
Deep Multiple Kernel Learning

Eric V. Strobl & Shyam Visweswaran

Department of Biomedical Informatics

University of Pittsburgh

Pittsburgh, USA

evs17@pitt.edu; shv3@pitt.edu

Abstract—Deep learning methods have predominantly been

applied to large artificial neural networks. Despite their state-of-

the-art performance, these large networks typically do not

generalize well to datasets with limited sample sizes. In this

paper, we take a different approach by learning multiple layers

of kernels. We combine kernels at each layer and then optimize

over an estimate of the support vector machine leave-one-out

error rather than the dual objective function. Our experiments

on a variety of datasets show that each layer successively

increases performance with only a few base kernels.

Keywords—Deep Learning; Multiple Kernel Learning;

Kernels; Support Vector Machine.

I. INTRODUCTION

Deep learning methods construct new features by

transforming the input data through multiple layers of

nonlinear processing. This has conventionally been

accomplished by training a large artificial neural network with

several hidden layers. However, the method has been limited

to datasets with very large sample sizes such as the MNIST

dataset which contains 60,000 training samples. More

recently, there has been a drive to apply deep learning to

datasets with more limited sample sizes as typical in many

real-world situations.

Kernel methods have been particularly successful on a

variety of sample sizes because they can enable a classifier to

learn a complex decision boundary with only a few parameters

by projecting the data onto a high-dimensional reproducing

kernel Hilbert space. As a result, several researchers have

investigated whether kernel learning can be modified for deep

learning. Cho et al. (2009) described the first approach by

optimizing an arc-cosine kernel, a function that mimics the

massive random projections of an infinite neural network, and

successfully integrated the kernel in a deep architecture.

However, the method did not allow easily tunable parameters

beyond the first layer. Subsequently, Zhuang et al. (2011)

proposed to tune a combination of kernels but had trouble

optimizing the network beyond two layers. Moreover, the

second layer only consisted of a single Gaussian radial basis

function (RBF) kernel.

In this paper, we improve on the previous methods by

contributing to several key issues in deep kernel learning. The

rest of the paper is structured as follows. First, we describe

related work and provide some background on how kernels

can be constructed from other kernels. Next, we show that a

deep architecture that incorporates multiple kernels can

substantially increase the “richness” of representations

compared to a shallow architecture. Then, we prove that the

upper bound of the generalization error for deep multiple

kernels can be significantly less than the upper bound for deep

feed-forward networks under some conditions. We then

modify the optimization method by tuning over an estimate of

the leave-one-out error rather than the dual objective function.

We finally show that the proposed method increases test

accuracy on datasets with sample sizes as low as the upper

tens.

II. RELATED WORK

Several investigators have tried to extend kernels to deep

learning. Cho et al. (2009) described the first approach by

developing an arc-cosine kernel that mimics the projections of

a randomly initialized neural network. The kernel admits a

normalized kernel and can thus be stacked in multiple layers.

Successively combining these kernels can lead to increased

performance in some datasets. Nonetheless, arc-cosine kernels

do not easily admit hyper-parameters beyond the first layer,

since the kernel projects the data to an infinite-dimensional

reproducing kernel Hilbert space.

Zhuang et al. (2011) attempted to introduce tunable hyper-

parameters by borrowing ideas from multiple kernel learning.

The authors proposed to successively combine multiple

kernels in multiple layers, where each kernel has an associated

weight value. However, the authors had trouble optimizing the

network beyond a second layer which only consisted of a

single Gaussian RBF kernel. In this paper, we improve on the

multiple kernel learning approach by successfully optimizing

multiple layers each with multiple kernels.

III. BACKGROUND

Kernels compute a similarity function between two vector

inputs . A kernel can be described by the dot product

of its two basis functions.

where represents a first layer kernel. One way to

view a kernel within a kernel is the respective basis functions

within the basis functions for an number of layers:

 ()) ())

Note that the linear kernel does not change throughout the

layers.

 () ()

In the case of the polynomial kernel, we observe a polynomial

of higher order:

 (())

where , and denote the free parameters of the polynomial

kernel. From [1], the Gaussian RBF kernel can be

approximated as:

 () ()

IV. COMPLEXITY ANALYSIS

Kernels are designed to create different representations of

the data using basis functions. If we stack two kernels of

different types, we can often develop a representation that is

different from either alone. Moreover, we can obtain “richer”

representations that cannot be well-approximated by a single

kernel, when we combine multiple kernels within a kernel

such as by taking their sum.

More formally, we base an analysis of the

richness/complexity of a kernel via its pseudo-dimension and

then more specifically by the upper bound of the second-order

Rademacher chaos complexity ̂ as defined in [3]. We also

introduce the following new definition:

Definition 1. A deep multiple kernel architecture is an -level

multiple kernel architecture with sets of kernels at each

layer:

 {

 (

)

 }

where

 represents the th
 kernel in set at layer with an

associated weight parameter

, and represents the

single combined kernel at layer . The term is used as

short-hand to denote all kernels in layer . The architecture is

depicted in Figure 1.

Theorem 1. Let be a finite number of base kernels,

the single layer kernel functions, and the multi-layer

kernel functions. Then:

 ̂ (
) ̂ (

).

Proof. The tunable weights of the first and last layer can be

represented as two second-order tensors of non-negative

 . Assuming the same architecture for each layer

excluding the first and last, the number of weights can be

represented as a fourth-order tensor of non-negative

 . The total number of free weights in is

thus . The pseudo-dimension of

can now be stated as . On the other

hand, the pseudo-dimension of for the single layer

kernels can be stated as (Lemma 7, [4]). We can now

derive the upper bound of the Rademacher chaos complexity

for the single and multi-layer cases from Theorem 3, [3]:

 ̂ (
)

 ̂ (
) ()

where is a natural constant, and √ .

Thus, ̂ (
) ̂ (

).

Remark. The looser upper bound with a deep compared to a

shallow multiple kernel architecture suggests that multiple

layers can increase the richness of the kernel representations.

V. COMPARISON TO FEED-FORWARD NETWORKS

 The increased richness of the kernels can increase the risk

of over-fitting. However, we can prove that the upper bound

of the generalization error for deep multiple kernels is

significantly less than the upper bound for deep feedforward

networks under some conditions.

Definition 2. We define a large margin feed-forward network
in which a large margin classifier is applied to the last hidden
layer of the network. We can thus equivalently represent this
feed-forward network in kernel form. We define the large
margin feed-forward network for an instance as and its
kernel as:

Theorem 2. The ̂ upper bound of the deep multiple kernel is

proportional to with the ̂ upper bound of the large margin
feed-forward network kernel when:

 √

where represents the dimensionality of the data and the
number of hidden nodes at each layer.

Proof. Assuming we adopt the same number of hidden nodes
as the dimensionality of the data, the weights of the large

Fig 1. Depiction of a deep multiple kernel architecture. Lines represent the

 weights for each set, 𝜃
 𝑙

.

margin feed-forward network can be represented as a third-
order tensor, where the number of free parameters is
 . We equate the number of free parameters from the feed-
forward network kernel to the number of free parameters of a
deep multiple kernel as derived in Theorem 1 assuming the
same number of layers.

 √

In this case, both the large margin feed-forward network kernel
and the deep multiple kernel have the same pseudo-dimension
upper bound. Hence, it follows that both have a
Rademacher chaos complexity upper bound proportional to
from Theorem 1, [3].

Remark. Theorem 2 implies that a deep multiple kernel can
have a lower generalization bound than a large margin feed-
forward network kernel, if we select a small number of base
kernels and sets of base kernels at each layer. This is in
contrast to the large feed-forward networks traditionally used
in deep learning.

VI. OPTIMIZATION METHOD

The classifier given by an SVM is

 ∑

 . Ideally, we would like to

choose the coefficients to minimize an estimate of the true

risk of the SVM. Traditionally, this has been solved by

maximizing the margin through the gradient of the dual

objective function with respect to the kernel hyper-parameters.

However, deep learning schemes present a risk of over-fitting

with increased richness of the representations. Thus, it is

particularly important to seek a tight bound of the leave-one-

out error. In this paper, we decided to use the span bound,

since it has shown promising results in single layer multiple

kernel learning [5]. Assuming that the set of support vectors

remains the same throughout the leave-one-out procedure, the

span bound can be stated as:

 ∑ (

)

where is the leave-one-out error, and is the distance

between the point
 and the set

 {∑

 | ∑ }.

 We now modify the arguments presented in Liu et al.
(2011) for deep multiple kernel learning. The estimate of the
span bound requires a step function that is not differentiable.
Therefore, we can smooth the step function instead by using a
contracting function , where
and are non-negative weights. Similar to [6], we chose

and . Chapelle et al. (2002) showed that ̅
 can then be

smoothed by adding a regularization term:

 ̅

 ∑
‖

() ∑

 ‖ ∑

 Now, denote the set of support vectors

 , ̃
 (

) and

 ̃

 (

 ̃

). With

these new notations, we can rewrite ̅
 as ̃

 where is a diagonal matrix with elements []

 and [] .

Theorem 3. Let be a diagonal matrix with elements []

 and [] . We also define ̅ as the

inverse of ̃
with the last row and column removed. Then,

 ̅

((
 ̃

))

where ̃
 , ((

)

) and

 ̅

 . The proof can be found in

[5].

 We calculate
 ̃

 by performing the standard chain rule,

where each set is normalized to a unit hypersphere:

√

Normalization is critical to prevent kernel values from growing
out of control. We can now create an algorithm with the
derivative of ⁄ by alternating between (1) fixing

and solving for , and (2) fixing and solving for .

Algorithm: Adaptive Span Deep Multiple Kernel Learning
Algorithm

1. Input:
 and [] for every kernel

2. for = 1,2,… do

3. solve the SVM problem with

4. for = 1,2,… do

5.

6. end for
7. if stopping criterion then break

8. end for

VII. EXPERIMENTS

 Multiple kernel learning algorithms have traditionally used
RBF and polynomial kernels. However, we chose not to use
these kernels, since our objective based on the proposed
theorems suggests that we should try to maximize the upper
bound of the pseudo-dimension of the final kernel to increase
its richness with each successive layer. In fact, it can be shown
that the sum of RBF kernels has a pseudo-dimension of 1 from
Lemma 2, [3]. Hence, we use four unique base kernels: a linear
kernel, an RBF kernel with , a sigmoid kernel with
 and , and a polynomial kernel with

 , , . We used one set of kernels for each
layer making the 3-layer Radamacher upper bound of the
architecture proportional to a large margin feed-forward

network kernel with √ according to Theorem 2. We

initialize all

 to

. Moreover, we use gradient descent on

the span bound for 500 iterations for both shallow and deep
multiple kernel architectures with fixed to 10 on 22
standardized UCI datasets. Datasets were randomized and split
in half, while instances with missing values were excluded.

We show increased accuracy with the incorporation of

each successive layer by optimizing over the dual objective

and span bound. There was a larger increase in accuracy with

the addition of the second layer than with the addition of the

third. However, the third layer did result in small increases in

accuracy such as the 2% increase seen in the Ionosphere

dataset with the span bound.

The proposed method increases accuracy on a range of

sample sizes. The experimental results are thus consistent with

the theorems proposed in section V. Namely, we can avoid

over-fitting by choosing a small number of base kernels and

sets of kernels at each layer. Thus, similar to single layer

kernels, the key to increased accuracy may be to choose a few

appropriate kernel representations. At the very least, we can

choose a set of appropriate single layer kernels and then the

deep architecture can help boost accuracy beyond the single

layer.

The method of optimizing over the span bound generally

performs better than optimizing over the dual objective

function. The performance difference is significant as the 2-

layer optimized over the span outperforms the 3-layer

optimized over the dual. These results are consistent with the

conclusions in Section VI that using a tighter upper bound on

the generalization performance can help offset the increased

kernel complexity with each subsequent layer.

VIII. CONCLUSION

 We have developed a new method to successfully optimize
multiple, complete layers of kernels while increasing
generalization performance on a variety of datasets. The
method works by combining multiple kernels within each
layer to increase the richness of representations and then by
optimizing over a tight upper bound of the leave-one-out error.

ACKNOWLEDGEMENTS

 This research was funded by the NLM/NIH grant T15
LM007059-24 to the University of Pittsburgh Biomedical
Informatics Training Program and the NIGMS/NIH grant T32
GM008208 to the University of Pittsburgh Medical Scientist
Training Program.

REFERENCES

[1] Y. Cho and S.K. Saul, “Kernel methods for deep learning,” Advances in
Neural Information Processing Systems, vol. 22, pp. 342-350, 2009.

[2] J. Zhuang, I.W. Tsang, and S.C.H. Choi, “Two-layer multiple kernel
learning,” in Proceedings of International Conference on Artificial
Intelligence and Statistics, 2011.

[3] Y. Ying and C. Campbell, “Rademacher chaos complexities for learning
the kernel,” Neural Computation, vol. 22, pp. 2858-2886, 2010.

[4] N. Srebro and S. Ben-David, “Learning bounds for support vector
machines with learned kernels,” in Proceedings of COLT, 2006.

[5] Y. Liu, S. Liao, and Y. Hou, “Learning kernels with upper bounds of
leave-one-out error,” in Proceedings of the 20th ACM Conference on
Information and Knowledge Management, pp. 2205–2208, 2011.

[6] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. “Choosing
multiple parameters for support vector machines,” Machine Learning,
vol. 46, pp. 131–159, 2002.

 Dual Span

Dataset n/d n 1-Layer Zhuang 2-Layer 3-Layer 1-Layer 2-Layer 3-Layer

Arcene 0.01 100 83.00 80.00 83.00 83.00 84.00 83.00 83.00
Musk1 1.43 238 94.12 94.96 94.96 95.38 94.96 95.80 95.80

Sonar 1.73 104 89.42 88.46 89.42 89.42 88.46 90.38 89.42

Indian Liver 2.90 290 65.52 68.97 66.55 67.24 68.38 70.34 70.69

Zoo 3.19 51 92.16 92.16 92.16 92.16 94.12 92.16 92.16

Ionosphere 5.18 176 90.91 91.48 93.75 94.32 90.91 92.61 94.89

Post-Operative 5.38 43 55.81 65.12 55.81 60.47 55.81 55.81 55.81

Audiology 7.71 54 56.60 54.72 54.72 50.94 52.83 54.72 54.72

Glass2 9.00 81 69.14 70.37 67.90 70.37 71.60 75.31 75.31

Corral 10.67 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Cleve 12.17 146 73.29 73.97 74.66 74.66 70.55 73.29 73.29

Congress 13.63 218 94.95 94.04 94.95 94.95 94.04 94.95 94.95

Credit 21.80 327 81.96 83.49 82.26 84.40 84.40 84.40 84.40

Australian 24.64 345 80.29 81.45 82.03 81.45 82.32 82.32 82.32

German 25.00 500 69.60 70.80 71.20 69.40 68.40 69.60 69.40

3of9 28.44 256 99.61 98.83 99.22 99.22 98.83 99.22 99.22

Liver 28.67 173 67.05 68.21 70.52 71.68 70.52 71.10 70.52

Monk3 36.00 216 64.35 64.81 64.81 69.44 68.98 69.44 69.44

Breast Cancer 38.11 343 97.67 98.54 97.96 98.54 97.67 97.96 97.96

Pima Indians 48.00 384 70.57 76.56 77.10 76.82 78.65 77.10 77.60

Tic-Tac-Toe 53.22 479 95.40 92.07 92.90 91.44 87.89 92.90 92.90

Balance Scale 72.00 288 98.61 98.26 98.61 98.61 99.65 98.96 98.96

Rank 3.18 2.73 2.50 2.32 2.64 1.91 1.82

p-value 0.022 0.018 0.083 0.340 0.047 1.000

 Table 1. Percent accuracies after optimizing over the dual objective function or span bound. n/d stands for training sample size over

 dimensions; Zhuang for Zhuang et al. (2011). The p-values were obtained by comparing against span 3-layer by paired Wilcoxon

 signed-rank test.

