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Abstract—Not all instances in a data set are equally beneficial
for inducing a model of the data. Some instances (such as outliers
or noise) can be detrimental. However, at least initially, the
instances in a data set are generally considered equally in machine
learning algorithms. Many current approaches for handling noisy
and detrimental instances make a binary decision about whether
an instance is detrimental or not. In this paper, we 1) extend
this paradigm by weighting the instances on a continuous scale
and 2) present a methodology for measuring how detrimental
an instance may be for inducing a model of the data. We call
our method of identifying and weighting detrimental instances
reduced detrimental instance learning (RDIL). We examine RDIL
on a set of 54 data sets and 5 learning algorithms and compare
RDIL with other weighting and filtering approaches. RDIL is
especially useful for learning algorithms where every instance can
affect the classification boundary and the training instances are
considered individually, such as multilayer perceptrons trained
with backpropagation (MLPs). Our results also suggest thata
more accurate estimate of which instances are detrimental can
have a significant positive impact for handling them.

I. I NTRODUCTION

The goal of supervised machine learning is to induce an
accurate generalizing function from a set of labeled training
instances. Given that in most cases, all that is known about
a task is contained in the set of training instances, at least
initially, the instances in a data set are generally considered
equally. However, some instances are more beneficial than
others for inducing a model of the data. For example, outliers
or mislabeled instances are not as beneficial as border instances
and can even be detrimental in many cases. In addition, other
instances can be detrimental for inducing a model of the data
even if they are labeled correctly and are not outliers.

A possible effect of considering all instances equally,
including the detrimental instances, when inducing a model
of the data is shown in the hypothetical two-dimensional
data set in Figure 1a. The solid line represents the “actual”
classification boundary and the dashed line represents a po-
tential induced classification boundary. Instances A and B
are detrimental instances that “pull” the decision boundary
away from the true boundary and cause the instances in the
space between the true boundary and induced boundary to be
misclassified. A learning algorithm can more precisely model
the data by considering instances differently during training to
suppress the effects of detrimental training instances.

This is especially true for learning algorithms such as
backpropagation for training multilayer perceptrons (MLP).
Detrimental instances (e.g. instance A) have the greatest effect
on the classification boundary since they can have the largest

error value. As shown by Elman [1], this is particularly impor-
tant during the early stages of training a MLP when the initial
gradient is calculated. Elman proposes a method to initially
train the MLP with simpler instances then gradually increase
to more complex instances. This procedure has developed into
curriculum learning and has had success in deep learning
[2]. However, it is not as successful for shallow MLPs [3].
The impact of detrimental instances is lessened in other other
learning algorithms since the influence of a particular instance
is localized. For example,k-NN only considers thek nearest
neighbors of an instance.

Assuming that all that is known about a task is contained
in the training set, how detrimental an instance is for inducing
a model of the data can be estimated based on its relationship
with the other instances in the data set. For example, instance
A from Figure 1a represents a detrimental instance as an
outlier–being in a region with instances of a differing class. In
contrast, instance A in the data set shown in Figure 1b is not
as detrimental given additional instances of the same classin
the same region. As determining if an instance is detrimental
exhibits a degree of uncertainty, we examine weighting the
instances in a data set by their likelihood of being mis-
classified. Instance A from Figure 1a, for example, has a
high likelihood of being misclassified while instance B may
have a lower likelihood of being misclassified. Weighting the
instances limits the influence of an instance proportionateto its
detrimentality measure. We present a theoretically-motivated
methodology for estimating the likelihood that an instance
will be misclassified that lessens the dependence on any one
model. We call this approach of weighting the instances by
their probability of being misclassifiedreduced detrimental
instance learning(RDIL). Filtering or removing detrimental
instances prior to training can be viewed as a special case of
instance weighting. We show that both filtering and weighting
are viable solutions and examine when each is most beneficial.

We examine RDIL on a set of 5 learning algorithms and
54 data sets. We compare multiple versions of RDIL with
another weighting scheme, pair-wise expectation maximization
(PWEM) [4], as well as several filtering algorithms: misclassi-
fication filters and an ensemble filter [5], and repeated-edited
nearest-neighbor (RENN) [6]. We find that some learning
algorithms benefit more from filtering and others from instance
weighting. Specifically, filtering is more beneficial for decision
trees, rule-based learners, and nearest neighbor algorithms.
Weighting the instances has a more significant impact on
multilayer perceptrons. In cases with high amounts of noise,
weighting the instances is generally preferable to filtering as
it generally achieves higher accuracy and does not require a
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Fig. 1. Hypothetical, 2-dimensional data set with two detrimental instances
(instances A and B) that shows a) that treating all instancesequally in a data
set with detrimental instances can adversely affect the classification boundary
and b) that how detrimental an instance may be is dependent onthe other
instances in a data set.

threshold to be set if filtering is based on a continuous value.

The remainder of the paper is organized as follows. Sec-
tion II reviews related work in handling noise. Section III
motivates weighting the instances. The detrimentality measure
is presented in Section IV. Our experimental methodology is
presented in Section V. The results of RDIL are provided in
Section VI. Section VII concludes the paper.

II. RELATED WORK

Many real-wold data sets contain detrimental instances
that arise from noise (typos, measurement errors, etc.) or
from the stochastic nature of the task. Noise is a subset
of detrimental instances. Previous work has examined how
class noise and attribute noise affects the performance of
various learning algorithms [7]. They found that class noise is
generally more harmful than attribute noise. The consequences
of class noise, as summarized by Frénay and Verleysen [8],
include 1) a deterioration of classification performance, 2)
increased learning requirements and model complexity, and
3) a distortion of observed frequencies.

Most learning algorithms are designed to tolerate a certain
degree of detrimental instances by making a trade-off between
the complexity of the induced model and minimizing error
on the training data to prevent overfit. For example, to avoid
overfit many algorithms use a validation set for early stopping
and/or regularization by adding a complexity penalty to the
loss function [9]. Some learning algorithms have been adapted
specifically to better handle noise. Boosting algorithms [10],
for example, assign more weight to misclassified instances–
which often include mislabeled and noisy instances. To address
this, Servedio [11] presented a boosting algorithm that does not
place too much weight on any training instance.

Preprocessing the data set explicitly handles detrimental
instances by removing, weighting, or correcting them. Filtering
detrimental instances has received much attention and has
generally been shown to result in an increase in classification
accuracy, especially when there are large amounts of noise
[12], [13]. One frequently used filtering technique removesany
instance that is misclassified by a learning algorithm [14] or
set of learning algorithms [5]. Other approaches use informa-
tion theoretic or machine learning heuristics to remove noisy
instances. Segata et al. [15], for example, remove instances
that are too close or on the wrong side of the decision surface
generated by a support vector machine. However, filtering has

the potential downside of discarding useful instances and/or
too many instances.

Rather than making a binary decision about the detrimen-
tality of in instance, weighting allows a continuous scale.
Filtering can be considered a special case of weighting where
each instance is assigned a weight of 0 or 1. Rebbapragada and
Brodley [4] weight the instances using expectation maximiza-
tion to cluster instances that belong to a pair of the classes.
The probabilities between classes for each instance is compiled
and used to weight the influence of each instance.

Data cleaning does not discard any instances, but rather
strives to correct the noise in the instances. As in filtering, the
output from a learning algorithm has been used to clean the
data. Polishing [16] trains a learning algorithm (in this case a
decision tree) to predict the value for each attribute (including
the class). The predicted (i.e. corrected) attribute values for the
instances that increase generalization accuracy on a validation
set are used instead of the uncleaned attribute values.

III. M ODELING DETRIMENTALITY

Lawrence and Schölkopf [17] model a data set using a
generative model that also models the noise. LetT be a
training set composed of instances〈xi, ŷi〉 drawn i.i.d. from the
underlying data distributionD. Each instance has an associated
latent random variable/featureyi. Thus,xi is the set of input
features,ŷi is the possibly noisy class label given in the
training set, andyi is the true unknown class label. Lawrence
and Schölkopf assume that the joint distributionp(xi, yi, ŷi)
is factorized asp(ŷi|yi)p(xi|yi)p(yi) as shown in Figure 2a.
Since modeling the prior distribution of the unobserved random
variableyi is not feasible, they estimate the prior distribution
of p(ŷi) with some assumptions about the noise as shown in
Figure 2b.

Following the premise of Lawrence and Schölkopf, we
explicitly model the possibility that an instance is mislabeled
(i.e. y 6= ŷ). Rather than using a generative model, though,
we use a discriminative model since we are focusing on
classification tasks and do not require the full joint distribution.
Also, discriminative models have been shown to yield better
performance on classification tasks [18]. A generative model,
which models the full joint distribution ofp(x, y, ŷ), differs
from a discriminative model which is mostly concerned with
modeling the likelihood of the class:p(ŷ|x). Given a training
setT , a discriminative model generally seeks to find the most
probable hypothesish that maps eachxi 7→ ŷi–ignoring the
fact that ŷi may not equalyi. This is shown graphically in
Figure 2c wherep(ŷi|xi)p(xi) is estimated using a discrimi-
native approach such as a neural network or a decision tree to
induce a hypothesis of the data. The possibility of label noise
is not explicitly modeled in this form (i.e.p(yi) is ignored).
Label noise is generally handled by avoiding overfit such that
more probable, simpler hypotheses are preferred.

Label noise can be more explicitly modeled by considering
that ŷi may be noisy by associating a latent random variable
yi with each instance. In this context, a supervised learning al-
gorithm seeks to maximizep(ŷi|xi, yi)p(yi|xi)p(xi)–modeled
graphically in Figure 2d. This factorization of the likelihood for
the observed class label for an instance suggests that it should
be weighted by the probability thatyi is the actual class. Thus,
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Fig. 2. Graphical model of a a) generative probabilistic model, b) the generative model proposed by Lawrence and Schölkopf [17] and a discriminative
probabilistic model for c)p(ŷ|x)p(x) and d)p(ŷ|x, y)p(y|x)p(x).

when considering the possibility that̂yi 6= yi, it is natural to
weight the instances byp(yi|xi). This provides the motivation
for reduced detrimental instance learning(RDIL). RDIL takes
two passes through the data set. In the first pass,p(yi|xi)
is calculated. Next, a learning algorithm is trained with the
training instances weighted byp(yi|xi). However, calculating
p(yi|xi) is not trivial. A method to estimatep(yi|xi) is
described in the following section.

IV. ESTIMATING p(yi|xi)

In this paper,p(yi|xi) is used as the detrimentality measure
for each training instance. In general,p(yi|xi) does not make
sense outside the context of an induced hypothesis. Thus, using
an induced hypothesish from a learning algorithm trained on
T , the quantityp(yi|xi, h) can be approximated asp(ŷi|xi, h)
assuming thatp(yi|ŷi) is represented inh. In other words, the
induced discriminative model is able to model if one class
label is more likely than another class label given an observed
noisy label. After training a learning algorithm onT , the class
distribution for an instancexi can be calculated based on the
output from the learning algorithm.

The dependence ofp(yi|xi) on a particular hypothesish
can be removed by summing over all possible hypothesesh
in H and multiplying eachp(ŷi|xi, h) by p(h):

p(yi|xi) ≈ p(ŷi|xi) =
∑

h∈H

p(ŷi|xi, h)p(h). (1)

This formulation is infeasible, though, because 1) it is not
practical (or possible) to sum over the set of all hypotheses,
2) calculating p(h) is non-trivial, and 3) not all learning
algorithms produce a probability distribution. These limitations
make probabilistic generative models attractive, such as the
kernel Fisher discriminant algorithm [17]. However, for clas-
sification tasks, discriminative models generally have a lower
asymptotic error than generative models [18].

In this paper we approximatep(ŷi|xi) using a diverse
subset ofH. The diversity of the subset ofH refers to a set of
hypotheses that differ in their classification of novel instances.
The diverse subset ofH is created using unsupervised meta-
learning (UML) [19]. UML first uses classifier output differ-
ence (COD) [20] to measure the diversity between learning
algorithms. COD measures the distance between two learning
algorithms as the probability that the learning algorithms
make different predictions. UML then clusters the learning
algorithms based on their COD scores with hierarchical ag-
glomerative clustering. We considered 20 learning algorithms
from Weka with their default parameters [21]. The resulting
dendrogram is shown in Figure 3, where the height of the
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Fig. 3. Dendrogram of the considered learning algorithms clustered using
unsupervised metalearning based on their classifier outputdifference.

TABLE I. T HE DIVERSE SET OF ALGORITHMS(AS DETERMINED BY
UNSUPERVISED META-LEARNING) USED TO ESTIMATEp(yi|xi).

Learning Algorithms
* Multilayer Perceptron trained with Back Propagation (MLP)
* Decision Tree (C4.5)
* Locally Weighted Learning (LWL)
* 5-Nearest Neighbors (5-NN)
* Nearest Neighbor with generalization (NNge)
* Naı̈ve Bayes (NB)
* RIpple DOwn Rule learner (RIDOR)
* Random Forest (Random Forest)
* Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

line connecting two clusters corresponds to the distance (COD
value) between them. A cut-point of 0.18 was chosen to create
9 clusters and a representative algorithm from each clusterwas
chosen to create a diverse set ofH. Other numbers of clusters
could have been used. The learning algorithms that are used
to estimatep(ŷi|xi) are listed in Table I.

p(ŷi|xi) is estimated for each training instance using 10-
fold cross-validation (the instance〈x,ŷi〉 is not used to induce
the hypothesish). Using a set of diverse hypotheses induced
by the learning algorithms inL, we approximatep(ŷi|xi) as:

p(ŷi|xi) ≈ p(ŷi|xi,L) =
1

|L|

|L|∑

j=1

p(ŷi|xi, lj(T )) (2)

where lj(T ) is the hypothesis induced by thejth learning
algorithm trained onT . From Equation 1,p(h) is estimated
as 1

|L| for the hypotheses induced by the learning algorithms
in L and as zero for all of the other hypotheses inH.



TABLE II. H OW INSTANCE WEIGHTING IS INTEGRATED INTO THE

CONSIDERED LEARNING ALGORITHMS.

LA Orig RDIL
MLP (t − o)f ′(net) p(yi|xi)(t − o)f ′(net)
Random Forest Uniform dist Weighted byp(yi|xi)
C4.5, Count number of instances, i.e. Sump(yi|xi)
5-NN,

∑
ci

1∑
T

1

∑
ci

p(yi|xi)∑
T

p(yi|xi)
RIPPER

V. M ETHODOLOGY

We investigate the effects of filtering and weighting on
the C4.5, 5NN, MLP, Random Forest, and RIPPER learning
algorithms (abbreviated in Table I). Table II summarizes how
an instance is weighted byp(yi|xi) for the examined learning
algorithms. For MLPs trained with backpropagation, the error
((t − o)f ′(net)) is scaled byp(yi|xi) where (t − o) is the
difference between the target value and the output of the
network, f ′(net) is the derivative of the activation function
f and net is the sum of the product of each inputij and
its corresponding weightwj : net =

∑
j wjij . For Random

Forests, the distribution for selecting instances in the random
trees is weighted byp(yi|xi) rather than being uniformly
weighted. For the other learning algorithms that keep trackof
counts, each instance is weighted byp(yi|xi).

∑
ci

represents
summing over instances that meet some criterionci and

∑
T

sums over all of the instances in the data set.

We consider three weighting schemes: RDIL-L, RDIL-
Biased, and PWEM described below. 1)RDIL- L uses
p(ŷi|xi,L). Since not all learning algorithms in Table I pro-
duce a probability distribution, the Kronecker delta function
δ(g(xi), yi) is used in this paper instead ofp(ŷi|xi, h) where
h(xi) returns the predicted class from the induced hypothesis
h given input featuresxi. 2) RDIL-Biased approximates
p(yi|xi) as p(ŷi|xi, h) where the hypothesish is induced by
the same learning algorithm that is used to induce a model
of the data. To get a real-value from a single hypothesis, we
compute a classifier score for each instance from the learning
algorithm. Below, we present how we calculate the classifier
scores for the investigated learning algorithms.

MLP: For multiple classes, each class from a data set is
represented with an output node. After training a MLP with
backpropagation, the classifier score is the largest value of
the output nodes normalized between zero and one:p̂(y|x) =

oi(x)∑|Y |

i
oi(x)

wherey is a class from the set of possible classes

Y andoi is the value from the output node corresponding to
classyi.

C4.5: To calculate a classifier score, an instance first follows
the induced set of rules until it reaches a leaf node. The
classifier score is the number of training instances that have
the same class as the examined instance divided by all of the
training instances that also reach the same leaf node.

5-NN: The percentage of the nearest-neighbors that agree with
the class label of an instance as the classifier score.

Random Forest:For each tree, an instance follows the induced
set of rules until it reaches a leaf node. The counts from the
reached leaf nodes for each class are summed together and
then normalized between 0 and 1.

RIPPER: The percentage of training instances that are covered
by a rule and share the same class as the examined instance.

Obviously, a classifier score does not produce a true probabil-
ity. However, the classifier scores approximate the confidence
of p(yi|xi). 3) Pair-wise expectation maximization (PWEM )
[4] weights each instance using the EM algorithm. For each
pair of classes, the instances that belong to the two classesare
clustered using EM where the number of clusters is determined
using the Bayesian Information Criterion [22]. Given theY −1
clusterings (Y is the number of classes in the data set),p(y|x)
is calculated as:

p(yi|xi) =
∑

θ

p(θ)p(yi|xi,θ) =
∑

θ

p(θ)

k∑

c=1

p(yi|c,θ)p(c|xi,θ)

whereθ is a clustering model induced using the EM algorithm,
c is a cluster inθ, andk is the number of clusters inθ.

We also compare weighting with three filtering techniques.
1) Filter-L usesp(ŷi|x,L) for filtering, similar to the three
learning algorithm ensemble filter examined by Brodley and
Friedl [5]. Instances that are misclassified by 50% of the
learning algorithms in the ensemble are filtered from the
training set. Note that other percentages could also be used.
We found that 50% generally produces good results compared
to values of 70% and 90%. In practice a validation set could be
used to determine the percentage that would be used. 2)Filter-
Biasedremoves any instance that is misclassified by the same
learning algorithm that is being used to induce a model from
the training set. 3) Repeated-edited nearest-neighbor (RENN)
[6] repeatedly removes the instances that are misclassifiedby
a 3-nearest neighbor classifier.

Each noise handling method is evaluated by averaging the
results from ten runs of each experiment. For each experiment,
the data is shuffled and then split into 2/3 for training and 1/3
for testing. The training and testing sets are stratified. Random
noise is introduced by randomly changingn% of the training
instances to a new label chosen uniformly from the possible
class labels (noisy completely at random). The noise levels
are examined at 0%, 10%, 20%, 30%, and 40%. We examine
noise handling using the 5 chosen learning algorithms on a set
of 54 data sets from the UCI data repository [23]. Statistical
significance between pairs of algorithms is determined using
the Wilcoxon signed-ranks test as suggested by Demšar [24].

As there is no way to determine if an instance is noisy or
mislabeled without the use of a domain expert, most previous
work adds artificial noise to show the impact of noise and how
handling noise improves the accuracy. Generally, once there
are large amounts of noise, a noise handling approach signif-
icantly increases the classification accuracy. In the following
experiments, artificial noise is added to the data sets.

VI. RESULTS

In this section, we present the results of our experiments.
For the tables in this section, the algorithm in the first row is
the baseline algorithm that the algorithms in the subsequent
rows are compared against. The values in the “g,e,l” rows
represent the number of times that the accuracy from the
baseline algorithm is greater than, equal to, or less than the
compared algorithm. A✗ represents cases where the baseline



TABLE III. T HE AVERAGE ACCURACY OVER THE54 DATA SETS FOR
THE 5 CONSIDERED LEARNING ALGORITHMS USING THE INVESTIGATED

NOISE HANDLING APPROACHES WITH NO ARTIFICIAL NOISE ADDED TO

THE DATA SETS. A ✓ TO THE LEFT REPRESENT CASES WHERE THE NOISE

HANDLING APPROACH SIGNIFICANTLY INCREASES THE ACCURACY AND
✗ WHERE THE NOISE HANDLING APPROACH SIGNIFICANTLY DECREASES

THE ACCURACY.

C4.5 5-NN MLP Rand For RIPPER
Orig 79.31 79.37 81.67 81.18 78.35
RDIL-L 78.19 78.72 82.26 ✓ 80.82 77.86
g,e,l 27,1,26 27,4,23 18,3,33 28,2,24 26,2,26
RDIL-Biased 79.29 78.34 ✗ 81.49 80.94 77.98
g,e,l 23,7,24 32,7,15 23,5,26 26,4,24 29,4,21
PWEM 76.41 78.02 ✗ 82.79 81.51 74.17
g,e,l 30,3,21 33,3,18 23,3,28 34,1,19 39,1,14
Filter-L 79.55 79.40 81.80 81.66 78.98
g,e,l 25,11,18 23,9,22 23,4,27 28,2,24 27,5,22
Filter-Biased 79.34 76.99 ✗ 81.39 81.16 77.20
g,e,l 25,7,22 35,4,15 24,10,20 21,12,21 30,7,17
RENN 76.83 ✗ 76.99 ✗ 78.80 ✗ 78.20 ✗ 76.65 ✗
g,e,l 32,3,19 35,4,15 38,1,15 35,2,17 34,2,18

algorithm achieves significantly higher classification accuracy.
A ✓ represents cases where the accuracy from the compared
algorithm is significantly higher than the baseline algorithm.

Table III compares no noise handling (Orig) with the
considered noise handling techniques. The only noise handling
technique that significantly increases classification accuracy is
a MLP using RDIL-L. In contrast, no noise handling achieves
significantly higher accuracy than using a noise handling
technique in several cases. RENN achieves significantly lower
classification accuracy for all of the considered learning algo-
rithms. This highlights a point that is often overlooked in the
noise handling literature–noise handling can be detrimental if
used in all cases. Previous work has generally considered only
a few data sets where noise handling is beneficial. The impact
of filtering or weighting is also dependent on which learning
algorithm is used to induce a model of the data. As expected,
MLPs achieve the most significant increase in accuracy with
instance weighting. On the other hand, C4.5, 5-NN, Random
Forests, and RIPPER achieve the most significant increase in
accuracy with filtering.

Examining the performance of the considered learning
algorithms without noise handling (“orig” in Tables IV and V),
we note that MLPs and random forests generally achieve the
highest classification accuracy and may be the most tolerantto
the inherent detrimental instances in each data set. However,
MLPs and Random Forests also appear to be the least robust to
noise as they obtain the lowest average classification accuracy
when more than 10% of the instances are corrupted with noise.
With no artificial noise, MLPs and Random Forests achieve
about 81% accuracy. With 20% artificial noise, the average
accuracy decreases to about 72%. On the other hand, C4.5, 5-
NN, and RIPPER achieve an average accuracy of about 79%
with no artificial noise and an average accuracy of about 74%
with 20% artificial noise. With high degrees of noise, the built-
in noise handling mechanisms of learning algorithms become
more beneficial.

A. Weighting Schemes

As instance weighting is not as well explored as filtering,
we now examine various weighting schemes to handle class
noise. Table IV compares RDIL-L with RDIL-Biased and
PWEM. The accuracies from the algorithms with no weighting

TABLE IV. A COMPARISON OF THE AVERAGE ACCURACY FROM

INVESTIGATED INSTANCE WEIGHTING METHODS ON THE CONSIDERED

LEARNING ALGORITHMS. BOLD VALUES WITH A ✓ REPRESENT CASES
WHERE RDIL-L (R-L) ACHEIVES SIGNIFICANTLY HIGHER ACCURACY

THAN RDIL-B IASED (R-B) OR PWEM (PW).

C4.5 5-NN
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

R-L 78.19 77.03 76.33 74.32 71.08 78.72 77.86 77.01 75.07 70.63
R-B 79.29 77.1475.20✓ 71.06✓ 65.74✓ 78.34✓ 77.41✓ 75.39✓ 71.59✓ 64.92✓
g,e,l25,4,25 32,2,19 38,0,16 44,0,10 43,1,1034,7,13 41,3,9 43,1,10 46,1,7 44,1,9
PW 76.41✓ 74.50✓ 73.34✓ 70.94✓ 68.28✓ 78.02✓ 77.54✓ 76.12✓ 73.56✓ 67.18✓
g,e,l35,4,15 39,3,11 38,4,12 41,0,13 37,0,1734,4,16 36,2,15 37,1,16 37,3,14 37,3,14
orig 79.31 76.92 74.32 69.709 63.08 79.37 77.63 74.42 69.96 62.54

MLP Random Forest
R-L 82.26 80.7 78.40 75.17 69.30 80.82 79.72 78.06 75.89 70.78
R-B81.49✓ 78.19✓ 73.84✓ 69.14✓ 62.10✓ 80.94 78.24✓ 74.01✓ 68.25✓ 60.93✓
g,e,l34,2,18 41,1,11 46,1,6 48,0,6 47,1,625,1,28 42,2,9 48,0,5 48,1,5 49,1,4
PW 82.79✓ 79.67✓ 76.42✓ 71.9✓ 65.95✓ 81.51 78.69✓ 76.37✓ 72.54✓ 65.87✓
g,e,l34,4,16 37,2,14 38,1,14 42,0,12 42,0,1233,4,17 34,4,15 40,4,9 47,1,6 48,1,5
orig 81.67 77.46 72.25 67.17 60.46 81.18 77.75 72.72 66.87 59.63

RIPPER
R-L 77.86 76.54 75.54 73.46 69.63
R-B 77.98 76.2874.50✓ 70.70✓ 65.97✓
g,e,l27,3,24 31,2,20 36,3,15 46,2,6 45,0,9
PW 74.17✓ 71.94✓ 70.68✓ 68.57✓ 64.82✓
g,e,l36,4,14 44,2,7 45,4,5 40,2,12 41,1,12
orig 78.35 76.32 73.45 69.87 65.10

are given to better measure the effectiveness of the methods.
RDIL-L significantly outperforms the other weighting schemes
in most cases (represented by boldp-values): 24 out of
the 25 cases for PWEM, and 18 out of the 25 cases for
RDIL-Biased. In no case does a competing weighting scheme
achieve significantly higher classification accuracy than RDIL-
L. Recall that the nine learning algorithms were chosen to be
diverse so as to represent more of the hypothesis spaceH. This
suggests that a better estimation ofp(ŷi|xi) produces better
results for weighting and filtering. This is shown empirically
as RDIL-L and Filter-L have the most significant increase
in accuracy for each learning algorithm (Table III). However,
there is an obvious trade-off since obtaining a more accurate
estimate ofp(ŷi|xi) is more computationally expensive.

B. Weighting VS Filtering

We now compare weighting against filtering. Weighting
and filtering areboth viable and significantly increase the
classification accuracy when noise is added. The difference
between filtering and weighting techniques depends on the
estimation ofp(yi|xi). Generally, estimatingp(yi|xi) with the
set of learning algorithmsL achieves greater classification ac-
curacy than using a biased estimate. Table V compares RDIL-
L with Filter-L. With no noise, RDIL-L achieves significantly
higher accuracy than Filter-L for the MLP. Since each instance
can affect the classification boundary for MLPs (as shown in
Figure 1), weighting the instances in the training set has a more
significant impact in MLPs than the other learning algorithms
which partition the input space. On the other hand, the Filter-L
achieves a significantly higher accuracy than RDIL-L for the
four other learning algorithms. Note that MLP with RDIL-L
achieves the highest overall average accuracy for noise levels
0%-20% (RDIL-L achieves the highest accuracy for 30%
and 40% noise using Random Forest and C4.5 respectively).
Except for MLPs, the significance of the impact of RDIL-L
increases as the noise level increases except for all of the exam-
ined learning algorithms. RDIL-L significantly increases the



TABLE V. A COMPARISON OFRDIL-L (R-L) WITH THE L-FILTER

(F-L) ON THE CONSIDERED LEARNING ALGORITHMS. BOLD VALUES WITH

A ✓ REPRESENT CASES WHERERDIL-L (R-L) ACHEIVES SIGNIFICANTLY

HIGHER ACCURACY THAN THEL-FILTER. THE ✗ REPRESENTS CASES
WHERE THEL-FILTER ACHEIVES SIGNIFICANTLY HIGHER ACCURACY.

C4.5 5-NN
0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

R-L 78.19 77.03 76.33 74.32 71.08 78.72 77.86 77.01 75.07 70.63
F-L 79.55✗ 78.35✗ 76.79 73.5869.30✓ 79.40✗ 78.35 76.6 74.35✓ 69.64✓
g,e,l 19,2,33 21,1,31 30,1,23 33,0,21 36,0,1819,4,31 28,2,2326,4,24 31,0,23 31,0,23
orig 79.31 76.92 74.32 69.709 63.08 79.37 77.63 74.42 69.96 62.54

MLP Random Forest
R-L 82.26 80.7 78.4 75.17 69.30 80.82 79.72 78.06 75.89 70.78
F-L 81.80 80.66 78.24 74.85 69.4681.66✗ 79.91 78.0675.29✓ 69.94✓
g,e,l 37,2,15 30,3,20 31,1,21 33,0,21 29,1,2418,4,32 31,0,2226,1,26 33,0,21 34,3,17
orig 81.67 77.46 72.25 67.17 60.46 81.18 77.75 72.72 66.87 59.63

RIPPER
R-L 77.86 76.54 75.54 73.46 69.63
F-L 78.98✗ 77.82✗ 76.40✗ 73.92 69.84
g,e,l 15,3,36 18,3,32 18,0,36 27,1,26 25,1,28
orig 78.35 76.32 73.45 69.87 65.10

classification accuracy for C4.5, 5-NN, and Random Forests
when there are high amounts of noise.

Over all noise levels, RDIL-L compared with Filter-L
achieves significantly higher classification accuracy in 6 of
the 25 cases and the filter-L achieves significantly higher
classification accuracy in 7 cases. (In the other 12 cases, there
is no significant difference). The Filter-L has a more significant
effect than RDIL-L for RIPPER at noise levels 0, 0.1 and 0.2
and RDIL-L never achieves significantly higher classification
accuracy than the Filter-L. Therefore, instance weighting is
not the best option for every learning algorithm. However,
with the Filter-L we chose the threshold that produced the
highest classification accuracy on the test set, which is not
always possible to do. Instance weighting avoids the overhead
of having to determine a threshold for filtering when using
an ensemble filter. Instance weighting is better for learning
algorithms that consider each instance individually and each
instance can affect the classification boundary (e.g. MLP).

VII. C ONCLUSIONS

In this paper we examined handling detrimental instances
using the hypotheses from multiple learning algorithms. Wein-
troducedreduced detrimental instance learning(RDIL) which
weights each instance based on an approximation ofp(ŷi|xi).
We examined RDIL on a set of 5 learning algorithms and 54
data sets. We found that a better estimate ofp(ŷi|xi) leads
to better detrimentality handling in both instance weighting
and filtering. Weighting the instances avoids having to spend
extra computational time and having to use training instances
to select a threshold for filtering when using an ensemble
filter. Instance weighting has the greatest effect on learning
algorithms where every instance can affect the classification
boundary and the training instances are considered individu-
ally, such as multilayer perceptrons trained with backpropaga-
tion (MLPs). On the other hand, instance filtering had a more
significant impact on the C4.5, 5-NN, Random Forest, and
RIPPER learning algorithms with no artificial noise. However,
instance weighting was shown to be preferable to filtering for
the examined learning algorithms when there are high amounts
of noise. An analysis of when to use a particular noise handling
technique is a direction for future work.
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