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Abstract—Deep learning methods have predominantly been 

applied to large artificial neural networks. Despite their state-of-

the-art performance, these large networks typically do not 

generalize well to datasets with limited sample sizes. In this 

paper, we take a different approach by learning multiple layers 

of kernels. We combine kernels at each layer and then optimize 

over an estimate of the support vector machine leave-one-out 

error rather than the dual objective function. Our experiments 

on a variety of datasets show that each layer successively 

increases performance with only a few base kernels.  

Keywords—Deep Learning; Multiple Kernel Learning; 

Kernels; Support Vector Machine. 

I. INTRODUCTION 

Deep learning methods construct new features by 

transforming the input data through multiple layers of 

nonlinear processing. This has conventionally been 

accomplished by training a large artificial neural network with 

several hidden layers. However, the method has been limited 

to datasets with very large sample sizes such as the MNIST 

dataset which contains 60,000 training samples. More 

recently, there has been a drive to apply deep learning to 

datasets with more limited sample sizes as typical in many 

real-world situations. 

Kernel methods have been particularly successful on a 

variety of sample sizes because they can enable a classifier to 

learn a complex decision boundary with only a few parameters 

by projecting the data onto a high-dimensional reproducing 

kernel Hilbert space. As a result, several researchers have 

investigated whether kernel learning can be modified for deep 

learning. Cho et al. (2009) described the first approach by 

optimizing an arc-cosine kernel, a function that mimics the 

massive random projections of an infinite neural network, and 

successfully integrated the kernel in a deep architecture. 

However, the method did not allow easily tunable parameters 

beyond the first layer. Subsequently, Zhuang et al. (2011) 

proposed to tune a combination of kernels but had trouble 

optimizing the network beyond two layers. Moreover, the 

second layer only consisted of a single Gaussian radial basis 

function (RBF) kernel.  

In this paper, we improve on the previous methods by 

contributing to several key issues in deep kernel learning. The 

rest of the paper is structured as follows. First, we describe 

related work and provide some background on how kernels 

can be constructed from other kernels. Next, we show that a 

deep architecture that incorporates multiple kernels can 

substantially increase the “richness” of representations 

compared to a shallow architecture. Then, we prove that the 

upper bound of the generalization error for deep multiple 

kernels can be significantly less than the upper bound for deep 

feed-forward networks under some conditions. We then 

modify the optimization method by tuning over an estimate of 

the leave-one-out error rather than the dual objective function. 

We finally show that the proposed method increases test 

accuracy on datasets with sample sizes as low as the upper 

tens. 

II. RELATED WORK 

Several investigators have tried to extend kernels to deep 

learning. Cho et al. (2009) described the first approach by 

developing an arc-cosine kernel that mimics the projections of 

a randomly initialized neural network. The kernel admits a 

normalized kernel and can thus be stacked in multiple layers. 

Successively combining these kernels can lead to increased 

performance in some datasets. Nonetheless, arc-cosine kernels 

do not easily admit hyper-parameters beyond the first layer, 

since the kernel projects the data to an infinite-dimensional 

reproducing kernel Hilbert space.  

Zhuang et al. (2011) attempted to introduce tunable hyper-

parameters by borrowing ideas from multiple kernel learning. 

The authors proposed to successively combine multiple 

kernels in multiple layers, where each kernel has an associated 

weight value. However, the authors had trouble optimizing the 

network beyond a second layer which only consisted of a 

single Gaussian RBF kernel. In this paper, we improve on the 

multiple kernel learning approach by successfully optimizing 

multiple layers each with multiple kernels. 

III. BACKGROUND 

Kernels compute a similarity function between two vector 

inputs       . A kernel can be described by the dot product 

of its two basis functions. 

                            

where           represents a first layer kernel. One way to 

view a kernel within a kernel is the respective basis functions 

within the basis functions for an   number of layers: 
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Note that the linear kernel does not change throughout the 

layers.  
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In the case of the polynomial kernel, we observe a polynomial 

of higher order: 
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where  ,   and   denote the free parameters of the polynomial 

kernel. From [1], the Gaussian RBF kernel can be 

approximated as: 
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IV. COMPLEXITY ANALYSIS 

Kernels are designed to create different representations of 

the data using basis functions. If we stack two kernels of 

different types, we can often develop a representation that is 

different from either alone. Moreover, we can obtain “richer” 

representations that cannot be well-approximated by a single 

kernel, when we combine multiple kernels within a kernel 

such as by taking their sum.  

More formally, we base an analysis of the 

richness/complexity of a kernel via its pseudo-dimension and 

then more specifically by the upper bound of the second-order 

Rademacher chaos complexity  ̂  as defined in [3]. We also 

introduce the following new definition: 

Definition 1. A deep multiple kernel architecture is an  -level 

multiple kernel architecture with   sets of   kernels at each 

layer: 
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where     
   

 represents the  th
 kernel in set   at layer   with an 

associated weight parameter     
   

, and      represents the 

single combined kernel at layer  . The term      is used as 

short-hand to denote all kernels in layer  . The architecture is 

depicted in Figure 1.   

Theorem 1. Let   be a finite number of base kernels,      

the single layer kernel functions, and        the multi-layer 

kernel functions. Then: 

 ̂ ( 
   )   ̂ ( 

     ). 

Proof. The tunable weights of the first and last layer can be 

represented as two second-order tensors of non-negative 

    . Assuming the same architecture for each layer 

excluding the first and last, the number of weights can be 

represented as a fourth-order tensor of non-negative 

            . The total number of free weights in        is 

thus             . The pseudo-dimension of        

can now be stated as                . On the other 

hand, the pseudo-dimension of      for the single layer 

kernels can be stated as      (Lemma 7, [4]). We can now 

derive the upper bound of the Rademacher chaos complexity 

for the single and multi-layer cases from Theorem 3, [3]: 
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where   is a natural constant, and             √      . 

Thus,  ̂ ( 
   )   ̂ ( 

     ).   

Remark. The looser upper bound with a deep compared to a 

shallow multiple kernel architecture suggests that multiple 

layers can increase the richness of the kernel representations. 

V. COMPARISON TO FEED-FORWARD NETWORKS 

 The increased richness of the kernels can increase the risk 

of over-fitting. However, we can prove that the upper bound 

of the generalization error for deep multiple kernels is 

significantly less than the upper bound for deep feedforward 

networks under some conditions.  

Definition 2. We define a large margin feed-forward network 
in which a large margin classifier is applied to the last hidden 
layer of the network. We can thus equivalently represent this 
feed-forward network in kernel form. We define the large 
margin feed-forward network for an instance as       and its 
kernel as: 

            
              

    

Theorem 2. The  ̂  upper bound of the deep multiple kernel is 

proportional to   with the  ̂  upper bound of the large margin 
feed-forward network kernel when: 

  √
            

     
   

where   represents the dimensionality of the data and the 
number of hidden nodes at each layer. 

Proof. Assuming we adopt the same number of hidden nodes 
as the dimensionality of the data, the weights of the large 

 
Fig 1. Depiction of a deep multiple kernel architecture. Lines represent the  

          weights for each set, 𝜃 
 𝑙 

. 

 



margin feed-forward network can be represented as a third-
order tensor, where the number of free parameters is      
  . We equate the number of free parameters from the feed-
forward network kernel to the number of free parameters of a 
deep multiple kernel as derived in Theorem 1 assuming the 
same number of layers. 
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In this case, both the large margin feed-forward network kernel 
and the deep multiple kernel have the same pseudo-dimension 
upper bound. Hence, it follows that both  have a 
Rademacher chaos complexity upper bound proportional to   
from Theorem 1, [3].    

 
Remark. Theorem 2 implies that a deep multiple kernel can 
have a lower generalization bound than a large margin feed-
forward network kernel, if we select a small number of base 
kernels and sets of base kernels at each layer. This is in 
contrast to the large feed-forward networks traditionally used 
in deep learning. 

VI. OPTIMIZATION METHOD  

The classifier given by an SVM is 

    ∑   
               

   . Ideally, we would like to 

choose the coefficients    to minimize an estimate of the true 

risk of the SVM. Traditionally, this has been solved by 

maximizing the margin through the gradient of the dual 

objective function with respect to the kernel hyper-parameters. 

However, deep learning schemes present a risk of over-fitting 

with increased richness of the representations. Thus, it is 

particularly important to seek a tight bound of the leave-one-

out error. In this paper, we decided to use the span bound, 

since it has shown promising results in single layer multiple 

kernel learning [5]. Assuming that the set of support vectors 

remains the same throughout the leave-one-out procedure, the 

span bound can be stated as: 
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where   is the leave-one-out error, and    is the distance 

between the point    
     and the set 

   {∑      
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 We now modify the arguments presented in Liu et al. 
(2011) for deep multiple kernel learning. The estimate of the 
span bound requires a step function that is not differentiable. 
Therefore, we can smooth the step function instead by using a 
contracting function                      , where   
and   are non-negative weights. Similar to [6], we chose     

and    . Chapelle et al. (2002) showed that   ̅
  can then be 

smoothed by adding a regularization term: 
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 Now, denote the set of support vectors         
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). With 

these new notations, we can rewrite   ̅
  as     ̃   

     
   

     where   is a diagonal matrix with elements [ ]   

      
  and [ ]             . 

Theorem 3. Let   be a diagonal matrix with elements [ ]   
         

    and [ ]             . We also define  ̅ as the 

inverse of  ̃   
with the last row and column removed. Then, 
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where    ̃   
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    . The proof can be found in 

[5].   

 We calculate 
  ̃   

   
 by performing the standard chain rule, 

where each set is normalized to a unit hypersphere: 
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Normalization is critical to prevent kernel values from growing 
out of control. We can now create an algorithm with the 
derivative of         ⁄  by alternating between (1) fixing   

and solving for  , and (2) fixing   and solving for  . 

Algorithm: Adaptive Span Deep Multiple Kernel Learning 
Algorithm 

1. Input:   
  and    [   ] for every kernel   

2. for   = 1,2,… do 

3.       solve the SVM problem with          

4.       for   = 1,2,…  do 

5.               
      

    
      

   
  

6.       end for  
7.       if stopping criterion then break 

8. end for 

VII. EXPERIMENTS  

 Multiple kernel learning algorithms have traditionally used 
RBF and polynomial kernels. However, we chose not to use 
these kernels, since our objective based on the proposed 
theorems suggests that we should try to maximize the upper 
bound of the pseudo-dimension of the final kernel to increase 
its richness with each successive layer. In fact, it can be shown 
that the sum of RBF kernels has a pseudo-dimension of 1 from 
Lemma 2, [3]. Hence, we use four unique base kernels: a linear 
kernel, an RBF kernel with    , a sigmoid kernel with 
          and    , and a polynomial kernel with 



   ,    ,    . We used one set of kernels for each 
layer making the 3-layer Radamacher upper bound of the 
architecture proportional to a large margin feed-forward 

network kernel with   √  according to Theorem 2. We 

initialize all   
   

 to 
 

 
. Moreover, we use gradient descent on 

the span bound for 500 iterations for both shallow and deep 
multiple kernel architectures with   fixed to 10 on 22 
standardized UCI datasets. Datasets were randomized and split 
in half, while instances with missing values were excluded. 

We show increased accuracy with the incorporation of 

each successive layer by optimizing over the dual objective 

and span bound. There was a larger increase in accuracy with 

the addition of the second layer than with the addition of the 

third. However, the third layer did result in small increases in 

accuracy such as the 2% increase seen in the Ionosphere 

dataset with the span bound.  

The proposed method increases accuracy on a range of 

sample sizes. The experimental results are thus consistent with 

the theorems proposed in section V. Namely, we can avoid 

over-fitting by choosing a small number of base kernels and 

sets of kernels at each layer. Thus, similar to single layer 

kernels, the key to increased accuracy may be to choose a few 

appropriate kernel representations. At the very least, we can 

choose a set of appropriate single layer kernels and then the 

deep architecture can help boost accuracy beyond the single 

layer. 

The method of optimizing over the span bound generally 

performs better than optimizing over the dual objective 

function. The performance difference is significant as the 2-

layer optimized over the span outperforms the 3-layer 

optimized over the dual. These results are consistent with the 

conclusions in Section VI that using a tighter upper bound on 

the generalization performance can help offset the increased 

kernel complexity with each subsequent layer. 

VIII. CONCLUSION  

 We have developed a new method to successfully optimize 
multiple, complete layers of kernels while increasing 
generalization performance on a variety of datasets. The 
method works by combining multiple kernels within each 
layer to increase the richness of representations and then by 
optimizing over a tight upper bound of the leave-one-out error.  
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   Dual Span 

Dataset n/d n 1-Layer Zhuang 2-Layer 3-Layer 1-Layer 2-Layer 3-Layer 

Arcene 0.01 100 83.00 80.00 83.00 83.00 84.00 83.00 83.00 
Musk1 1.43 238 94.12 94.96 94.96 95.38 94.96 95.80 95.80 

Sonar 1.73 104 89.42 88.46 89.42 89.42 88.46 90.38 89.42 

Indian Liver 2.90 290 65.52 68.97 66.55 67.24 68.38 70.34 70.69 

Zoo 3.19 51 92.16 92.16 92.16 92.16 94.12 92.16 92.16 

Ionosphere 5.18 176 90.91 91.48 93.75 94.32 90.91 92.61 94.89 

Post-Operative 5.38 43 55.81 65.12 55.81 60.47 55.81 55.81 55.81 

Audiology 7.71 54 56.60 54.72 54.72 50.94 52.83 54.72 54.72 

Glass2 9.00 81 69.14 70.37 67.90 70.37 71.60 75.31 75.31 

Corral 10.67 64 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

Cleve 12.17 146 73.29 73.97 74.66 74.66 70.55 73.29 73.29 

Congress 13.63 218 94.95 94.04 94.95 94.95 94.04 94.95 94.95 

Credit 21.80 327 81.96 83.49 82.26 84.40 84.40 84.40 84.40 

Australian 24.64 345 80.29 81.45 82.03 81.45 82.32 82.32 82.32 

German 25.00 500 69.60 70.80 71.20 69.40 68.40 69.60 69.40 

3of9 28.44 256 99.61 98.83 99.22 99.22 98.83 99.22 99.22 

Liver 28.67 173 67.05 68.21 70.52 71.68 70.52 71.10 70.52 

Monk3 36.00 216 64.35 64.81 64.81 69.44 68.98 69.44 69.44 

Breast Cancer 38.11 343 97.67 98.54 97.96 98.54 97.67 97.96 97.96 

Pima Indians 48.00 384 70.57 76.56 77.10 76.82 78.65 77.10 77.60 

Tic-Tac-Toe 53.22 479 95.40 92.07 92.90 91.44 87.89 92.90 92.90 

Balance Scale 72.00 288 98.61 98.26 98.61 98.61 99.65 98.96 98.96 

Rank   3.18 2.73 2.50 2.32 2.64 1.91 1.82 

p-value   0.022 0.018 0.083 0.340 0.047 1.000  

                            Table 1. Percent accuracies after optimizing over the dual objective function or span bound. n/d stands for training sample size over  

                            dimensions; Zhuang for Zhuang et al. (2011). The p-values were obtained by comparing against span 3-layer by paired Wilcoxon  

                            signed-rank test. 


