive in the sense that the underlying
simulation code does not have to be changed but is treated
as a black box which delivers a snapshot u(µ) ∈ RN for
a requested parameter configuration µ ∈ P . The evaluation
procedure of the sparse grid interpolant in the Online phase,
i.e., when the user works with the model, can be efficiently
parallelized and thus the sparse grid surrogate admits an
interactive visual exploration.

We discretize the parameter domain P with a sparse
grid and compute the snapshots u(µ1), . . . , u(µM ) ∈ RN
where the parameters µ1, . . . , µM ∈ P have to be the
sparse grid interpolation points. Thus, the number of sparse
grid points N equals the number of snapshots M . We can
afford to compute reasonably many snapshots because these
computations are done in the Offline phase. We are then
looking for a map ũ : P → RN such that this surrogate
model ũ approximates the full simulation u. Here, the
map ũ is a vector-valued sparse grid function where each
component function ũ1, . . . , ũN : P → R can be represented
as a linear combination

ũi(µ) =

N∑
j=1

αi
jφj(µ), (3)

where φ1, . . . , φN are the hierarchical basis functions and
the coefficients αi

1, . . . , α
i
N are the hierarchical coefficients

corresponding to the i-th component function ũi. Let ui(µ)
be the i-th node of the snapshot u(µ) with parameter µ. The
i-th component function ũi of ũ is the interpolant of the pairs{(
µ1, u

i(µ1)
)
, . . . ,

(
µM , u

i(µM )
)}
, where the parameters



Figure 3. An example for a sparse grid interpolation: the interpolated
value at the marked (triangle) parameter µ is a weighted sum of hierarchical
coefficients (small cubes).

µ1, . . . , µM are the sampling points and the values at the i-th
node of the corresponding snapshots are the function values.
This is a multi-dimensional interpolation problem because
the parameter domain is usually a subset of Rd with d > 1
and thus sparse grids are required.

In the context of sparse grids, interpolation corresponds
to a basis transformation from the ordinary nodal point basis
into the hierarchical basis, see Fig. 2. This is done with a
process called hierarchisation which is linear in the number
of sparse grid points. We perform the hierarchisation process
for each component function ũ1, . . . , ũN and obtain the
hierarchical coefficients for each component. We refer to
[4], [1] for more information about the hierarchisation and
its implementation details.

Usually, the hierarchical coefficients give a good indicator
where to refine a sparse grid, see Sec. II. Here, however, we
have vector-valued sparse grid functions and thus not only
one hierarchical coefficient per sparse grid point but a vector
of length N of coefficients. In order to determine which
sparse grid point should be refined, we compute the L2-norm
of the coefficient vectors and refine the sparse grid point
corresponding to the highest value. This step can be repeated
until accuracy requirements are satisfied. Our examples in
Sec. VI show that this simple refinement criterion works
very well.

In the Online phase, we can evaluate the surrogate model
ũ(µ) at any parameter µ ∈ P and so obtain an approximation
of u(µ). Figure 3 shows the coefficient vectors (smaller
cubes) and sparse grid points which need to be collected
to interpolate between the snapshots at the evaluation point
marked with a triangle.

IV. REGRESSION-BASED SURROGATES

In order to employ the sparse grid interpolation as de-
scribed in the previous section, the sampling points, i.e., the
parameters of the snapshots, have to coincide with sparse
grid points. This means that we have to know the sparse
grid points at the time we set up the data repository. Even
though this is usually the case, it might happen that we

already have a data repository with snapshots with arbitrary
parameter configurations. A straightforward solution is to
employ regression instead of interpolation. However, in the
context of sparse grids, regression is by far more compu-
tationally expensive than interpolation and thus we cannot
afford to perform a regression for each node of u(µ).

We introduce a pre-processing step and do not perform
sparse grid regression directly onto the function values but
apply Proper Orthogonal Decomposition (POD) (or PCA)
first. We then approximate the data as a linear combination
of only a couple of POD basis vectors. Let S ∈ RN×M
be the matrix of M snapshots with N nodes each and
PS = {µ1, . . . , µM} ⊂ P the corresponding parameter
configurations. The orthonormal POD basis vectors are given
by the columns of V = [v1, . . . , vr] ∈ RN×r of the
singular value decomposition of S = V ΣWT . Note that it
is necessary to ensure that the data matrix S has zero mean.
With the coefficients STV = A = [α1, . . . , αr] ∈ RM×r

we can represent the snapshots in S as a linear combination
of the POD basis [v1, . . . , vr] as

u(µj) ≈
r∑

i=1

αi
jvi, (4)

where αi
j is the j-th component of the i-th column of A. In

general, a snapshot u(µ) is approximated as

u(µ) ≈
r∑

i=1

fi(µ)vi, (5)

where the functions f1, . . . , fr : P → R determine the coef-
ficient of the respective basis vector vi for a parameter µ ∈
P . Here, we choose the functions f1, . . . , fr ∈ V (1)

` to be
sparse grid functions. For each POD basis vector v1, . . . , vr
we define a training set Ti :=

{
(µj , α

i
j)|1 ≤ j ≤M

}
which

contains M tuples of a parameter µj and the corresponding
coefficient αi

j for the i-th POD basis vector. We can easily
compute this training set because we have the coefficient
matrix A = [α1, . . . , αr]. We then want to find a sparse
grid function f i =

∑
j β

i
jφj such that

min
fi∈V (1)

`

1

M

M∑
k=1

(
f i(µk)− αi

k

)2
+ λ

∑
j

(
βi
j

)2
, (6)

where
∑

j

(
βi
j

)2
is a regularization term controlled by λ > 0

to enforce a smooth solution. The regression boils down to
solving the system of linear equations (BBT + λI)βi =
BTαi where βi are the coefficients of the sparse grid
function fi =

∑
j β

i
jφj and Bjk = φj(µk), see e.g. [5].

Note that the matrix (BBT + λI) is of size N ×N where
N is the number of sparse grid points. Thus, the size
of the system matrix does neither depend on the number
of snapshots M nor on the number of nodes N of a
simulation. The procedure described so far comprises the
Offline stage. Hence, the result of the Offline stage are the



POD basis vectors [v1, . . . , vr] and the coefficient functions
f1, . . . , fr : P → R.

To obtain an approximated simulation ũ(µ) in the Online
stage for a parameter µ ∈ P , we have to evaluate all
functions f1, . . . , fr and form the linear combination (5).
It is cheap to evaluate this linear combination, because the
sparse grid evaluation does not depend on the number of
snapshots M nor on the number of nodes N of a simulation.

V. VISUAL TOOLS

So far, with the sparse grid surrogate, approximated solu-
tions can be interactively delivered to the exploring engineer.
In this section, we address the second issue, namely, which
area of the large parameter space should the explorer mostly
consider.

By applying the surrogate models based on sparse grid
interpolation or sparse grid regression described in the
previous two sections, we obtain in the one or other way a
function which has a hierarchical structure given as a linear
combination of hierarchical basis functions with hierarchical
coefficients. A hierarchical coefficient corresponding to a
grid point (or basis function) is a crucial piece of information
as it indicates how important that grid point is for the
function: A small absolute value can only lead to a small
change in the function, whereas a large value means that
the basis function significantly influences the function. This
phenomenon is amplified by the multi-level structure of the
hierarchical basis. A through discussion of these properties
of the hierarchical basis can be found in e.g. [5], [1].

As presented in Sec. II, the sparse grid can be constructed
in an adaptive manner. The adaptivity is based on the
hierarchical coefficients and the refinement will focus on
areas in the parameter domain of intensive function changes.
Hence, the structure of the refined grid contains valuable
information about the influence of parameters.

We make use of both indicators – hierarchical coefficients
and refinement – in visual analytics tools. First, we em-
ploy scatter plot matrices to visualize the multi-dimensional
sparse grid. A scatter plot matrix is a scheme of scatter
plots where each column contains the same X axis and
each row the same Y axis. For a sparse grid each plot
is a projection of all high-dimensional grid points onto
two dimensions. Thus, due to the refinement criterion, the
number and location of the projected points indicates where,
with respect to the projected parameters, most changes
happen. In Sec. VI we enhance the scatter plot by drawing
the grid points as spheres whose sizes correspond to the
hierarchical coefficient. This shows the relative importance
of each point and the magnitude of change.

Another visual analytics tool we consider is a weighted
parallel coordinates plot. To plot a set of d-dimensional
points, d axes are drawn vertically and equally spaced. A
point is represented as a polyline with vertices on the parallel
axes; the position of the vertex on the i-th axis corresponds
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Figure 4. Accuracy of sparse grid surrogates for the thermal block, reaction
flow and acoustic horn problems. Also exemplified, accuracy of POD with
sparse grid regression for the reaction flow.

to the i-th coordinate of the point. In our case, the axes are
given by the parameters of the simulation. Each sparse grid
point can then be represented by a polyline connecting each
axis (dimension) at the value of the corresponding parameter.
We further extend this plot by weighting and color coding
each polyline with the size of the hierarchical coefficient.

VI. APPLICATIONS

We apply the workflow shown in Fig. 1 to three demon-
strator applications of computational science and engineer-
ing: a heat conduction problem (thermal block), a chemical
reaction simulation (reaction flow) and a shape optimization
problem (acoustic horn). The purpose is feature detection
and exploration for which we employ the sparse grid surro-
gate models with the visual analytics tools of the previous
section. The examples are quite different with respect to
the number of parameters (2 - 5) and type of parameters
(physical and geometrical).

As far as the accuracy of the sparse grid surrogate models
is concerned, we know that for sufficiently smooth functions
the L2- and L∞-error is similar to that of a full grid [1].
Furthermore, we employ adaptive sparse grids and spend
only grid points where they are needed which has proven
to be very effective [5], [4], [6]. As Fig. 4 shows, for all
of the following examples, a relative L2-error of less than
one percent is achievable. This is true for the sparse grid
interpolation and regression and is sufficient for identifying
important parameters or parameter ranges as well as for
visual exploration. In the following examples, we employ
sparse grid interpolation.

A. Thermal Block

The thermal block problem describes steady-state heat
conduction in a square domain consisting of a regular array
of 2 × 2 square blocks, i.e., regions of different thermal
conductivities, see Fig. 5(a). The problem has four param-
eters, µ ∈ R4, where each component of µ is the thermal
conductivity of one region. A thorough discussion of the
thermal block can be found in [7].



(a) thermal block (b) reaction flow (c) acoustic horn

Figure 5. Snapshots of the thermal block, reaction flow and acoustic horn simulations

Figure 6. The parallel coordinates for the thermal block show that the
center grid points is the most important grid point.

The sparse grid for the thermal block is four-dimensional
and consists of 367 grid points. In the weighted parallel
coordinates plot in Fig. 6, we see more refinement in the
upper half of the parameter ranges which corresponds to
faster heat dissipation (high conductivity) and thus more
change. In the lower parameter ranges there are a few
points with higher hierarchical coefficients. These differ
significantly from the central point (on level 1) and are thus
candidates for a closer investigation.

B. Reaction Flow

The reaction flow is a two dimensional H2-Air flame
described by the reaction mechanism 2H2 + O2 → 2H2O,
see [8]. Basically, hydrogen and oxygen are mixed and
ignited by a flame. Fig. 5(b) shows that the concentration
of the resulting product (water) is higher when closer to
where the fuel and the oxidizer are mixed and ignited. The
reaction flow is parameterized by the two parameters A (pre-
exponential factor, i.e. rate of molecule collisions) and E,
energy to overcome in order for the chemical reaction to
occur. Of interest in gaining insight in this simulation is
the relation of the two parameters to each other and which
parameter ranges capture the most changes in the reaction
system.

The sparse grid for the reaction flow is two-dimensional
and has 445 points. From the weighted scatter plot matrix in
Fig. 7 we identify one area (upper left) with high activation

Figure 7. The weighted scatter plot matrix for the reaction flow.

energy and low pre-exponential factor where little refinement
takes place. This corresponds to the physical interpretation
that in the above scenario and within the chosen parameter
ranges, the reaction rate is low and thus there is little change
in the simulation function. However, if the pre-exponential
factor A is increased (molecule collisions are more frequent)
then also the reaction rate increases. The weighted parallel
coordinates plot in Fig. 8 confirms the above observations
and encourages the investigation around E = 0.2.

C. Acoustic Horn

The acoustic horn problem shown in Fig. 5(c) consists of
a planar channel, i.e., the waveguide, onto which a conical
termination, i.e., the horn, is attached. An incident wave is
generated from the far left of the waveguide and propagated
through the horn [9]. We are interested in the influence of the
shape of the horn onto the wave reflexion. The geometry of
the horn is parametrized at five points along its boundaries.
With the parameters, we can locally widen and narrow the
opening of the horn.

The sparse grid for the acoustic horn is five-dimensional
with 1327 points. From the scatter plot matrix in Fig. 9(a) we
observe a refinement concentration in the [P2, P3, P4] plots,



(a) Acoustic Horn: (left) weighted scatter plot matrix, (upper right) simulation snapshot shows
pressure increase toward the walls.

(b) Acoustic Horn: Parallel Coordinates.

Figure 9. Visual analytics for the acoustic horn example.

Figure 8. Parallel coordinates for the reaction flow example. We see a
clear cluster around 0.2 for the activation energy E.

which indeed corresponds to an increased pressure in the
neighborhood of the P2 and P3 deformation points on the
cone. Fig. 9(b) confirms P2, P3 and P4 cause most changes
in the simulation and that, again, the center point captures
most of the simulation behavior. Moreover, we observe that
the combination of P2 and P3 shifted down and P4 shifted
up leads to an increased pressure (thus reflexion). In the
upper right corner of Fig. 9(a) a snapshot with parameters
from that area is plotted which clearly shows an increased
pressure near the wall of the horn (marked with red circles).

VII. CONCLUSION

We have described a workflow based on sparse grids for
the interactive visualization and exploration of simulation
data. By employing sparse grid surrogate models, we achieve
quick response and thus interactive exploration. Sparse grids
heavily rely on the hierarchical (multi-level) basis. We have
exploited the corresponding hierarchical coefficients and re-
finement patterns in order to reveal parameter dependencies

and parameter regions of interest by plotting them with
visual analytics tools such as parallel coordinates or scatter
plot matrices. The examples from computational science and
engineering have shown that the workflow identifies physical
properties and provides valuable insight.
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