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Abstract—We present in this paper an empirical framework
motivated by the practitioner point of view on stability. The goal
is to both assess clustering validity and yield market insights by
providing through the data perturbations we propose a multi-view
of the assets’ clustering behaviour. The perturbation framework
is illustrated on an extensive credit default swap time series
database available online at www.datagrapple.com.

I. INTRODUCTION

Clustering, the task of grouping a set of objects in such
a way that objects in the same group, also called cluster, are
more similar to each other than those in different groups, is not
yet a common tool for financial time series analysis. However,
its application area seems wide: portfolio diversification [1]
and risk analysis, investment strategies such as statistical ar-
bitrage. This unsupervised machine learning technique suffers
from several drawbacks which must be dealt with before being
adopted by the financial community. These algorithms act as
black boxes whose properties such as consistency, i.e. the
probability that a given algorithm outputs the target clustering
converges to 1, and rate of convergence are generally unknown
in the asymptotic regimes which matter in finance, i.e. Random
Matrix Theory Asymptotics [2], High Dimension Moderate
Sample Size Asymptotics (HDMSS) and High Dimension Low
Sample Size Asymptotics (HDLSS) [3]. Besides lacking from
these theoretical properties for now, clusterings obtained are
much dissimilar from one algorithm to another when applied
on financial time series [4], [5]. Even worse, adding small
noise to a given sample and applying the same algorithm on
the original one and its perturbated version yields different
clusters. These current shortcomings prevent robust cluster-
based applications in finance where data is noisy observations
of the underlying phenomenon. For instance, a trading strategy
based on clustering events such as emergence, combination,
split and decay [6], [7] of clusters is flawed if these events
spuriously occur due to the algorithm unstability.

Concerning the object of study, namely Credit Default
Swaps (CDS), they are vanilla credit derivatives (cf. [8] for
an introduction to derivatives and [9] for a thorough treatment
of credit derivatives and CDS mathematical modelling) whose
purpose is to transfer credit risk from a counterparty to another.
They may be considered as an insurance against the default
(or other credit events defined precisely by an ISDA contract)

of the underlying entity, usually a corporate, a financial or
a sovereign entity. The price of this insurance can thus be
viewed as a fear gauge expressing the market apprehension of
an entity default risk: higher the risk, higher the price to pay
to get insured. The CDS market (being an over-the-counter
(OTC) market) was accused to lack transparency, today it is
still difficult to gather public information on this market. We
can mention DTCC which reports traded volumes once a week,
and DataGrapple which displays historical price time series of
700 entities from 2006 to present updated on a daily basis.

A. Related Work

Clustering financial time series was mainly explored in
econophysics [1], [10], [11] where it is considered as a
competitive way to the Random Matrix Theory (RMT) [2],
[12] to filter the correlation matrix. It was noticed (for
instance, in [5]) that clustering algorithms recover roughly
industrial classification benchmarks (ICB). Authors propound
to benchmark these algorithms against an ICB, and measure
the similarity between a resulting clustering and the chosen
ICB using the Adjusted Rand Index (ARI). They consider
this measure as a proxy of the information filtered by the
methods, and thus consider it as a way to perform model
selection by opting for the clustering method with the highest
score. Yet, a statistical analysis such as clustering can produce
clusters which may not exist in an industrial classification:
for example, the PIIGS cluster (assets from Portugal, Ireland,
Italy, Greece and Spain) during the European debt crisis. In
[5], authors also use bootstrapping [13] to assess the robustness
of their clustering algorithm using the intuitive but moot
idea of clustering stability [14], i.e. the reproducibility of the
clustering when data is slightly perturbed. Clustering stability
for model selection or validity assessment [15] is indeed a hot
topic in the machine learning literature: [16] warn against its
irrelevant use as stability only depends on the uniqueness of
the clustering objective function minimizer for large sample
size, yet [17] advocate that this criterion remains useful in the
case of finite possibly small samples. From the quantitative
analyst or trader perspective, dynamical stability of models, i.e.
stability to online perturbations arising from streaming data, is
required for being confident using them. A clustering should
only change when a meaningful event happens in the market.
Despite being an important notion for practitioners, few works

ar
X

iv
:1

50
9.

05
47

5v
1 

 [
q-

fi
n.

ST
] 

 1
7 

Se
p 

20
15

www.datagrapple.com


have dealt with the dynamical stability properties of clusters
computed on financial time series [18]. Clustering CDS has
not been widely explored in the literature since data is scarce
and difficult to obtain. [19] investigate the differences in the
main data sources employed by researchers and policymakers
and conclude that credit default swap databases are not all
equal. Some of these databases are built using hypothetical
prices resulting from an average of data collected but on which,
possibly, no trade could have been done. We will use the
database from DataGrapple which is built tick by tick from
many market dealers. This allows to make a synthetic order
book of best bid / best offer across the dealers’ prices at a
given time t improving the confidence that a trade could have
effectively been done at this level at time t.

B. Contributions

We propose an empirical framework to investigate clus-
tering on financial time series and obtain insights from the
perturbations which are motivated by financial applications. To
illustrate the proposed perturbations, we apply them to study a
large CDS dataset of market prices. We compare on this dataset
the clusterings obtained using several distance matrices Dij :

• DP
ij = (1−ρij)/2, where ρij is the Pearson correlation

coefficient,

• DS
ij = (1 − ρSij

)/2, where ρSij
is the Spearman

correlation,

• DE
ij is an Euclidean distance,

• DG
ij is a distance designed for working on i.i.d. random

processes [20].

Our experimental study advocates that:

• if dependence between assets is the only focus of
study, DS

ij (Spearman) should be preferred to DP
ij

(Pearson); DE
ij should not be used for comparing

financial time series; finally, DG
ij is the most versatile

distance and behaves well under all proposed pertur-
bations, it mostly behaves like DS

ij and should be
preferred;

• clustering can be persistent through a wide range of
perturbations provided that an appropriate distance is
leveraged by the clustering algorithm.

Besides, we observe some interesting facts about the CDS
market and illustrate clustering stability by leveraging the
Sankey diagram from the Data-Driven Documents library.

II. PERTURBATION FRAMEWORK FOR FINANCIAL TIME
SERIES

Perturbations can be performed both on prices (some of
the T values of each time series) or on assets (some of the N
time series themselves). Concretely, these perturbations consist
in modifying row-wise or column-wise the N ×T data matrix
X .

A. Time Perturbation

We provide below a list of perturbations concerning some
of the T time series values. We explain their motivations
arising from financial concerns and what we can learn from
them by analyzing the clustering stability.

Sliding Window: Motivation: Dynamical stability of mod-
els is a requirement for trading and risk information systems.
For example, value at risk (VaR), an estimated amount of
money so that the potential loss of a portfolio over a given
timespan should not exceed, is computed on a moving window
and updated with respect to the asset prices stream. With no
trading in the portfolio, and in a stationary regime, VaR should
not vary too much.

Definition: Given a window width W and a step
size S, clustering is performed on X:,[tcur,tcur+W [ and
X:,[tcur+S,tcur+S+W [, then current time tcur is updated tcur :=
tcur + S, and so on.

Insight: A clustering that strongly differs from one time to
another when the market seems in a steady regime should be
rejected since very sensitive to noise, i.e. small unsignificant
market variations. If confidence is high in the methodology,
modification of clusters may be a signal that market structure
is changing (for instance, end of a crisis and decrease in global
correlation).

Odd vs. Even: Motivation: A clustering algorithm applied
on two samples describing the same phenomenon should
yield the same results. How to obtain two of these samples?
The goal is to split the sample in two while mitigating the
effect of non-stationarity, seasonality, end-of-the-week trading
activity, meetings and announcements from the ECB or the
FED generally happening on Friday.

Definition: We define X(1) = {X:,t | t is odd} and X(2) =
{X:,t | t is even}, i.e. we build the sample of the odd trading
days and the sample of the even trading days. Since the trading
week lasts 5 days, we alleviate the aforementioned statistical
biases. Clustering is performed independently on X(1) and on
X(2).

Insight: If not stable, the clustering method should be
rejected.

Economic Regimes: Motivation: Since the economic con-
text can change dramatically, financial time series do not
evolve in a steady regime in the long run. It makes sense to
split the timespan into different periods where the statistical
regime can be considered stationary.

Definition: We partition the sample into M subsamples
X = tMi=1X

(i), where X(i) = X:,[ti,ti+1[ and the (ti)
M+1
i=1

delimit time intervals. The breakpoints (ti)
M+1
i=1 can be chosen

guided by market understanding or computed using a dynam-
ical changes and regime detection algorithm.

Insight: We can study whether the clustering structure is
persistent throughout different economic regimes, and how
strongly it is. If not, which are the periods concerned and
how steep is the change? Which assets are involved? Why
do they switch from clusters? What happened to them and
their clusters? However, we must keep in mind that it is
difficult to separate the signal from the noise of the clustering
methodology.



Fig. 1: Mean Correlation Dynamics computed on the whole
CDS dataset from 2006 to 2015 using a 6-month sliding
window

Heart vs. Tails: Motivation: Does the market under stress
share a common clustering structure with the market during
uneventful periods?

Definition: Let Xt = 1
N

∑N
i=1Xi,t be the mean time series

of the market. let Q1 be the lower quartile and Q3 be the upper
quartile. We define T = {t | Xt ≤ Q1 ∨Xt ≥ Q3} and H =
{t | Xt /∈ T } corresponding to times having market values in
the tails and in the heart respectively. Then we split the sample
X in the two following subsamples X(1) = {X:,t | t ∈ T } and
X(2) = {X:,t | t ∈ H} on which we apply the same clustering
algorithm.

Insight: Although it is difficult to anticipate changes of the
market behaviour, in period of stress all assets tend to be simul-
taneously affected by macroeconomic tensions which usually
induces a significant increase in correlation betweem them (cf.
Fig. 1). Thus, correlation should be less discriminating and a
correlation-based clustering might be unstable with respect to
this perturbation.

Multiscale: Motivation: Markets prices can be monitored
from a high frequency sampling (tick by tick or minute by
minute) to much lower frequency (from hours to hours, days
by days or on a weekly basis). The sampling frequency used
is linked to the type of trading, from high-frequency trading
(HFT) and algorithmic trading to long-term investments. Is the
clustering structure persistent throughout a wide range of time
scales or does it strongly depend on the sampling?

Definition: From X we can build M datasets X(i) = X:,si ,
i = 1, . . . ,M where si are regularly-spaced multiscale sub-
sample of {1, . . . , T}.

Insight: Ideally, in the perspective of building a risk system,
we would like that the choice of risk factors is independent of
the time scale used for the analysis. This perturbation allows
us to verify to which extent clustering is multiscale persistent.

Maturities: Motivation: Fixed-income assets such as
bonds, swaps and CDS for instance, have a lifespan called
their maturity. Several products with different maturities (say
an insurance against the default of a corporate for 1, 2, 3, 5, 7
or 10 years) can concern the same entity. Since the underlying
risk is the same, we would like similar clusterings.

Definition: We get from the market several time series
dataset X(i), one N ×T data matrix for each quoted maturity.

Insight: We can either reject a clustering method which
yields to unstable clusters or investigate why a particular
maturity has a different clustering structure compared to the
others.

Term Structure: Motivation: The term structure is the set
of all quoted maturities. Clustering term structure could lead
to a more meaningful result than clustering separately each
maturity.

Definition: For clustering term structures, one need a
specific distance. To our knowledge, the problem of obtaining a
proper one which captures the whole information (e.g. dynam-
ics, distribution and correlation of its distortions) has not been
addressed. Here, we give a simple one for clustering CDS term
structures at a given date t. A CDS probability of default P (t)
can be viewed as a cumulative distribution function on R+.
Indeed, the probability of default is increasing, the probability
of instantaneous default is 0, and at infinity all entities will
eventually default. Thus, f(t) = ∂P (t)/∂t defines a probabil-
ity density function on R+, and since

∫
R+ f(t) dt = 1,

√
f(t)

is a unit vector in L2(R). The inner product between two unit
vectors defines an angle φ which is the distance between two
term structures. Given two term structures P1, P2 and f1, f2
such that fi(t) = ∂Pi(t)/∂t, their distance φ can be written
cosφ =

∫
R+

√
f1(t)

√
f2(t) dt = 1 − H2(

√
f1(t),

√
f2(t)),

where H is the Hellinger distance.

Insight: For entities near default, the term structure should
be inverted, i.e. the market anticipates a renormalisation if
these entities survive. For entities having seemingly no trou-
bles, the quoted term structure should mirror the debt term
structure of these entities. Some industries have a particular
debt structure (short term debt for financials, long term debt
for basic materials and industrials). Part of this information
should also be captured by correlation between assets on a
given maturity.

B. Population Perturbation

To the presented time-based perturbations, we add the fol-
lowing two population-based perturbations on the set of assets:
increasing/decreasing the number of entities and adding
entities with imputed historical prices. These perturbations
can be easily motivated: new companies emerge regularly
and some others disappear from the market. The clustering
structure should not radically change when adding or removing
entities from the clustering perimeter. When new companies
are created and introduced in the market, they have not much
history. It may be necessary to impute missing data based,
for instance, on a clustering methodology. We would like to
verify that adding synthetic time series built from existing
ones to the clustering perimeters does not change the original
clustering structure. The clustering structure should be robust
to the statistical engineering performed to impute missing data
or clean their poor quality.

III. INSIGHTS FROM BENCHMARKING ON STABILITY

A. CDS Dataset

We apply the proposed perturbation framework on a dataset
of Credit Default Swap (CDS) time series which can be seen
at www.datagrapple.com. This dataset have 450 entities which

www.datagrapple.com


have complete historical daily prices from January 2006 to
today, i.e. more than 2300 daily prices for a given asset
(say Nokia Oyj) on a given maturity (say a 5 year contract),
and 250 more with missing data (for instance, Numericable
Group S.A.) whose missing historical prices where imputed
using a machine learning algorithm. Since credit default swaps
are traded over-the-counter, closing time for fixing prices can
be arbitrarily chosen, here 5pm GMT, i.e. after the London
Stock Exchange trading session. This synchronous fixing of
CDS prices avoids spurious correlations arising from different
closing times. For example, the use of close-to-close stock
prices artificially overestimates intra-market correlation and
underestimates inter-market dependence since they have dif-
ferent trading hours [21]. Moreover, besides being publicly
available, another benefits of this dataset is that historical
prices are mid-market data computed from a synthetic real-
time order book of best bid / best offer that are proposed by
the main CDS market makers instead of averaged consensus
prices on which it could have been impossible to trade.

B. Preprocessing of Financial Time Series

Given N time series of prices Pi(t), i = 1, . . . , N ,
t = 1, . . . , T , the standard approach consists in working
with the time series of log-returns ∆ logPi(t) = logPi(t +
1) − logPi(t). This transform mitigates the risk of spurious
correlation by empirically stationarizing the considered time
series besides normalizing the variations. Thus, clustering the
N time series ∆ logPi(t), t = 1, . . . , T using a distance
based on Pearson correlation or an Euclidean distance may
be more relevant. In [20], authors claim that the standard
Euclidean distance should not be used for clustering financial
time series. For instance, assuming that variations of two
time series X and Y are independent and identically dis-
tributed according to N (µX , σ

2
X) and N (µY , σ

2
Y ), we have

E[(X − Y )2] = (µX − µY )2 + (σX − σY )2 + 2σXσY (1 −
ρ(X,Y )). If X and Y are independent, then ρ(X,Y ) = 0,
and E[(X − Y )2] = (µX − µY )2 + σ2

X + σ2
Y . Now, suppose

that µX = µY and σX = σY , the distance 2σ2
X between X

and Y grows proportionally to the variance which is not a
desirable behaviour for two time series whose variations have
the same distribution. Based on the observation that the Eu-
clidean distance mixes correlation and distribution information
but inappropriately for their purpose, authors have designed a
distance of the form Dcorrelation +Ddistribution for comparing
i.i.d. random processes both on correlation and distribution
information. Using their distance we can work directly on
∆Pi(t) = Pi(t+ 1)−Pi(t) since the log-transform is useless:
both the dependency (based on Spearman correlation) and
distribution (Hellinger) distance employed are invariant to
monotonic transforms of the data. Thus, we will work on
∆ logPi(t) when clustering using DP and DE , and on ∆Pi(t)
when clustering using DS and DG. In the remaining, we
apply for both experiments a hierarchical clustering, namely
weighted linkage, with a constant height cut to obtain K = 16
clusters; results presented still holds for various values of K
and different clustering algorithms.

C. Comparison of Distances using the Perturbation Frame-
work

In this section, we leverage the proposed perturbation
framework to test four distances used for clustering financial

DP ARI 0.46 DS ARI 0.71 DE ARI 0.47 DG ARI 0.90

Fig. 2: Stability to Odd vs. Even perturbation and the asso-
ciated ARI showing a better stability of DG-based clustering;
partitions obtained from DS-based clustering are rather similar
but less stable

time series. We also observe some stylized facts about the
CDS market. The four distances DP , DS , DE and DG are
essentially distances based on Pearson correlation, Spearman
correlation, Euclidean distance and a recently introduced dis-
tance based on correlation and distribution respectively. We
illustrate the clustering stability with a data visualization, a
Sankey diagram, which highlights the dissimilarties between
partitions [22].

In Fig. 2, we display the stability results on the Odd vs.
Even experiments. For each distance, we have displayed the
partitions obtained on the odd trading days sample (left) and on
the even trading days sample (right). A grey link binds a given
asset in the left partition to the same asset in the right partition.
Thus, a perfectly stable clustering is displayed by a one-to-
one correspondence between left and right clusters. Diverging
edges highlight mismatches between partitions, hovering on
the edges shows the assets switching from clusters. In this
experiment, these can be assets with an unusual history, for
instance they may have encountered a strong variation on a
particular day due to a merger (M&A), a catastrophe or a
fraud. But, of course, a cluster switch can happen due the
clustering method shortcomings.

The Heart vs. Tails experiment displayed in Fig. 3 shows
an interesting stylized fact about the CDS market. Clustering
on correlation (DS and DP ) is not stable at all with respect to
this perturbation. This means that the sample of the strongest
moves in the market has a totally different clustering structure
than the sample of the mildest moves when considering only
correlation. This can be explained since when the market is
stressed, macroeconomic tensions tend to affect all the partic-
ipants and correlation between assets becomes significatively
higher and similar for all assets, thus becomes uninformative.
This claim is supported by the fact that DS based on the
Spearman correlation (correlation between ranks) performs the
worst, whereas DP , based on the Pearson correlation measure
known to be decreased by fat-tailed variations, achieves a bet-
ter stability since this correlation-based distance discriminates
unintentionally on distributions. For high values of ρ, which is
the case in stressed period, DE discriminates on the mean
and variance of the variations, so performs better than the
correlation-based distances. Finally, DG which intentionally
works on both information can leverage the distribution infor-
mation and obtain a rather stable clustering between the stress
periods and the more quiet ones.

In Fig. 4, we display results of the Maturity experiment.
For each clustering, we show 5 partitions corresponding to
clustering the 1,3,5,7,10-year CDS. We can notice that the
partition corresponding to the 1-year CDS is the less stable



DP ARI 0.24 DS ARI 0.09 DE ARI 0.31 DG ARI 0.43

Fig. 3: Stability to Heart vs. Tails perturbations for different
distances and the associated ARI

DP DS DE DG

Fig. 4: Stability to Maturity perturbations

whatever the distance used. This can be explained by the
relative illiquidity of the 1-year maturity compared to the
others yielding to scarce and noisy quotes from the market
makers. Stability is high for DS and DG and abnormally low
for DP and DE while information is essentially the same.

The Fig. 5 depicts results of the Multiscale experiments. 6
partitions are displayed for each distance corresponding to the
clusterings obtained by considering respectively 1,2,4,8,16,32
trading days variations. We can observe as a stylized fact that
the clustering structure is persistent up to a weekly sampling,
and that the clustering structure is essentially determined by
correlations as advocated by the high stability achieved by
DS and DP . DG, once again, is relatively stable leveraging
its correlation part which is similar to DS .

We finally conclude this empirical study with the Economic
Regimes perturbations. In Fig. 6, we display 4 partitions cor-
responding to the clusterings obtained on different economic
periods. From left to right, the pre subprime crisis period 2006-
2007, the subprime crisis period 2008-2009, the European debt
crisis 2011-2012 and the quantitative easing 2013-2014. We
can notice in Fig. 6 that the period 2006-2007 yields very
different clusters compared to what follows. Indeed, looking
at Fig. 1, we observe that correlation in the market was very
low. Except clustering with DG, clusters obtained with the
other methods are not stable. The partitions and their stability
scores obtained from the DG-based clustering agree with
previous remarks: pre-crisis period was much different, the
clustering structure is the same during both crises, and now
that correlation is decreasing and that quantitative easing is at
work the clustering structure of the market is changing.

DP DS DE DG

Fig. 5: Stability to Multiscale perturbations

DP DS DE DG

Fig. 6: Stability to Economic Regimes perturbations

IV. DISCUSSION

In this paper, we have suggested an empirical framework
for both assessing clustering validity and investigating the
clustering properties of financial time series. This empiri-
cal study allows to verify known stylized facts about the
financial markets. Much research work needs to be done
before clustering can become a technology in trading rooms
or an accepted tool for economic applied research. With this
experimental study, we hope to have aroused curiosity from
the clustering community, and that further progress will be
achieved in the field of clustering financial time series using a
framework based on this one for systematically benchmarking
the proposed algorithms taking into account the wishes of
practitioners.
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