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Abstract—Not all instances in a data set are equally beneficial
for inducing a model of the data. Some instances (such as oigts
or noise) can be detrimental. However, at least initially, he
instances in a data set are generally considered equally inashine
learning algorithms. Many current approaches for handling noisy
and detrimental instances make a binary decision about whéer
an instance is detrimental or not. In this paper, we 1) extend
this paradigm by weighting the instances on a continuous sta
and 2) present a methodology for measuring how detrimental
an instance may be for inducing a model of the data. We call
our method of identifying and weighting detrimental instances
reduced detrimental instance learning (RDIL). We examine RDIL
on a set of 54 data sets and 5 learning algorithms and compare
RDIL with other weighting and filtering approaches. RDIL is
especially useful for learning algorithms where every insince can
affect the classification boundary and the training instanes are
considered individually, such as multilayer perceptrons tained
with backpropagation (MLPs). Our results also suggest thata
more accurate estimate of which instances are detrimentalan
have a significant positive impact for handling them.

I. INTRODUCTION

The goal of supervised machine learning is to induce a

accurate generalizing function from a set of labeled trajni

instances. Given that in most cases, all that is known abo
a task is contained in the set of training instances, at lea

initially, the instances in a data set are generally comeitle

equally. However, some instances are more beneficial th
others for inducing a model of the data. For example, outlier

or mislabeled instances are not as beneficial as bordencesa

and can even be detrimental in many cases. In addition, oth
instances can be detrimental for inducing a model of the dat

even if they are labeled correctly and are not outliers.
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error value. As shown by Elmahl[1], this is particularly inmpo
tant during the early stages of training a MLP when the ihitia
gradient is calculated. EIman proposes a method to injtiall
train the MLP with simpler instances then gradually inceeas
to more complex instances. This procedure has developed int
curriculum learning and has had success in deep learning
[2]. However, it is not as successful for shallow MLRS [3].
The impact of detrimental instances is lessened in othesroth
learning algorithms since the influence of a particularanse

is localized. For exampl&-NN only considers th& nearest
neighbors of an instance.

Assuming that all that is known about a task is contained

in the training set, how detrimental an instance is for indgc
a model of the data can be estimated based on its relationship
with the other instances in the data set. For example, instan
A from Figure[da represents a detrimental instance as an
outlier—being in a region with instances of a differing slain
contrast, instance A in the data set shown in Fidure 1b is not
as detrimental given additional instances of the same dtass
the same region. As determining if an instance is detrimenta
rgxhibits a degree of uncertainty, we examine weighting the
instances in a data set by their likelihood of being mis-

lassified. Instance A from Figudd la, for example, has a
gigh likelihood of being misclassified while instance B may

ave a lower likelihood of being misclassified. Weighting th

ai'r]lstances limits the influence of an instance proportiotwats

detrimentality measure. We present a theoretically-rateis
methodology for estimating the likelihood that an instance
gyill be misclassified that lessens the dependence on any one
%odel. We call this approach of weighting the instances by
eir probability of being misclassifiededuced detrimental
instance learning(RDIL). Filtering or removing detrimental

A possible effect of considering all instances equally,instances prior to training can be viewed as a special case of
including the detrimental instances, when inducing a modeinstance weighting. We show that both filtering and weigintin
of the data is shown in the hypothetical two-dimensionalare viable solutions and examine when each is most beneficial

data set in Figurélla. The solid line represents the “actual”
classification boundary and the dashed line represents a p

tential induced classification boundary. Instances A and

are detrimental instances that “pull” the decision boupdar
away from the true boundary and cause the instances in t
space between the true boundary and induced boundary to
misclassified. A learning algorithm can more precisely ntode

the data by considering instances differently during tragrio
suppress the effects of detrimental training instances.

_ We examine RDIL on a set of 5 learning algorithms and
4 data sets. We compare multiple versions of RDIL with
another weighting scheme, pair-wise expectation maxitioiza
WEM) [4], as well as several filtering algorithms: miscias
8ation filters and an ensemble filtér [5], and repeatededdit
néarest-neighbor (RENN)_[6]. We find that some learning
algorithms benefit more from filtering and others from ins&n
weighting. Specifically, filtering is more beneficial for don
trees, rule-based learners, and nearest neighbor algarith

This is especially true for learning algorithms such asWeighting the instances has a more significant impact on
backpropagation for training multilayer perceptrons (MLP multilayer perceptrons. In cases with high amounts of noise

Detrimental instances (e.g. instance A) have the greafiest e

weighting the instances is generally preferable to filgras

on the classification boundary since they can have the large# generally achieves higher accuracy and does not require a
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the potential downside of discarding useful instances and/
too many instances.

Rather than making a binary decision about the detrimen-
tality of in instance, weighting allows a continuous scale.
Filtering can be considered a special case of weighting eher
each instance is assigned a weight of 0 or 1. Rebbapragada and
Brodley [4] weight the instances using expectation maxamiz
tion to cluster instances that belong to a pair of the classes

Fig. 1. Hypothetical, 2-dimensional data set with two deéntal instances  The probabilities between classes for each instance is iteanp

(|nsta_nces A and B) _that shows a) that treating all |nsta_mmally in a data and used to Weight the influence of each instance.
set with detrimental instances can adversely affect thesifleation boundary

_and b) that how detrimental an instance may be is dependetheowther Data cleaning does not discard any instances, but rather
instances in a data set. : H H H H -
strives to correct the noise in the instances. As in filterthg
output from a learning algorithm has been used to clean the
op : data. Polishing[[16] trains a learning algorithm (in thisea
threshold to be set if filtering is based on a continuous valueOIeCiSiOn ree) to predict the value for each attribute (idirlg
The remainder of the paper is organized as follows. Secthe class). The predicted (i.e. corrected) attribute \@afaethe
tion [ reviews related work in handling noise. Sectibnl Ill instances that increase generalization accuracy on aatialid
motivates weighting the instances. The detrimentalitysnea ~ set are used instead of the uncleaned attribute values.
is presented in Sectidn V. Our experimental methodology is
presented in Sectidn]V. The results of RDIL are provided in I1l. M ODELING DETRIMENTALITY
Section V). Section VIl concludes the paper.

Lawrence and Scholkopf [17] model a data set using a
generative model that also models the noise. ete a
II. RELATED WORK training set composed of instandgs, ¢;) drawn i.i.d. from the
] ] ] underlying data distributio®. Each instance has an associated
Many real-wold data sets contain detrimental instancegatent random variable/featugg. Thus,z; is the set of input
that arise from noise (typos, measurement errors, etc.) Ggatures,s; is the possibly noisy class label given in the
from the stochastic nature of the task. Noise is a subsgfaining set, and); is the true unknown class label. Lawrence
of detnm_ental instances. Previous work has examined howng Scholkopf assume that the joint distributipf;, y;, 7:)
clags noise _and attrl_bute noise affects the performa_r!ce & factorized a(§s|yi)p(xily:)p(y;) as shown in Figuré]2a.
various learning algorittms [[7]. They found that class @d%  since modeling the prior distribution of the unobservedicm
generally more harmful than attribute noise. The consetgen yariabley, is not feasible, they estimate the prior distribution

of class noise, as summarized by Frénay and Verleysen [8ht ;(y,) with some assumptions about the noise as shown in
include 1) a deterioration of classification performanck, 2 Figyre[2b.

increased learning requirements and model complexity, and _ ) )
3) a distortion of observed frequencies. Following the premise of Lawrence and Scholkopf, we

explicitly model the possibility that an instance is mistdal
Most learning algorithms are designed to tolerate a certaifi.e. y # ¢). Rather than using a generative model, though,
degree of detrimental instances by making a trade-off betwe we use a discriminative model since we are focusing on
the complexity of the induced model and minimizing error classification tasks and do not require the full joint digition.
on the training data to prevent overfit. For example, to avoidAlso, discriminative models have been shown to yield better
overfit many algorithms use a validation set for early stopgpi performance on classification tasks|[18]. A generative rhode
and/or regularization by adding a complexity penalty to thewhich models the full joint distribution op(z,y, %), differs
loss function[9]. Some learning algorithms have been ahpt from a discriminative model which is mostly concerned with
specifically to better handle noise. Boosting algorithm@],[1 modeling the likelihood of the clasg{y|z). Given a training
for example, assign more weight to misclassified instancessetT’, a discriminative model generally seeks to find the most
which often include mislabeled and noisy instances. Toesidr probable hypothesia that maps each; — ¢;—ignoring the
this, Servedio[11] presented a boosting algorithm thasdme  fact thatg; may not equaly;. This is shown graphically in
place too much weight on any training instance. Figure[2c wheren(3;|z;)p(z;) is estimated using a discrimi-

ative approach such as a neural network or a decision tree to

. Preprocessing the datg set explicitly hgndles detr_imentzﬂ_.duce a hypothesis of the data. The possibility of labek@aoi
instances by removing, weighting, or correcting themefifig is not explicity modeled in this form (i.ep(y;) is ignored).

detrimental instances has received much attention and hg$,,o ngise is generally handled by avoiding overfit such tha
generally been shown to result in an increase in classificati more probable, simpler hypotheses are preferred
accuracy, especially when there are large amounts of noise ’ '

[12], [13]. One frequently used filtering technique remoaag Label noise can be more explicitly modeled by considering
instance that is misclassified by a learning algorithni [14] o that §; may be noisy by associating a latent random variable
set of learning algorithms [5]. Other approaches use inferm y; with each instance. In this context, a supervised learnling a
tion theoretic or machine learning heuristics to removesyioi gorithm seeks to maximizg(y;|x;, y;)p(yi|z:)p(x;)—modeled
instances. Segata et al. [15], for example, remove inssancgraphically in Figuré€Rd. This factorization of the likedibd for
that are too close or on the wrong side of the decision surfacthe observed class label for an instance suggests thatttdsho
generated by a support vector machine. However, filterirgg habe weighted by the probability thgt is the actual class. Thus,
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Fig. 2. Graphical model of a a) generative probabilistic elpdh) the generative model proposed by Lawrence and Sgpbld7] and a discriminative
probabilistic model for cp(g|x)p(x) and d)p(g|z, y)p(y|x)p(x).

when considering the possibility thgt # y;, it is natural to
weight the instances by(y;|«;). This provides the motivation
for reduced detrimental instance learnigDIL). RDIL takes
two passes through the data set. In the first paég;|z;)

is calculated. Next, a learning algorithm is trained witle th
training instances weighted Ipy(y;|x;). However, calculating
p(yilz;) is not trivial. A method to estimate(y;|z;) is
described in the following section.

IV. ESTIMATING p(y;|z;)

Classifier Output Difference
0.10 0,150,20 0,25 0,30

In this paperp(y;|x;) is used as the detrimentality measure
for each training instance. In generaly;|z;) does not make
sense outside the context of an induced hypothesis. Thing, us
an induced hypothesis from a learning algorithm trained on
T, the quantityp(y;|x;, h) can be approximated agy;|z;, h) Fig. 3. Dendrogram of the considered learning algorithmstered using
assuming thap(y;|J;) is represented in. In other words, the unsupervised metalearning based on their classifier ouliffetence.
induced discriminative model is able to model if one class
label is more likely than another class label given an ol®s®€rv a5 g1 The DIVERSE SET OF ALGORITHMS(AS DETERMINED BY
nOisy label. After training a Iearning algorithm an the class UNSUPERVISED METALEARNING) USED TO ESTIMATED(y; ;).
distribution for an instance; can be calculated based on the
output from the learning algorithm.
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Learning Algorithms
Multilayer Perceptron trained with Back Propagation (MLP
Decision Tree (C4.5)
Locally Weighted Learning (LWL)
5-Nearest Neighbors (5-NN)
Nearest Neighbor with generalization (NNge)
Naive Bayes (NB)

The dependence qf(y;|z;) on a particular hypothesis
can be removed by summing over all possible hypothéses
in % and multiplying eactp(g;|x;, k) by p(h):

I T

- ~ ~ Rlpple DOwn Rule learner (RIDOR)
p(yilzi) ~ p(Ji|xi) = § p(Gilzi, h)p(h). (2) Random Forest (Random Forest)
heH Repeated Incremental Pruning to Produce Error ReduciRiIRRER)

This formulation is infeasible, though, because 1) it is not
practical (or possible) to sum over the set of all hypothese
2) calculating p(h) is non-trivial, and 3) not all learning
algorithms produce a probability distribution. These tations
make probabilistic generative models attractive, suchhas t
kernel Fisher discriminant algorithrh [17]. However, foasl
sification tasks, discriminative models generally haveveeio
asymptotic error than generative models|[18].

In this paper we approximatg(i;|z;) using a diverse p(9i|zi) is estimated for each training instance using 10-
subset of{{. The diversity of the subset 6{ refers to a set of fold cross-validation (the instange, g;) is not used to induce
hypotheses that differ in their classification of novel amstes.  the hypothesis:). Using a set of diverse hypotheses induced
The diverse subset o is created using unsupervised meta-by the learning algorithms i, we approximate(y;|z;) as:
learning (UML) [19]. UML first uses classifier output differ-
ence (COD)[[2D] to measure the diversity between learning 1
algorithms. COD measures the distance between two learning  P(J:|%:) = p(ilz:, £) = 7z > o p(Gilzi 1(T)  (2)
algorithms as the probability that the learning algorithms j=1
make different predictions. UML then clusters the learning
algorithms based on their COD scores with hierarchical agwhere (;(T') is the hypothesis induced by thg" learning
glomerative clustering. We considered 20 learning alpori  algorithm trained oril’. From Equatiorillp(h) is estimated
from Weka with their default parametefs [21]. The resultingas ‘—é‘ for the hypotheses induced by the learning algorithms
dendrogram is shown in Figufd 3, where the height of theén £ and as zero for all of the other hypothesesHn

Sline connecting two clusters corresponds to the distan&D(C
value) between them. A cut-point of 0.18 was chosen to create
9 clusters and a representative algorithm from each clusier
chosen to create a diverse set?f Other numbers of clusters
could have been used. The learning algorithms that are used
to estimatep(¢;|z;) are listed in Tablgl .



TABLE II. H OW INSTANCE WEIGHTING IS INTEGRATED INTO THE

CONSIDERED LEARNING ALGORITHMS RIPPER: The percentage of training instances that are covered

by a rule and share the same class as the examined instance.

LA Orig RDIL
'\RALPd & (tuf _?)f’(g_ett) Pi/f\ylilmﬁt)(é - Ozf"(ne)t) Obviously, a classifier score does not produce a true prbbabi
anaom Foreq nirorm dis el e i| T - e . .
Cas, Count number of instances_Tle. gump(ﬁi) ity. However, the classifier scores approximate the conéieen
5-NN, 1 > il of p(y;|x;). 3) Pair-wise expectation maximizatioR\WEM)
RIPPER T W [4] weights each instance using the EM algorithm. For each
T T

pair of classes, the instances that belong to the two classes
clustered using EM where the number of clusters is detemnine
using the Bayesian Information Criterian [22]. Given tHe- 1
clusterings ¥ is the number of classes in the data sgt)|z)

We investigate the effects of filtering and weighting onis calculated as:
the C4.5, 5NN, MLP, Random Forest, and RIPPER learning k
algorithms (abbreviated in Table ). Talilé Il summarizewho p(y;|z;) =Y p(0)p(ylzi0) =Y p(0)> p(yilc.0)p(clz:.0)
an instance is weighted by(y;|z;) for the examined learning ) )
algorithms. For MLPs trained with backpropagation, theerr
((t — 0)f'(net)) is scaled byp(y;|x;) where (t — o) is the
difference between the target value and the output of th
network, f’(net) is the derivative of the activation function  We also compare weighting with three filtering techniques.
f and net is the sum of the product of each inpyt and 1) Filter- £ usesp(y;|x,£) for filtering, similar to the three
its corresponding weightv;: net = . w;i;. For Random  |earning algorithm ensemble filter examined by Brodley and
Forests, the distribution for selecting instances in thedoa  Friedl [5]. Instances that are misclassified by 50% of the
trees is weighted by(y;|x;) rather than being uniformly |earning algorithms in the ensemble are filtered from the
weighted. For the other learning algorithms that keep t@ick training set. Note that other percentages could also be. used
counts, each instance is weightediy;|z:). >, represents e found that 50% generally produces good results compared
summing over instances that meet some criteripand ) ;. to values of 70% and 90%. In practice a validation set could be
sums over all of the instances in the data set. used to determine the percentage that would be usdsilta)-
Biasedremoves any instance that is misclassified by the same
learning algorithm that is being used to induce a model from
the training set. 3) Repeated-edited nearest-neigHRBNN)
[6] repeatedly removes the instances that are misclasdified
a 3-nearest neighbor classifier.

V. METHODOLOGY

c=1

whered is a clustering model induced using the EM algorithm,
& is a cluster ind, andk is the number of clusters if.

We consider three weighting schemes: RDOIL-RDIL-
Biased, and PWEM described below. BDIL- £ uses
p(gilz:, £). Since not all learning algorithms in Talle | pro-
duce a probability distribution, the Kronecker delta fuoet
d(g(z;),y:) is used in this paper instead pfy;|x;, h) where
h(z;) returns the predicted class from the induced hypothesis Each noise handling method is evaluated by averaging the
h given input featuresr;. 2) RDIL-Biased approximates results from ten runs of each experiment. For each expetimen
p(yilz:) asp(y:|z:, h) where the hypothesis is induced by the data is shuffled and then split into 2/3 for training ar@l 1/
the same learning algorithm that is used to induce a moddbr testing. The training and testing sets are stratifiechd®an
of the data. To get a real-value from a single hypothesis, waoise is introduced by randomly changingo of the training
compute a classifier score for each instance from the legrnininstances to a new label chosen uniformly from the possible
algorithm. Below, we present how we calculate the classifieclass labels (noisy completely at random). The noise levels
scores for the investigated learning algorithms. are examined at 0%, 10%, 20%, 30%, and 40%. We examine

) _noise handling using the 5 chosen learning algorithms ont a se
MLP: For multiple classes, each class from a data set igf 54 gata sets from the UCI data repositdry|[23]. Statistica
represented with an output node. After training a MLP withgjgnificance between pairs of algorithms is determinedgusin

backpropagation, the classifier score is the largest vafue Qne \Wilcoxon signed-ranks test as suggested by Derngar [24]
the output nodes normalized between zero and pagx) =

0i(x) wherey is a class from the set of possible classes As there is no way to determine if an instance is noisy or

i) ) mislabeled without the use of a domain expert, most previous
Y ando; is the value from the output node corresponding towork adds artificial noise to show the impact of noise and how
classy;. handling noise improves the accuracy. Generally, oncesther

C4.5: To calculate a classifier score, an instance first follow'© large amounts of noise, a noise handling approach signif

the induced set of rules until it reaches a leaf node. ThéCantly increases the classification accuracy. In the fafig

classifier score is the number of training instances thae havexperlments, artificial noise is added to the data sets.

the same class as the examined instance divided by all of the
training instances that also reach the same leaf node. VI. RESULTS

5-NN: The percentage of the nearest-neighbors that agree with N this section, we present the results of our experiments.
the class label of an instance as the classifier score. For the tables in this section, the algorithm in the first rew i

the baseline algorithm that the algorithms in the subsequen
Random Forest:For each tree, an instance follows the inducedrows are compared against. The values in the “g,e,l” rows
set of rules until it reaches a leaf node. The counts from theepresent the number of times that the accuracy from the
reached leaf nodes for each class are summed together abdseline algorithm is greater than, equal to, or less than th
then normalized between 0 and 1. compared algorithm. Al represents cases where the baseline



TABLE III. T HE AVERAGE ACCURACY OVER THE54 DATA SETS FOR TABLE IV. A COMPARISON OF THE AVERAGE ACCURACY FROM

THE 5 CONSIDERED LEARNING ALGORITHMS USING THE INVESTIGATED INVESTIGATED INSTANCE WEIGHTING METHODS ON THE CONSIDERED
NOISE HANDLING APPROACHES WITH NO ARTIFICIAL NOISE ADDED TO LEARNING ALGORITHMS. BOLD VALUES WITH A [ REPRESENT CASES
THE DATA SETS. A [0 TO THE LEFT REPRESENT CASES WHERE THE NOISE WHERERDIL-L (R-£) ACHEIVES SIGNIFICANTLY HIGHER ACCURACY
HANDLING APPROACH SIGNIFICANTLY INCREASES THE ACCURACY AND THAN RDIL-BIASED (R-B) oR PWEM (PW).
OWHERE THE NOISE HANDLING APPROACH SIGNIFICANTLY DECREASES
THE ACCURACY. Ca.5 S-NN
0% 10% 20% 30% 40%| 0% 10% 20% 30% 40%
C4.5 5-NN MLP Rand For RIPPER R-£| 7819 77.03 76.33 7432 71.0878.72 7786 77.01 75.07 70.63
Orig 79.31 79.37 81.67 81.18 78.35 R-B| 79.29 77.1475.2Q] 71.06] 65.747 (|78.34177.411 75.39] 71.597 64.92]
RDIL-L 78.19 78.72 8226 O 80.82 77.86 g.e,(25,4,25 32,2,19 38,0,16 44,0,10 43,1/84,7,13 41,3,9 43,1,10 46,1,7 44,19
g.e,l 27,1,26 27,4,23 18,3,33 28,2,24 26,2,26 PW{76.410 74.507 73.34] 70.941 68.281 |[78.02] 77.54] 76.12] 73.567] 67.18]
RDIL-Biased| 79.29 78.34 O 81.49 80.94 77.98 g.e,35,4,15 39,3,11 38,4,12 41,0,13 37,4,84,4,16 36,2,15 37,1,16 37,3,14 37,3,14
g.e,l 23,7,24 32,7,15 23,5,26 26,4,24 29,4,21 orig| 79.31 76.92 74.32 69.709 63.0879.37 77.63 74.42 69.96 62.54
PWEM 76.41 78.02 O 8279 81.51 74.17
g.el 30,3,21 33,3,18 23,3,28 34,1,19 39,1,14 MLP Random Forest
Filter-£ 79.55 79.40 81.80 81.66 78.08 R-£| 82.26 80.7 78.40 75.17 69.3080.82 79.72 78.06 75.89 70.78
g.el 25,11,18 23,9,22 23,4,27 28,2,24 27,5,22 R-B[81.49] 78.197 73.84J 69.14] 62.1Q] || 80.94 78.24] 74.010 68.25] 60.93]
Filter-Biased| 79.34 76.99 O 81.39 81.16 77.20 g.e,(34,2,18 41,1,11 46,1,6 48,0,6 47,1{851,28 42,29 48,05 48,15 49,14
g.el 25,7,22 35,4,15 24,10,20 21,12,21 30,7,17 PW[82.79] 79.670 76.42] 71.9] 65.95] || 81.51 78.62] 76.37J 72.54] 65.870
RENN 7683 O 7699 O 7880 O 7820 O 76.65 O g.e,|34,4,16 37,2,14 38,1,14 42,0,12 42,0/B3,4,17 34,4,15 40,4,9 47,16 48,15
gel 32,3,19 35,4,15 38,1,15 35,2,17 34,2,18 orig| 81.67 77.46 7225 67.17 60.4681.18 77.75 72.72 66.87 59.63
RIPPER
. . o . . R-£| 77.86 76.54 7554 73.46 69.
algorithm achieves significantly higher classificationuaecy. W%ljngs 76.2874.500 70.700 65.970
A 0O represents cases where the accuracy from the compar@g:127.3.24 312,20 363,15 46,26 45,9
. . . . . . . PW{74.170 71.947 70.68] 68.5710 64.82]
algorithm is significantly higher than the baseline alduorit g.e.|36,4,14 4427 4545 402,12 41,112
ig| 78.35 76.32 73.45 69.87 65.10

Table [l compares no noise handling (Orig) with the one
considered noise handling techniques. The only noise andl

technique that significantly increases classification eamuis g, given to better measure the effectiveness of the methods

a MLP using RDILL. In contrast, no noise handling achieves pp) - £ significantly outperforms the other weighting schemes
significantly higher accuracy than using a noise handlingy most cases (represented by bgievalues): 24 out of
technique in several cases. RENN achieves significantlglow the 25 cases for PWEM, and 18 out of the 25 cases for
classification accuracy for all of the considered learnilg@a RpjL-Biased. In no case does a competing weighting scheme
rithms. This highlights a point that is often overlooked et  5chieve significantly higher classification accuracy thailR
noise handling literature—noise handling can be detriléht  ~ Recall that the nine learning algorithms were chosen to be
used in all cases. Prewou_s work hqs g_enerally. qonmderk_yd ONdiverse so as to represent more of the hypothesis sHadais

a few data sets where noise handling is beneficial. The impagggests that a better estimation jdfj;|z;) produces better

of filtering or weighting is also dependent on which learningyegyits for weighting and filtering. This is shown empirigal
algorithm is used to induce a model of the data. As expecteths RpILL and Filter£ have the most significant increase
MLPs achieve the most significant increase in accuracy withy gccuracy for each learning algorithm (TaBIg 111). Howeve
instance weighting. On the other hand, C4.5, 5-NN, Randonere is an obvious trade-off since obtaining a more aceurat

Forests, and RIPPER achieve the most significant increase gtimate ofp(¢:|z;) is more computationally expensive.
accuracy with filtering.

Examining the performance of the considered learningB. Weighting VS Filtering
algorithms without noise handling (“orig” in Tables]IV and,V L . . -
we note that MLPs and random forests generally achieve the W& now compare weighting against filtering. Weighting
highest classification accuracy and may be the most tolesant 2nd filtering areboth viable and significantly increase the
the inherent detrimental instances in each data set. Haweve!assification accuracy when noise is added. The difference
MLPs and Random Forests also appear to be the least robustR§tween filtering and weighting techniques depends on the
noise as they obtain the lowest average classification acgur ©Stimation ofp(y;|z;). Generally, estimating(y;|;) with the
when more than 10% of the instances are corrupted with nois€€t Of éarning algorithmg achieves greater classification ac-
With no artificial noise, MLPs and Random Forests achievéUracy than using a biased estimate. Tafile V compares RDIL-
about 81% accuracy. With 20% artificial noise, the averagd With Filter-L. With no noise, RDILL achieves significantly
accuracy decreases to about 72%. On the other hand, C4.5, gher accuracy than Filtet-for the MLP. Since each instance
NN, and RIPPER achieve an average accuracy of about 79§20 affect the classification boundary for MLPs (as shown in
with no artificial noise and an average accuracy of about 7495'9urel1), weighting the instances in the training set hageem
with 20% artificial noise. With high degrees of noise, thetoui  Significant impact in MLPs than the other learning algorithm

in noise handling mechanisms of learning algorithms becom¥hich partition the input space. On the other hand, therrilte
more beneficial. achieves a significantly higher accuracy than R@lfer the

four other learning algorithms. Note that MLP with RDLL-
achieves the highest overall average accuracy for noisdslev
0%-20% (RDILL achieves the highest accuracy for 30%
As instance weighting is not as well explored as filtering,and 40% noise using Random Forest and C4.5 respectively).
we now examine various weighting schemes to handle clasgxcept for MLPs, the significance of the impact of RDAL-
noise. Table[ TV compares RDIL- with RDIL-Biased and increases as the noise level increases except for all okdra-e
PWEM. The accuracies from the algorithms with no weightingined learning algorithms. RDILZ significantly increases the

A. Weighting Schemes



TABLE V. A COMPARISON OFRDIL-L (R-£) WITH THE L-FILTER
(F-L£) ON THE CONSIDERED LEARNING ALGORITHMS BOLD VALUES WITH
A [ REPRESENT CASES WHERRDIL-L (R-L£) ACHEIVES SIGNIFICANTLY

HIGHER ACCURACY THAN THE L-FILTER. THE JREPRESENTS CASES

WHERE THE L-FILTER ACHEIVES SIGNIFICANTLY HIGHER ACCURACY

(1]

5-NN
0% 10% 20% 30% 40%

C4.5
0% 10% 20% 30% 40%
R-£] 78.19 77.03 76.33 74.32 71.08 78.72 77.86 77.01 75.07 70.63
F-£[79.55078.350 76.79 73.5859.300 ({79.400 78.35 76.674.350 69.640
g.e,/19,2,33 21,1,31 30,1,23 33,0,21 36,0}[189,4,31 28,2,2326,4,24 31,0,23 31,0,23
orig| 79.31 76.92 74.32 69.709 63.0]3 79.37 77.63 74.42 69.96 62.54

3]

MLP [| Random Forest

4
82.26 80.7 78.4 75.17 69.3H 80.82 79.72 78.06 75.89 70.78 4

R-L
F-L
g.e,
orig

81.80 80.66 78.24 74.85 69.4¢81.660 79.91 78.0675.290 69.940]
37,2,15 30,3,20 31,1,21 33,0,21 29,1 14,32 31,0,2226,1,26 33,0,21 34,3,17
8167 7746 7225 67.17 60.4f 81.18 77.75 72.72 66.87 59.63

RIPPER
7786 7654 7554 73.46 69.603
8.98077.82076.400 73.92 69.84
15,3,36 18,3,32 18,0,36 27,1,26 25,1}P
7835 76.32 73.45 69.87 65.]]

R-L]
FL
g.e,
orig

N4
o]

classification accuracy for C4.5, 5-NN, and Random Forests

when there are high amounts of noise. (8l

Over all noise levels, RDILE compared with Filter£
achieves significantly higher classification accuracy inf6 o [°!
the 25 cases and the filtér-achieves significantly higher
classification accuracy in 7 cases. (In the other 12 case th [10]
is no significant difference). The Filtet-has a more significant [11]
effect than RDILL for RIPPER at noise levels 0, 0.1 and 0.2
and RDIL-L never achieves significantly higher classification;,
accuracy than the Filtef= Therefore, instance weighting is
not the best option for every learning algorithm. However,
with the Filter£ we chose the threshold that produced the[13]
highest classification accuracy on the test set, which is not
always possible to do. Instance weighting avoids the owthe
of having to determine a threshold for filtering when using
an ensemble filter. Instance weighting is better for leaynin
algorithms that consider each instance individually anchea [15]
instance can affect the classification boundary (e.g. MLP).

[14]

VII. CONCLUSIONS

[16]

In this paper we examined handling detrimental instances
using the hypotheses from multiple learning algorithms.it/e
troducedreduced detrimental instance learniggDIL) which
weights each instance based on an approximatigr(@fx;).
We examined RDIL on a set of 5 learning algorithms and 54[18]
data sets. We found that a better estimatep@f;|z;) leads
to better detrimentality handling in both instance weigbti
and filtering. Weighting the instances avoids having to gpen(19]
extra computational time and having to use training inganc
to select a threshold for filtering when using an ensembld20]
filter. Instance weighting has the greatest effect on learni
algorithms where every instance can affect the classifinati
boundary and the training instances are considered individ [21
ally, such as multilayer perceptrons trained with backpgsp
tion (MLPs). On the other hand, instance filtering had a morgzz]
significant impact on the C4.5, 5-NN, Random Forest, an
RIPPER learning algorithms with no artificial noise. Howeve
instance weighting was shown to be preferable to filterirrg fo [23]
the examined learning algorithms when there are high ansount
of noise. An analysis of when to use a particular noise hagdli [24]
technique is a direction for future work.

[17]
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