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Abstract—Kernel methods have difficulties scaling to large
modern data sets. The scalability issues are based on compu-
tational and memory requirements for working with a large
matrix. These requirements have been addressed over the years
by using low-rank kernel approximations or by improving the
solvers’ scalability. However, Least Squares Support Vector
Machines (LS-SVM), a popular SVM variant, and Kernel Ridge
Regression still have several scalability issues. In particular,
the O(n3) computational complexity for solving a single model,
and the overall computational complexity associated with tuning
hyperparameters are still major problems. We address these
problems by introducing an O(n log n) approximate l-fold cross-
validation method that uses a multi-level circulant matrix to
approximate the kernel. In addition, we prove our algorithm’s
computational complexity and present empirical runtimes on
data sets with approximately one million data points. We also
validate our approximate method’s effectiveness at selecting
hyperparameters on real world and standard benchmark data
sets. Lastly, we provide experimental results on using a multi-
level circulant kernel approximation to solve LS-SVM problems
with hyperparameters selected using our method.

I. INTRODUCTION

The amount of digital data generated each year is increasing

on an exponential scale. This data is generated through mobile

devices, purchases, social networks, and much more. Under-

standing and extracting information from these large data sets

is pivotal to advancing science and industry’s decision making

capabilities. However, existing statistical methods continue to

struggle with handling problems that involve a large number

of data points.

In particular, kernel methods have several difficulties. It is

well known that a full-rank kernel matrix, representing n data

points, requires O(n2) memory, and that the computational

requirements greatly depend upon the learning technique.

For example, traditional Support Vector Machine (SVM) [1]

requires solving an optimization problem that scales linearly

in n, but requires either storing the entire kernel matrix or

recomputing it when needed [2]. SVM scalability problems

have been greatly addressed over the years, either through

problem decomposition [2] or by using faster methods to solve

SVMs [3].

However, Least Squares SVM (LS-SVM) [4], a popular

SVM variant, still suffers from several scalability issues.

These issues include the computational complexity required

for learning, O(n3), and tuning the learning method’s hyper-

parameters, where n represents the total number of training

examples. Solving an LS-SVM optimization problem involves

solving a system of linear equations, which scales with the size

of the kernel matrix. In addition, selecting hyperparameters

that allow the learned model to generalize requires solving

several LS-SVM problems and evaluating a model selection

criteria function. Generally, l-fold cross-validation (CV) or

a penalized criteria function1 is used to estimate how well

the resulting model will generalize. Using the exact criteria

function in [5] requires O(n3) per model. While using l-fold

CV requires O(ln3) per model with a naive implementation,

better implementations require O(n3) and the exact Leave-

one-out (LOO) CV method requires O(n2) [6], [7].

While SVM requires hyperparameter tuning as well, im-

proved solvers reduce the computational cost per evaluation

considerably. Reducing the overall computational cost for

LS-SVM is primarily achieved by approximating the kernel

matrix with a low-rank decomposition. However, a low-rank

decomposition still produces an O(m3 + m2n) runtime per

evaluation, where m is the rank of the approximation [8].

Low-rank approximation combined with an efficient l-fold CV

implementation requires O(m2n) computation [6]. Placing a

restriction on m causes the computation to scale linearly in

terms of n, if m is sufficiently smaller than n
2 [6]. However,

m being sufficiently small is not practical for all data sets,

which is demonstrated in [6].

Therefore, we are proposing a new approximation method

for evaluating l-fold CV that scales solely in terms of n for all

data sets. By combining a relatively new kernel approximation

method from [9] with the efficient l-fold CV method in [6], we

show that it is possible to evaluate each model in O(n log n)
time. We provide proofs that establish the theoretical runtime

and show validity, as well as experimental results with real

world and benchmark data sets, and runtimes on large ran-

domly generated data sets that establish scalability. Lastly, we

show that our method is applicable to Kernel Ridge Regression

(KRR), just like the original efficient l-fold CV method in [6].

The remainder of this paper is organized as follows. Section

1Penalized criteria functions combine a goodness of fit function with a
penalty term.
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II discusses previous work in hyperparameter tuning with LS-

SVM. Section III presents required background information.

Section IV presents proofs that establish algorithmic correct-

ness and the O(n log n) runtime. Section V describes our

experiments and discusses the experimental results. Section

VI concludes the paper with a summary of our findings and

future directions.

II. RELATED WORK

As mentioned in the introduction, selecting the optimal

hyperparameters requires searching a continuous parameter

space and evaluating an LS-SVM model per candidate hyper-

parameter setting. Two very common methods for evaluating

model quality are penalized criteria functions and l-fold CV.

L. Ding et al. [10] use the same approximation method as this

work to reduce the computational complexity associated with

solving the model and evaluating the criteria function from

[5]. However, L. Ding et al.’s usage is very inefficient. Their

overall runtime is O(ln log n), where l is the total number of

folds. However, our method eliminates the redundancy and

obtains an O(n log n) runtime. Section III-C discusses the

approximation method in detail.

In addition, the criteria function in L. Ding et al.’s work is

a biased estimator [10]. The authors argue, based on [11], that

a model selection criteria is not required to be an unbiased

estimator and that the model selection criteria only needs

to provide a reliable estimation of the generalization error

in hyperparameter space. While this argument is compelling,

Cawley et al. [11] actually states that the model selection cri-

teria needs to provide a reliable estimate of the true minimum

test error, which can easily be obscured by bias when the true

test error represents a complex surface in the hyperparameter

space – especially since the criteria function in Song et al. [5]

is convex (i.e. has a single minimum).

More work focuses on optimizing l-fold CV performance,

because it tends to be a good indicator of generalization error

[12]. Additionally, LOO CV provides an almost unbiased

estimate of the true generalization error [13]. This is why

[7] and [14] focus on using matrix properties to reduce the

computational cost associated with computing a matrix inverse

per fold. Both approaches achieve an O(n2) runtime for LOO

CV.

An et al.’s method [6] achieves an O(n3) runtime for

exact l-fold CV and LOO CV. In addition, they present an

approximate l-fold CV method, using the same algorithms,

that uses a low-rank kernel approximation with an O(nr2)
runtime, where r is the approximate kernel’s rank. Their

algorithm supports l-fold CV with LS-SVM classification, LS-

SVM regression, and KRR [6]. While their exact method is

slower than [7], [14], combining this method with the Song

et al.’s kernel approximation [9] allows us to reduce the

computational complexity to O(n log n), and compute a fast

approximation of the almost unbiased LOO CV measure.

III. PRELIMINARIES

This section provides necessary background information,

including a short review of LS-SVM, KRR, approximating

kernel matrices with multi-level circulant matrices, and the l-
fold CV method by [6]. Our approximate l-fold CV approach

is based on combining the last two items to create an even

faster method.

A. Least squares support vector machine

Given a training set D = {(x1, y1), (x2, y2), . . . , (xn, yn)},
where xi ∈ R

m and y ∈ {−1, 1}, LS-SVM can learn a

classification function with the following form:

y(x) = sign[wTϕ(�xi) + b] (1)

where ϕ(∗) represents a non-linear function that maps x to

a higher dimensional feature space. This method can be used

to learn regression functions by removing the sign decision

component, and changing y’s membership to y ∈ R.

LS-SVM’s learning method is based on two modifications to

the well known SVM formulation [4]. Firstly, the loss function

is defined as the squared error over all samples. Secondly, the

inequality constraints are replaced with equality constraints.

These two differences lead to the following formulation:

1

2
‖w‖2 + C

n∑
i=1

ξ2i (2)

with the following constraints:

wTϕ(�xi) + b+ ξi = yi (3)

By applying Lagrange multipliers, the primal problem is

transformed into the dual problem, which has the following

closed form solution [15]:[
0 1Tn
1n K + 1

γ In

] [
b
α

]
=

[
0
y

]
(4)

where y =
[
y1, y2, . . . , yn

]T
, 1n =

[
1, 1, . . . , 1

]T
, α =[

α1, α2, . . . , αn

]T
, and K represents the kernel matrix. Solv-

ing this system of equations produces the following classifi-

cation function:

y(x) = sign[

n∑
i=1

αiK(�x, �xi) + b] (5)

where α and b are the solutions to equation 4.

B. Kernel ridge regression

KRR aims to find a non-linear function that represents the

dependencies between the covariates {x1, x2, . . . , xn} and the

response variable {y1, y2, . . . , yn} [16]. More precisely, KRR

minimizes the following function:

n∑
i=1

(yi − wTϕ(�xi)) + λ||w||2 (6)

59595959



where λ represents a fixed penalty. Transforming this problem

to the dual representation yields the following closed form

solution:

(K + λI)α = y (7)

where I is the identity matrix and K is the kernel matrix.

Solving this system of equations yields the following non-

linear function

y(x) =

n∑
i=1

αiK(�x, �xi) (8)

which is a special form of LS-SVM, b = 0.

C. Kernel approximation via multi-level circulant matrices

In order to provide a general definition for multi-level

circulant matrices and to explain the approximation algorithm

introduced by [9], we need to review standard multi-level ma-

trices and multi-level indexing. Multi-level indexing is based

on factorizing each dimension of an m×n matrix into regions

such that n = n0n1 . . . np−1 and m = m0m1 . . .mp−1 [17].

Each factor ni and mi specifies a level within the matrix and

an index range for each dimension. This means a multi-level

matrix is a matrix whose individual elements can be specified

by two p dimensional index vectors and the p factors.

A circulant matrix is an n×n matrix that can be completely

specified by its first row, because all remaining n−1 rows are

permutations of the first row. A p-level circulant matrix is

an extension that is defined as an m ×m multi-level matrix

where each level defines a (p−i)-level circulant matrix, where

i represents the level. Each level i, other than level 1, can be

viewed as an ni×ni block matrix where each sub matrix has

dimension
∏p−1

j=i+1 nj ×
∏p−1

j=i+1 nj , and all rows in the block

matrix are permutations of the first row. Level 1 is a standard

circulant matrix. This means a p-level circulant matrix A
can be completely represented by its first row a0,l where

0 = (0, 0, . . . , 0) and l is a multi-level index. Representing

the approximate kernel matrix as a p-level circulant matrix

reduces the memory storage requirement from O(n2) to O(n).

Algorithm 1 Kernel Approximation with P -level Circulant

Matrix

Input: M (Kernel’s size), F = {n0, n1, . . . , np−1}, k (Kernel

function)

1: N ←{All multi-level indices defined by F}
2: T ← zeros(M), U ← zeros(M)
3: Hn ← {x0, x1, . . . , xp−1} ∈ R

p s.t. ∀xi ∈ Hn, xi > 0
4: for all j ∈ N do
5: Tj ← k(||jHn||2)
6: end for
7: for all j ∈ N do
8: Dj ← Dj,0 ×Dj,1 × · · · ×Dj,p−1

9: Uj ←
∑

l∈Dj
Tl

10: end for
11: K̃ ← U
Output: K̃

Algorithm 1 presents Song et al.’s method for constructing

the approximate kernel matrix [9]. The algorithm’s runtime is

O(n+n2p). The exponential component is from the fact that

Dj grows exponentially in size as p increases. This is because

Dj,s, where s represents the level, is defined as Dj,s = {0}
if js = 0 else Dj,s = {js, F (s) − js}, which means every

additional factor increases the overall number of elements used

in the set cross product. However, L. Ding et al. [10] showed

that a small p (e.g., two or three) is sufficient for adequate

approximation on classification problems. This means it is

possible to fix p such that the runtime is O(n).
More importantly, this approximation method does not use

the original features within the data set, nor does it use

transformations from the data. The approximation method con-

structs a kernel matrix that mimics the RBF kernel. Generically

mimicking the RBF kernel is possible because all mappings

to Hilbert space are many-to-one, and these mappings are

controlled by the the kernel hyperparameters. This property

reduces the technique’s overall ability to support other kernel

types, but provides large computational advantages by making

the approximation a multi-level circulant matrix.

Approximation quality for this method was well established

in Song et al. and L. Ding et al. [9], [10]. Song, et al. proved

that the approximate kernel matrix converges to the true kernel

matrix as the number of factors, p, approaches infinity, where

p is the number of factors used to partition the multi-level

matrix and is equal to Hn’s cardinality. Based on this proof and

the established approximation runtime, O(n+ n2p), a perfect

approximation becomes exponentially difficult to compute.

However based on L. Ding et al.’s research, a small number

of factors produces adequate approximations.

While Song et al. and L. Ding et al. present excellent studies

over the approximation’s capabilities, our results show that the

real numbers selected for Hn, a set of p positive real numbers

selected by the user, greatly influence approximation quality

(Section V). By studying how Hn influences performance, we

illustrate that this method decreases computational complexity

and increases the hyperparameter search space by p.

D. Cross-validation method

Algorithm 2 shows the process for calculating the l-fold

CV error with LS-SVM classification. This method is cen-

tered around computing a single matrix inverse and solving

l systems of equations, where l is the number of folds. The

single inverse involves computing K−1
γ and the l systems of

equations are based on using the diagonal block matrices found

in C (line 2) to estimate the predicted labels for the omitted

folds. These diagonal block matrices are denoted Ckk and have

dimension nv×nv where nv � n
l , k is the k-th fold, and n is

the number of data points. An et al. [6], noticed that solving

Ckkβk = αk provides the estimated error per omitted example

in the k-th fold.

This algorithm can be easily modified to support KRR

and LS-SVM regression. Removing the sign component and

changing the error function are the only modifications required

to change to LS-SVM regression. Changing to KRR regression
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requires setting C to K−1
γ , setting α to K−1

γ y, and making

the LS-SVM regression modifications [6].

Algorithm 2 Efficient Cross-Validation

Input: K (Kernel matrix), l (Number folds), y (response)

1: K−1
γ ← inv(K + 1

γ I), d← 1TnK
−1
γ 1n

2: C ← K−1
γ + 1

dK
−1
γ 1n1

T
nK

−1
γ

3: α← K−1
γ y + 1

dK
−1
γ 1n1

T
nK

−1
γ y

4: nk ← size(y)/l, y(k) ← zeros(l, nk)
5: for k ← 1, k ≤ l do
6: Solve Ckkβ(k) = α(k)

7: y(k) ← sign[y(k) − β(k)]
8: k ← k + 1
9: end for

10: error ← 1
2

∑l
k=1

∑nk

i=1 |yi − y(k,i)|
Output: error

IV. O(n log n) APPROXIMATE l-FOLD CROSS-VALIDATION

Solving LS-SVM and KRR problems requires comput-

ing the penalized kernel matrix’s inverse, K−1
γ . However,

computing K−1
γ takes O(n3) operations. In addition, storing

the full kernel matrix requires O(n2) memory. Using the

exact kernel matrix is clearly not scalable to large problems.

There are numerous published methods that find low-rank

kernel approximations [8], as well as proofs that establish

upper bounds on the approximation error [18]. The low-rank

approximations produced by these methods are not guaranteed

to be bounded in rank unless the bound is explicitly specified

[6]. Specifying a bound that is too small will greatly degrade

the approximation’s representative power, while not specifying

a bound can lead to a large number of operations to compute

the approximate K−1
γ .

On the other hand, the p-level circulant kernel matrix

approximation provides superior computational performance

over these other methods without a user defined bound. Its

inverse can be computed in O(n log n), via the Fast Fourier

Transform (FFT), and it only requires O(n) memory, because

the entire approximation can be represented as a single row

vector. Despite these computational advantages, a naive l-fold

CV approach using this approximation requires O(ln log n)
time, which is O(n2 log n) for LOO CV. This means evaluat-

ing the criteria in [10] on multiple folds is very inefficient, and

is computationally inferior to the exact method as l increases.
By combining the p-level circulant kernel approximation

(i.e., Algorithm 1) and the exact l-fold CV method (i.e.,

Algorithm 2), we overcome this limitation and fully utilize

the approximation’s computational capabilities. Replacing the

kernel matrix used in Algorithm 2 with a p-level circulant

kernel matrix reduces the overall algorithmic complexity to

O(n log n) for all l. In addition, the algorithm is still a valid

l-fold CV algorithm. To show both properties, we first need

to prove Lemma 4.1 and Lemma 4.2. Using these Lemmas,

we prove Theorem 4.3 and Theorem 4.4 that show our ap-

proximate l-fold CV algorithm is valid and has computational

complexity O(n log n).

Lemma 4.1: If K is a p-level circulant matrix, then C (line

2) is also a p-level circulant matrix.

Proof: P -level circulant matrices are closed under in-

verse. In addition, p-level circulant matrices are closed under

addition and multiplication if all matrices have the same level

and factorization. This means that K−1
γ is a circulant matrix

based on these closure properties. In addition, 1n1
T
n represents

a matrix of all 1s with dimension n×n, which means 1n1
T
n is

a p-level circulant matrix with the same factorization as K−1
γ .

Therefore, based on closure properties, C is a p-level circulant

matrix with the same factorization as K.

Lemma 4.2: If K is a p-level circulant matrix with factor-

ization n = n0n1 . . . np−1 and l = n0n1 . . . ns s.t. s ≤ p− 1,

then Ckk is a (p − s)-level circulant matrix with dimension
n
l × n

l .

Proof: Based on Lemma 4.1, C is a p-level circulant

matrix. Therefore, C can be partitioned into block matrices,

based on its factorization, such that each block matrix is a

(p−s)-level circulant matrix, where s is the level. Factorizing

C according to n0n1 . . . ns s.t s ≤ p − 1, produces a block

matrix with exactly n0n1 . . . ns × n0n1 . . . ns blocks. This

means there are exactly l × l blocks. In addition, each block

must have dimension
∏p−1

j=s+1 nj×
∏p−1

j=s+1 nj , which is equal

to
n0n1...np−1

n0n1...ns
× n0n1...np−1

n0n1...ns
. Therefore, all of C’s diagonal

matrices are (p − s)-level circulant matrices with dimension
n
l × n

l .

Theorem 4.3: If K is a p-level circulant matrix with fac-

torization n = n0n1 . . . np−1 and l = n0n1 . . . ns s.t. s ≤
p − 1, then the computational complexity for Algorithm 2 is

O(n log n).

Proof: Based on Lemma 4.1 and Lemma 4.2, Ckk is a

(p − s)-level circulant matrix with dimensions n
l × n

l . This

means the computational complexity associated with solving

Ckkβk = α is O(nl log
n
l ), because the FFT algorithm can be

used to solve for βk and has an O(n log n) computational com-

plexity. Therefore, solving all l systems of equations requires

O(l(nl log
n
l )). When l 	= n the computational complexity

is O(n log n − n log l), which is O(n log n), and if l = n,

the computational complexity is O(n). In addition, computing

K−1
γ requires O(n log n) time, via the same algorithm. This

means if the computation required to compute C and α
is bounded by O(n log n), then the overall computational

complexity is O(n log n). Based on [9] and [10], multiplying

two p-level circulant matrix requires O(n) computational time

after diagonalization, and diagonalizing each p-level circulant

matrix requires O(n log n) time using the FFT algorithm. In

addition, the final result can be recovered in O(n log n) time

via the inverse FFT. The same process applies to addition as

well. Therefore, C and α can be computed in O(n log n) time,

and the overall runtime is O(n log n) for LS-SVM. Note, it is

even simpler to show that the runtime is O(n log n) for KRR,

because C = K−1
γ and α = K−1

γ y.

Theorem 4.4: If K is a p-level circulant matrix with factor-

ization n = n0n1 . . . np−1 and l = n0n1 . . . ns s.t. s ≤ p− 1,

then Algorithm 2 is valid (i.e., Algorithm 2 does not violate

Theorem 1 in An et al. [6]).
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Proof: Based on Lemma 4.2, all Ckk matrices have

dimension n
l ×n

l . In addition, there are exactly l matrices along

C’s diagonal with those dimensions. This means combing this

approximation method with Algorithm 2 does not violate the

theorem presented in [6] that establishes algorithmic correct-

ness. Therefore, this approximation is valid.

Based on Theorem 4.3, this approximation algorithm has

computational complexity O(n log n), if l can be represented

as n0n1 . . . ns s.t. s ≤ p − 1. This means all l are valid,

if the approximation’s factorization is controlled accordingly.

This requirement is much lighter than restricting the kernel

approximation’s rank, because it generalizes to all data sets.

V. EXPERIMENTAL RESULTS

To empirically verify our approximate l-fold approach, we

designed three experiment types that test our method with l =
n, named approximate leave-one-out (A-LOO). The first is

a scalability experiment that tests our A-LOO method and

the exact O(n3) LOO method, named E-LOO, on randomly

generated data that increases exponentially in size. Our second

experiment tests three different aspects about our approach: 1)

it tests how well our method can select hyperparameters, 2)

it illustrates how Hn influences the approximate kernel, and

3) it compares how well an approximate LS-SVM solution

computed using the p-level circulant matrix compares against

the exact LS-SVM solution. The third experiment tests how

well hyperparameters selected via A-LOO perform when used

to compute the exact LS-SVM solution. All experiments were

run on a laptop with a 2.2 GHZ Intel i7 CPU and 8G of RAM

using MATLAB 2011b.

Table I presents the results from testing the E-LOO, A-LOO

with LS-SVM, and A-LOO with KRR on randomly generated

data sets. A-LOO with KRR scales better with the data set’s

size. The scalability difference between A-LOO with KRR and

A-LOO with LS-SVM is based on the overhead associated

with computing C and α. As mentioned previously, the KRR

method can directly compute C and α in two O(n log n) steps,

while the LS-SVM approach is several O(n log n) and O(n)
steps. Despite the factor of 4 difference in runtime, plotting

the times for both methods as a loglog plot reveals that both

algorithms scale with the same slope (Figure 1). This means,

empirically, both algorithms have the same Big-O complexity.

These scalability experiments were conducted using a single

CPU core. This makes it easier to compare our times with the

results in [6], which showed that their O(nr2) approximation

method scaled approximately linearly for 500 to 5000 data

points (Figure 2). Plotting their times and our runtimes on a

loglog plot indicates that our A-LOO with LS-SVM scales no

worse than their method. However, the runtimes from [6] were

computed with an r that was guaranteed to never be greater

than half the data points, and the experiments were run on a

single-core 3.2 GHZ desktop. This implies that our algorithm

has better scalability, and less assumptions that directly impact

runtime, but can impact prediction performance.

Our second experiment set uses 10 classification benchmark

data sets used by An et al. [6] and L. Ding et al. [10]. Table
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Fig. 1. A loglog runtime comparison across E-LOO-LSSVM, A-LOO-
LSSVM, and A-LOO-KRR.
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Fig. 2. A loglog runtime comparison across An, et al.’s A-LOO-LSSVM,
A-LOO-LSSVM, and A-LOO-KRR.

II shows our results, and illustrates how classification error

varies with respect to Hn (Algorithm 1), Hn’s values were

restricted to the sets (1, 2) or (10, 11). In addition, Table II

shows how well an approximate LS-SVM solution fits the

test data with hyperparameters selected using our A-LOO.

The exact testing error in Table II is mostly the same as the

exact error found in [6], but a few differ because we used a

different grid-search resolution. However, the differences are

not significantly large, implying we implemented the original

l-fold algorithm correctly.

More importantly, the approximate LS-SVM error has less

than a 5% difference from the exact error on 7 of the 10

data sets (1–7 in Table II), and presents moderate performance

on 8–10 with less than a 15% difference. However, the

performance on data sets 5, 7, and 10 differ greatly from

the ones reported by L. Ding et al. [10]. Based Hn’s impact

on the approximation model’s quality and L. Ding et al. not

reporting how their Hn relates to the data specifically, we

can only conclude that they may have manually optimized

the approximation matrices’ Hn components or felt that opti-

mizing over Hn values was self evident and did not need to
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TABLE I
COMPUTATION TIME ON A SINGLE CPU CORE

# Examples 213 214 215 216 217 218 219 220

E-LOO 4.43s 35.25s 281.11 – – – – –
A-LOO-LSSVM 1.3s 2.6s 5.32s 10.88s 22.45s 47.41s 101.36s 235.83s
A-LOO-KRR 0.54s 1.06s 2.14s 4.3s 8.55s 17.28s 35.39s 68.22s

TABLE II
APPROXIMATE LS-SVM VERSUS EXACT LS-SVM

Data set #Train #Test A-Error(L. Ding, et al. [10]) A-Error Hn ∈ (1, 2) A-Error Hn ∈ (10, 11) E-Error
1) Titanic 150 2051 22.897±1.427 23.82±1.44 22.80±0.68 22.92±0.43
2) B. Cancer 200 77 27.831±5.569 29.87±5.59 26.75±5.92 25.97±4.40
3) Diabetes 468 300 26.386±4.501 25.67±1.13 25.27±2.07 23.00±1.27
4) F. Solar 666 400 36.440±2.752 35.65±2.78 36.65±2.47 33.75±1.44
5) Banana 400 4900 11.283±0.992 14.10±1.74 18.98±1.76 10.97±0.57
6) Image 1300 1010 4.391±0.631 17.64±1.52 6.89±0.73 2.47±0.53
7) Twonorm 400 7000 2.791±0.566 15.64±25.71 6.85±8.86 2.35±0.07
8) German 700 300 25.080±2.375 29.93±1.61 27.40±1.79 21.87±1.77
9) Waveform 400 4600 Not Reported 19.85±3.87 17.57±1.93 9.77±0.31
10) Thyroid 140 75 4.773±2.291 29.33±4.07 17.33±3.89 4.17±3.23

TABLE III
EXACT LS-SVM PERFORMANCE USING HYPERPARAMETERS SELECTED VIA OUR A-LOO

Data set CoV(%) MAPE(%) CoV(%)[19] MAPE(%)[19]
House 1 19.6±1.69 15.3±0.47 20.1±0.81 16.1±0.85
Sensor A 1.3±0.05 1.0±0.05 – –
Sensor B 17.2±4.89 10.8±0.25 – –
Sensor C 12.0±2.31 7.8±0.68 – –
Sensor D 1.4±0.09 0.9±0.03 – –
S1 13.1±0.00 10.0±0.00 13.7±0.00 11.2±0.00
S2 3.1±0.00 4.7±0.00 6.4±0.00 4.5±0.00

be reported or studied. While we are only able to hypothesize

about the result difference based on Hn’s influence, L. Ding et

al.’s results indicate that it is possible to obtain better results

using this approximate LS-SVM mode on these three data

sets. However, obtaining better results is dependent upon better

exploring the hyperparameter space and selecting better values

for Hn. In addition, during our experimentation process, we

observed that it is not that difficult to manually set Hn through

trial and error on these benchmark data sets, but real world

applications most definitely require an automated approach.

This means in exchange for our performance enhancements

the hyperparameter selection space is expanded from R
2 to

R
p+2, where p refers to the number of approximation factors.

In order to evaluate how well our A-LOO method selects

hyperparameters, we tested the exact LS-SVM solution with

hyperparameters selected by our method on several regression

data sets. Our regression experiments utilized two real world

data sets and restricted the Hn values to fall in the interval

(1, 2). The first data set is from the Great Energy Prediction

Shootout [20], which contains environmental measurements

and an unknown building’s electrical consumption. The ob-

jective is to predict the unknown building’s electrical con-

sumption using the environmental measurements. The second

data set contains approximately 140 sensor measurements

collected every hour for an entire year from a residential

home, and was provided by the authors of [19]. The objective

with this data set is to predict future hourly sensor values,

using previous sensor measurements. In addition, we evaluated

the final model using the common metrics from the building

spaces community, Coefficient of Variance (CoV) [20] and

Mean Absolute Percentage of Error (MAPE) [21].

Table III shows the results from using our A-LOO algorithm

to select hyperparameters on the regression data sets. House

1 refers to the overall home’s electrical consumption, Sensors

A through D refer to four randomly selected sensors from the

residential home, and S1 and S2 refer to different instances

of the Great Energy Prediction Shootout data found in [21].

Our LS-SVM results on S1 are better than the LS-SVM results

presented in [19], which presents the only results for LS-SVM

applied to this data set. In addition, the CoV measure for S2

is better as well.

Our regression results on the residential data set are very

good as well. Our MAPE measure for House 1 (Table III) is

statistically better than the MAPE results presented in [19]

for order2 1, 2, and 3 LS-SVM models. In addition, our

CoV measure is statistically better than order 1 and 3 LS-

SVM models. This means our order 1 model is better than

the House 1 models presented in [19], which implies that

better hyperparameter tuning can greatly improve prediction

accuracy. In addition, the hyperparameters selected using our

A-LOO produced models that perform very well on the

four randomly sampled sensors (Table III). Therefore, our

A-LOO method is empirically effective at selecting reliable

2Order 1, 2, and 3 refer to the Markov order used for predicting the
future residential electrical consumption. For example, order 2 uses sensor
measurements at time t and t− 1 to predict a value at t+ 1.
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hyperparameters.

VI. CONCLUSION AND FUTURE WORK

In summary, we presented an approximate l-fold CV method

for LS-SVM and KRR, and proved that the method has an

O(n log n) runtime. In addition, we showed that LS-SVM and

KRR can effectively scale to large data sets (Table 1). We

noted our method with LS-SVM method scales no worse than

the O(nr2) method presented in [6], when all assumptions

about r are satisfied. Additionally, our method with KRR

scales extremely well. In addition, we showed that our l-fold

CV method can select hyperparameters that can be used to

solve LS-SVM problems with p-level circulant kernels and

exact kernels. However, the approximate solution’s quality is

greatly impacted by selecting good values for Hn. This leads

to hyperparameter tuning in R
p+2, but yields a very large

performance increase in terms of scalability.

We showed empirically that our method performs well, but

a formal proof showing that our criteria is consistent is still

required. It should be possible to prove consistency based on

the proof presented in [10], because their criteria is a penalized

squared error measure using the same approximation method.

In addition, we need to further explore tuning Hn, because

solving the exact model with the optimal hyperparameters

still requires O(n3) time. However, this may not be an actual

problem based on the general distributed optimization method

presented in [22].
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