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Abstract—Several real-world classification problems are
example-dependent cost-sensitive in nature, where the costs due
to misclassification vary between examples. Credit scoring is
a typical example of cost-sensitive classification. However, it is
usually treated using methods that do not take into account
the real financial costs associated with the lending business. In
this paper, we propose a new example-dependent cost matrix
for credit scoring. Furthermore, we propose an algorithm that
introduces the example-dependent costs into a logistic regression.
Using two publicly available datasets, we compare our proposed
method against state-of-the-art example-dependent cost-sensitive
algorithms. The results highlight the importance of using real
financial costs. Moreover, by using the proposed cost-sensitive
logistic regression, significant improvements are made in the sense
of higher savings.

Keywords—Cost sensitive classification; Credit Scoring; Logistic
Regression.

I. INTRODUCTION

The objective in credit scoring is to classify which potential
customers are likely to default a contracted financial obligation
based on the customer’s past financial experience, and with that
information decide whether to approve or decline a loan [1].
This tool has become a standard practice among financial
institutions around the world in order to predict and control
their loans portfolios. When constructing credit scores, it is
a common practice to use standard cost-insensitive binary
classification algorithms such as logistic regression, neural
networks, discriminant analysis, genetic programing, decision
trees, among others [2], [3]. However, in practice, the cost
associated with approving what is known as a bad customer,
i.e., a customer who default his credit loan, is quite different
from the cost associated with declining a good customer, i.e., a
customer who successfully repay his credit loan. Furthermore,
the costs are not constant among customers. This is because
loans have different credit line amounts, terms, and even in-
terest rates. Some authors have proposed methods that include
the misclassification costs in the credit scoring context [4]–[7].
However, they assume a constant misclassification cost, which
is not the case in credit scoring.

The classification framework where the misclassification
costs vary across examples is called example-dependent cost-
sensitive classification. The approaches that solve this problem
are usually based on a cost matrix per example i that adapts
the costs to a pair of predicted label ci and true class label
yi [8], where the prediction ci is a function of the k features of
example i, Xi = [x1

i , x
2
i , ..., x

k
i ]. In TABLE I the cost matrix is

TABLE I. CLASSIFICATION COST MATRIX

Actual Positive Actual Negative
yi = 1 yi = 0

Predicted Positive
CTPi

CFPici = 1
Predicted Negative

CFNi
CTNici = 0

presented, where the cost associated with two types of correct
classification, namely, true positives CTPi , and true negatives
CTNi

; and the two types of misclassification errors, namely,
false positives CFPi

, and false negatives CFNi
, are presented.

With the objective of evaluating an example-dependent
cost-sensitive classification problem, we use the cost measure
defined in [9]. This measure takes into account the actual costs
Ci = [CTPi

, CFPi
, CFNi

, CTNi
] of each example i. Let S

be a set of N examples i, N = |S|, where each example is
represented by the augmented feature vector Xa

i = [Xi, Ci],
and labelled using the class label yi ∈ {0, 1}. A classifier
f which generates the predicted label ci for each example i,
is trained using the set S.Then the cost of using f on S is
calculated by

Cost(f(S)) =
N∑
i=1

(
yi(ciCTPi

+ (1− ci)CFNi
)

+ (1− yi)(ciCFPi + (1− ci)CTNi)

)
. (1)

Moreover, by evaluating the cost of classifying
all examples as the class with the lowest cost
Costl(S) = min{Cost(f0(S)), Cost(f1(S))} where f0
refers to a classifier that predicts all the examples in S
as belonging to the class c0, and similarly f1 predicts
all the examples in S as belonging to the class c1, the
cost improvement can be expressed as the cost savings as
compared with Costl(S).

Savings(f(S)) =
Cost(f(S))− Costl(S)

Costl(S)
. (2)

Recently, some methods have been proposed to use the dif-
ferent misclassification costs, not only for evaluating but also
for training the algorithms. The main approach consists in re-
weighting the training examples based on their costs, either by
cost-proportionate rejection-sampling [10], or over-sampling
[8]. The rejection-sampling approach consists in selecting a
random subset Sr by randomly selecting examples from S,
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and accepting each example i with probability wi/ max
1,...,N

{wi},
where wi is defined as the expected misclassification error of
example i: wi = yi · CFNi

+ (1− yi) · CFPi
.

Lastly, the over-sampling method consists in creating a new
set So, by making wi copies of each example i. However,
cost-proportionate over-sampling increases the training since
|So| >> |S|, and it also may result in over-fitting [11].
Furthermore, none of these methods uses the the full cost
matrix but only the misclassification costs.

In a recent paper, we have proposed an example-dependent
cost-sensitive Bayes minimum risk (BMR) for credit card fraud
detection [9], [12]. The BMR classifier is a decision model
based on quantifying tradeoffs between various decisions using
probabilities and the costs that accompany such decisions
[9], [13]. This is done in a way that for each example the
expected losses are minimized. In what follows, we consider
the probability estimates pi as known, regardless of the al-
gorithm used to calculate them. The risk that accompanies
each decision is calculated. In the specific framework of
binary classification, the risk of predicting the example i as
negative is R(ci = 0|Xi) = CTNi(1 − p̂i) + CFNi · p̂i,
and R(ci = 1|Xi) = CTPi · p̂i + CFPi(1 − p̂i), is the risk
when predicting the example as positive, where p̂i is the
estimated positive probability for example i. Subsequently,
if R(ci = 0|Xi) ≤ R(ci = 1|Xi), then the example i is
classified as negative. This means that the risk associated with
the decision ci is lower than the risk associated with classifying
it as positive. However, when using the output of a binary
classifier as a basis for decision making, there is a need for a
probability that not only separates well between positive and
negative examples, but that also assesses the real probability
of the event [14].

In this paper, we first propose an example-dependent cost
matrix for credit scoring, one that incorporates all the real
financial costs associated with the lending business. Further-
more, we go beyond the current example-dependent cost-
sensitive methods, that works by modifying either the input
or output of a cost-insensitive classifier, and propose a method
to introduce the example-dependent costs into a logistic re-
gression, by changing the objective function of the model to
one that is cost-sensitive. We evaluate the proposed example-
dependent cost-sensitive logistic regression using two publicly
available credit scoring datasets. The results will shown that
the proposed method outperforms the state-of-the-art example-
dependent cost-sensitive methods. Furthermore, the source
code used for the experiments is publicly available as part
of the CostSensitiveClassification1 library.

The remainder of this paper is organized as follows.
In Section II, the credit scoring problem and the proposed
example-dependent cost-sensitive credit scoring cost matrix,
are presented. Afterwards, the proposed cost-sensitive logistic
regression is shown in Section III. In Sections IV, the exper-
imental setup and the results of the different experiments are
presented. Finally, the conclusions of the paper are given in
Section V.

1https://github.com/albahnsen/CostSensitiveClassification

II. CREDIT SCORING EXAMPLE-DEPENDENT COST

MATRIX

In this section we first present the general concept of credit
scoring, then the standard method for calculating the prob-
ability threshold. Finally, we present the proposed example-
dependent cost matrix for credit scoring.

A. Credit Scoring

In order to mitigate the impact of credit risk and make
more objective and accurate decisions, financial institutions use
credit scores to predict and control their losses. The objective
of a credit score is to estimate the risk of a customer de-
faulting his contracted financial obligation if a loan is granted,
based on past experiences [1]. Formally, a credit score is a
statistical model that allows the estimation of the probability
p̂i = P (yi = 1|Xi) of a customer i defaulting a contracted
debt. Additionally, since the objective of credit scoring is to
estimate a classifier ci to decide whether or not to grant a loan
to a customer i, a threshold t is defined such that if p̂i < t,
then the loan is granted, i.e., ci(t) = 0, and denied otherwise,
i.e., ci(t) = 1.

There exists different approaches for defining the
probability threshold. The sensitivity versus specificity
(SvsS) approach is the most widely used among financial
institutions [1], where specificity is the true positive rate
F0(t) for a threshold t, and the sensitivity is one minus
the false positive rate F1(t) given a threshold t [15].
In this method the objective is to fix the threshold at
the point where the sensitivity is equal to the specificity
F0(t) = 1 − F1(t), where F0(t) and F1(t) are calculated
using Fk(t) =

1
nk
|{(xi, yi) ∈ Dk|p̂i ≤ t}|, for k ∈ {0, 1}.

Lastly, the SvsS threshold tSvsS is found by using
tSvsS = argmint |F0(t)− (1− F1(t))|.

After the classifier ci is estimated, there is a need to eval-
uate its performance. In practice, many statistical evaluation
measures are used to assess theperformance of a credit scoring
model. Measures such as the area under the receiver operating
characteristic curve (AUC), Brier score, Kolmogorov-Smirnoff
(K-S) statistic, F1-Score, and misclassification are among the
most common [6]. Nevertheless, none of these measures takes
into account the business and economical realities that take
place in credit scoring. Costs that the financial institution had
incurred to acquire customers, or the expected profit due to
a particular client, are not considered in the evaluation of the
different models.

Initial approaches to include the different costs have been
published in recent years, particularly the one proposed by
Beling et al. [6], [7], in whichthe costs of misclassification
are assigned for each error. Specifically, setting the cost of a
false positive CFP to the loan’s annual interest rate charged
to the customer intr, the cost of a false negative CFN to the
loss given default Lgd, which is the percentage of loss over
the total credit line when the customer defaulted, and setting
to zero the costs of true positive CTP and true negative CTN .
Using that, they proposed the expected cost (EC) method to
find the probability threshold that minimizes those costs,tec =

CFN

CFN+CFP
=

Lgd

Lgd+intr
. Nevertheless, this approach assumes a

constant cost within examples, which is a strong assumption,
since in practice each example carries a very different cost,
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TABLE II. CREDIT SCORING EXAMPLE-DEPENDENT COST MATRIX

Actual Positive Actual Negative
yi = 1 yi = 0

Predicted Positive
CTPi

= 0 CFPi
= ri + Ca

FPci = 1
Predicted Negative

CFNi
= Cli · Lgd CTNi

= 0
ci = 0

given by the different credit limits and conditions of each loan.
Consequently, there is a need for an example-dependent cost
matrix that takes into account the cost of misclassifying each
example.

B. Credit scoring example-dependent cost matrix

In order to take into account the varying costs that each
example carries, we propose a cost matrix with example-
dependent misclassification costs as given in TABLE II. First,
we assume that the costs of a correct classification, CTPi

and
CTNi

, are zero for every customer i. We define CFNi
to be the

losses if the customer i defaults to be proportional to his credit
line Cli. We define the cost of a false positive per customer
CFPi as the sum of two real financial costs ri and Ca

FP ,
where ri is the loss in profit by rejecting what would have
been a good customer. The calculation of ri depends on the
loan parameters as detailed in Appendix A. The second term
Ca

FP , is related to the assumption that the financial institution
will not keep the money of the declined customer idle. It will
instead give a loan to an alternative customer [16]. Since no
further information is known about the alternative customer, it
is assumed to have an average credit line Cl and an average
profit r. Then, Ca

FP = −r · π0 + Cl · Lgd · π1, in other words
minus the profit of an average alternative customer plus the
expected loss, taking into account that the alternative customer
will pay his debt with a probability equal to the prior negative
rate, and similarly will default with probability equal to the
prior positive rate.

III. COST-SENSITIVE LOGISTIC REGRESSION

Logistic regression is a classification model that, in the
specific context of binary classification, estimates the posterior
probability of the positive class, as the logistic sigmoid of
a linear function of the feature vector [17]. The estimated
probability is evaluated as

p̂i = P (y = 1|Xi) = hθ(Xi) = g

( k∑
j=1

θjxj
i

)
, (3)

where hθ(Xi) refers to the hypothesis of i given the param-
eters θ, and g(·) is the logistic sigmoid function, defined as
g(z) = 1/(1 + e−z).
The problem then becomes on finding the right parameters
that minimize a given cost function. Usually, in the case of
logistic regression the cost function J(θ) refers to the negative
logarithm of the likelihood, such that

J(θ) =
1

N

N∑
i=1

Ji(θ), (4)

where

Ji(θ) = −yi log(hθ(Xi))− (1− yi) log(1− hθ(Xi)). (5)

TABLE III. MODEL PARAMETERS

Parameter
Kaggle PAKDD
Credit Credit

Interest rate (intr) 4.79% 63.0%
Cost of funds (intcf ) 2.94% 16.5%
Term (l) in months 24 24
Loss given default (Lgd) 75% 75%
Times income (k) 3 3
Maximum credit line (Clmax) 25,000 25,000

Since this cost function is convex [18], it is usually optimized
using either maximum likelihood estimator or gradient descent.
However, this cost function assigns the same weight to differ-
ent errors, both false positives and false negatives. As discussed
before, this is not the case in many real-world applications. In
particular

Ji(θ) ≈
{
0 if yi ≈ hθ(Xi)

inf if yi ≈ (1− hθ(Xi))

which in the context of cost-sensitive classification means that
CTPi

= CTNi
≈ 0 and CFPi

= CFNi
≈ inf .

In order to incorporate the different costs from TABLE I
into the logistic regression, first we analyze the expected costs
for each case

Jc
i (θ) =

⎧⎪⎪⎨
⎪⎪⎩

CTPi
if yi = 1 and hθ(Xi) ≈ 1

CTNi if yi = 0 and hθ(Xi) ≈ 0

CFPi
if yi = 0 and hθ(Xi) ≈ 1

CFNi
if yi = 1 and hθ(Xi) ≈ 0

Finally, we merge the different costs into a cost function which
is dependent on new costs:

Jc(θ) =
1

N

N∑
i=1

(
yi(hθ(Xi)CTPi + (1− hθ(Xi))CFNi)

+(1− yi)(hθ(Xi)CFPi
+ (1− hθ(Xi))CTNi

)

)
. (6)

IV. EXPERIMENTS

In this section, the dataset used for the experiments is
described. Then the partitioning of the dataset and the algo-
rithms used for credit scoring are given. Lastly, we present the
experimental results.

A. Databases

For this paper we use two different publicly available credit
scoring datasets. The first dataset is the 2011 Kaggle compe-
tition Give Me Some Credit2, in which the objective is to
identify those customers of personal loans that will experience
financial distress in the next two years. The second dataset is
from the 2009 Pacific-Asia Knowledge Discovery and Data
Mining conference (PAKDD) competition3. Similarly, this
competition had the objective of identifying which credit card
applicants were likely to default and by doing so deciding
whether or not to approve their applications. The Kaggle Credit
and PAKDD Credit datasets contain information regarding
the features, and more importantly about the income of each

2http://www.kaggle.com/c/GiveMeSomeCredit/
3http://sede.neurotech.com.br:443/PAKDD2009/
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TABLE IV. DESCRIPTION OF DATASETS

Database Set N π1 C0

Kaggle Total 112,915 .0674 83,740,181
Credit Training 44,901 .0675 33,360,130

Under-sampling 6,090 .5058 33,360,130
SMOTE 81,177 .4841 436,577,294
Rejection-sampling 5,108 .4381 29,009,564
Over-sampling 66,123 .3616 296,515,655
Validation 33,919 .0668 24,786,997
Testing 33,732 .0681 25,593,055

PAKDD Total 38,969 .1988 3,117,960
Credit Training 15,353 .1997 1,221,174

Under-sampling 6,188 .4956 1,221,174
SMOTE 24,554 .4996 1,604,231
Rejection-sampling 2,776 .3577 631,595
Over-sampling 33,805 .3393 6,798,282
Validation 11,833 .2036 991,795
Testing 11,783 .1930 904,991

example, from which an estimated credit limit Cli can be
calculated (see Appendix B).

The Kaggle Credit dataset contains 112,915 examples, each
one with 10 features and the class label. The proportion of
default or positive examples is 6.74%. On the other hand,
the PAKDD Credit dataset contains 38,969 examples, with
30 features and the class label, with a proportion of 19.88%
positives. This database comes from a Brazilian financial
institution, and as it can be inferred from the competition
description, the data was obtained around 2004.

Since no specific information regarding the datasets is
provided, we assume that they belong to average European
and Brazilian financial institutions. This enabled us to find
the different parameters needed to calculate the cost measure
described in Section II-B. In Table III, the different parameters
are shown. In particular, we obtain the average interest rates
in Europe during 2013 from the European Central Bank [19],
and the average interest and exchange rates in Brazil during
2004 from Trading Economics [20]. Because the income is not
in the same currency on both datasets, we convert the PAKDD
Credit dataset to Euros. Additionally, we use a fixed loan
term l for both datasets, considering that in the Kaggle Credit
dataset the class was constructed to predict two years of credit
behavior, and because the PAKDD Credit dataset is related
to credit cards the term is fix to two years [21]. Moreover,
we set the loss given default Lgd using information from the
Basel II standard4, k to 3 since it is the average personal loan
requests related to monthly income, and the maximum credit
limit Clmax to 25,000 Euros.

B. Database partitioning

From the total dataset, three different datasets are extracted:
training, validation and testing. Each one containing 50%, 25%
and 25% of the observations, respectively. Afterwards, because
classification algorithms suffer when the label distribution is
skewed towards one of the classes [22], an under-sampling of
the positive examples is made, in order to have a balanced class
distribution. The under-sampling has proved to be the better
approach for such problems, see [22]. A new training dataset
containing a balanced number of positive and negative exam-
ples is created. Furthermore, recently the synthetic minority
over-sampling technique (SMOTE) [23] has also been applied
to credit scoring [24]. With SMOTE the objective is to find

4http://www.bis.org/publ/bcbsca.htm.

TABLE V. RESULTS ON THE KAGGLE AND PAKDD CREDIT DATASETS

OF THE DECISION TREE (DT ), LOGISTIC REGRESSION (LR) AND RANDOM

FOREST (RF ) ALGORITHMS, ESTIMATED USING THE DIFFERENT TRAINING

SETS: TRAINING (t), UNDER-SAMPLING (u), SMOTE (s),
COST-PROPORTIONATE REJECTION-SAMPLING (r) AND COST

PROPORTIONATE OVER-SAMPLING (o)

set Algorithm
Kaggle PAKDD
Credit Credit
dataset dataset

t DT 19.88 -8.36
LR 2.87 0.38
RF 15.83 3.25

u DT 34.49 -20.0
LR 43.63 15.81
RF 49.63 9.65

s DT 3.46 -4.56
LR 40.12 15.43
RF 3.01 0.0

r DT 33.57 7.59
LR 33.14 22.97
RF 50.01 30.1

o DT 19.6 8.95
LR 33.56 23.03
RF 21.69 23.26

(those models with the highest savings are marked as bold)

Under
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SMOTE Rejection
Sampling
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Sampling
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Fig. 1. Average increase in savings of the algorithms trained using
the under-sampled, SMOTE, cost-proportionate rejection-sampling and cost-
proportionate over-sampling compared against the ones trained in the training
set. In average the rejection-sampling method is the one that gives the highest
improvement.

a new balanced dataset which includes all the majority class
examples and a synthetic over-sampled replica of the minority
class examples, such that the new set is balanced.

Lastly, we also applied the cost-proportionate rejection-
sampling [10] and cost-proportionate over-sampling [8], de-
scribed in Section I. TABLE IV, summarizes the different
datasets. It is important to note that the different sampling
procedures were only applied to the training set since the
validation and test sets must reflect the real fraud distribution.

C. Results

For the experiments we used three different well known
machine learning algorithms, decision tree (DT ), logistic
regression (LR) and a random forest (RF ). Using the imple-
mentation of Scikit-learn [25], the three algorithms are trained
in the five different training sets: training (t), under-sampling
(u), SMOTE (s), cost-proportionate rejection-sampling (rs)
and cost-proportionate over-sampling (o). Furthermore, with
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TABLE VI. RESULTS ON THE TWO DATASETS OF THE STANDARD

SENSITIVITY VERSUS SPECIFICITY METHOD (SvsS), THE MINIMUM COST

THRESHOLD (MC) AND THE BAYES MINIMUM RISK (BMR), USING THE

PROBABILITIES ESTIMATED USING A DT , LR AND RF , TRAINED ON THE

FIVE SETS.

set Algorithm
Kaggle PAKDD
Credit Credit
dataset dataset

t DT − SvsS -4.8 -91.11
DT −MC -4.8 -91.11
DT −BMR 13.47 27.22
LR− SvsS 25.57 15.78
LR−MC 24.94 15.78
LR− BMR 29.14 29.38
RF − SvsS 49.05 3.09
RF −MC 48.57 9.24
RF −BMR 49.39 30.11

u DT − SvsS -4.8 -91.11
DT −MC -4.8 -91.11
DT −BMR 34.58 26.49
LR− SvsS 19.15 0.07
LR−MC 11.69 0.07
LR− BMR 45.25 29.6
RF − SvsS 9.16 0.58
RF −MC 0.0 0.1
RF −BMR 51.47 31.14

s DT − SvsS -4.8 -91.11
DT −MC -4.8 -91.11
DT −BMR -0.54 26.84
LR− SvsS 19.16 0.44
LR−MC 11.66 0.44
LR− BMR 43.26 29.63
RF − SvsS 32.57 -91.11
RF −MC 32.57 -42.11
RF −BMR 43.11 26.75

r DT − SvsS -4.8 -91.11
DT −MC -4.8 -91.11
DT −BMR 33.58 25.99
LR− SvsS 9.18 0.22
LR−MC 9.18 0.22
LR− BMR 35.6 29.98
RF − SvsS 12.13 0.0
RF −MC 12.13 0.0
RF −BMR 50.57 28.11

o DT − SvsS -4.8 -91.11
DT −MC -4.8 -91.11
DT −BMR 11.77 27.12
LR− SvsS 22.45 0.28
LR−MC 19.33 0.28
LR− BMR 43.09 29.53
RF − SvsS 48.09 1.85
RF −MC 42.65 1.85
RF −BMR 49.38 28.03

(those models with the highest savings are marked as bold)

the different estimated probabilities in conjunction of the
BMR model, as reference the sensitivity versus specificity
method (SvsS) and the minimum cost threshold (MC). Lastly,
we compare our proposed cost-sensitive logistic regression
(CSLR) against the previous results. In particular we min-
imize the CSLR cost function (6) using binary genetic al-
gorithms [26], setting the number of chromosomes to 100,
percentage of mutations to 25%, number of elite to 10 and
performing single point cross-over. All models are evaluated
using the savings as defined in (2).

The results are given in TABLE V. For the Kaggle
Credit dataset, the best model measured by savings is an
RF estimated using the rejection-sampling set. Furthermore,
the difference in savings between these two models is 6.4%.
Analyzing the results in the PAKDD Credit dataset, the best
model measured by savings is RF on the rejection-sampling
set. In this case the difference in savings between the two
models is 7%. Additionally, it is observed that there is not

SvsS MC BMR
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Fig. 2. Average increase in savings of the algorithms using the sensitivity
versus specificity method (SvsS), the minimum cost threshold (MC) and the
Bayes minimum risk (BMR), versus the standard algorithms is made. It is
observed, that the only method that generates an increase in savings is the
BMR.

one algorithm that consistently outperforms the others in the
different sets.

Furthermore, as can be observed in Fig. 1, on average the
rejection-sampling method is the one that gives the highest im-
provement in savings over using the training set. The methods
trained on the SMOTE set perform the worst. Subsequently,
using the estimated probabilities from each model, we evaluate
the SvsS, MC and BMR methods. The results are shown
in TABLE VI. It is observed that, for both databases, the
best model measured by savings is the RF trained using the
under-sampled set, leading to an increase in savings of around
1% in both cases. Interestingly, the second best model is the
RF on the training set. This corroborates the findings in [12],
where the same algorithms were applied in a credit card fraud
detection database. In Fig. 2, a comparison of the average
increase in savings of the different methods is presented. It
is observed, that the only method that generates an increase in
savings is the BMR. In fact, when using the standard SvsS
method, there is a destruction in value from the use of the
algorithm.

We evaluate our proposed CSLR algorithm described in
Section III. Results are shown in TABLE VII. On the Kaggle
Credit database, we observe that the savings of the best model
are 54.41%, almost 3% higher than the savings using the
BMR method. Similarly, in the case of the PAKDD Credit
database, the best model arise to savings of 34.83%, again
an almost 3% increase compared against using the BMR
method. The results also show, that using the BMR with
the probabilities estimated with the CSLR leads to higher
saving. Nevertheless, using just the CSLR model also yields
to significantly good results measured by savings.

Finally, in Fig. 3, we compared the results in savings of the
LR trained using the five different sets, and the CSLR. In all
cases the best results are found using the CSLR, significantly
outperforming the LR model. Leading to a clear conclusion
of the need to use a model that not only incorporates the real
financial costs after training, but also during this phase.
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Fig. 3. Comparison of the SvsS, MC and BMR, in savings using the probabilities of a LR trained using the five different sets, and a CSLR. In all cases
the best results are found using the CSLR, significantly outperforming the LR model.

V. CONCLUSION

In this paper we have shown the importance of using the
real example-dependent financial costs, associated with the
credit business when selecting a credit score model. Moreover,
our evaluations confirmed that including the costs of each ex-
ample and using an example-dependent cost-sensitive method
such as Bayes minimum risk classifier, leads to better results
in the sense of higher savings, regardless of the algorithm
used for estimating the probabilities. Also, when using our
proposed cost-sensitive logistic regression, further savings are
found, which confirms out belief that there is a need to use a
model that not only incorporates the real financial costs after
training, but also during the training phase. Additionally, the
proposed example-dependent cost matrix could be expanded to
include other potentially example-dependent features, such as
the loss given default or the interest rate in the calculation of
the cost. Furthermore, the model could be adjusted to include
features that may also depend on the estimated probabilities.
For example, when determining the credit line, financial insti-
tutions often rely on the risk level for its calculation, similarly
when assigning the interest rate, or calculating the loss given
default of a portfolio.
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APPENDIX

A. Calculation of a loan profit

The profit per customer ri is calculated as the present value
of the difference between the financial institution gains and
expenses, given the credit line Cli, the term li and the financial
institution lending rate intri for customer i, and the financial
institution of cost funds intcf .

ri = PV (A(Cli, intri , li), intcf , li)− Cli, (7)

with A being the customer monthly payment and PV the
present value of the monthly payments, which are calculated
using the time value of money equations [21],

A(Cli, intri , li) = Cli
intri(1 + intri)

li

(1 + intri)
li − 1

, (8)

PV (A, intcf , li) =
A

intcf

(
1− 1

(1 + intcf )li

)
. (9)

B. Calculation of the credit limit

There exists several strategies to calculate the Cli depend-
ing on the type of loans, the state of the economy, the current
portfolio, among others [1], [21]. Nevertheless, given the lack
of information regarding the specific business environments of
the considered datasets, we simply define Cli as

Cli = min

{
k · Inci, Clmax, Clmax(debti)

}
, (10)

where Inci and debti are the monthly income and debt ratio
of the customer i, respectively, k is a parameter that defines
the maximum Cli in times Inci, and Clmax the maximum
overall credit line. Lastly, the maximum credit line given the
current debt is calculated as the maximum credit limit such
that the current debt ratio plus the new monthly payment does
not surpass the customer monthly income. It is calculated as

Clmax(debti) = PV (Inci · Pm(debti), intri , li) , (11)

and

Pm(debti) = min

{
A(k · Inci, intri , li)

Inci
, (1− debti)

}
.

(12)
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