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Abstract—Every segmentation algorithm has parameters that
need to be adjusted in order to achieve good results. Evolving
fuzzy systems for adjustment of segmentation parameters have
been proposed recently (Evolving fuzzy image segmentation –
EFIS [1]). However, similar to any other algorithm, EFIS too
suffers from a few limitations when used in practice. As a major
drawback, EFIS depends on detection of the object of interest for
feature calculation, a task that is highly application-dependent.
In this paper, a new version of EFIS is proposed to overcome
these limitations. The new EFIS, called self-configuring EFIS
(SC-EFIS), uses available training data to auto-configure the
parameters that are fixed in EFIS. As well, the proposed SC-
EFIS relies on a feature selection process that does not require
the detection of a region of interest (ROI).

I. INTRODUCTION

Evolving fuzzy image segmentation has been recently intro-
duced to solve the parameter setting problem (e.g., fine-tuning)
of different segmentation techniques. EFIS has been designed
with emphasis on acquiring and integrating user feedback into
the fine-tuning process. As a result, EFIS is suitable for all
those applications, such as medical image analysis, in which
an experienced and knowledgeable user provides evaluative
feedback of some sort with respect to the quality, i.e., ac-
curacy, of the segmentation process. Image segmentation is
the grouping of pixels to form meaningful clusters of pixels
that constitute objects (e.g., organs, tumours), a task with
various applications in medical image analysis including mea-
surement, detection, and diagnosis. Image segmentation can
be roughly categorized into two main classes of algorithms;
non-parametric (e.g., atlas-based segmentation) and parametric
(e.g., region growing) algorithms. The former is based on a
model which usually does not require parameters whereas the
latter is based on some parameters that must be adjusted in
order to obtain reasonable segmentation results. Parameter-
based segmentation algorithms always face the challenge of
parameter adjustment; a parameter tuned for a particular set
of images may perform poorly for a different image category.
On the other hand, in a clinical setting such as a hospital,
the final outcome of image segmentation algorithms usually
need to be modified (i.e., manually edited) and approved
by a an expert (e.g., radiologist, oncologist, pathologist).
The clinical ramifications of not verifying the correctness of
segments include missing a target (resulting in a less effective
therapy) or increased toxicity if the target is over-segmented.
The frequent expert intervention to correct the results, in
fact, generates valuable feedback for a learning scheme to
automatically adjust the segmentation parameters. EFIS is a
segmentation scheme that evolves fuzzy rules to tune the

parameters of a given segmentation algorithm by incorporating
the user feedback which is provided to the system as corrected
or manually created segmentation results called gold standard
images. EFIS represents a new understanding of how image
segmentation should be designed in the context of observer-
oriented applications. Naturally, EFIS needs to be further
improved and extended in order to exploit the full potential
of its underlaying evolving mechanism in relation to the user
feedback. The original design of EFIS as presented in [1]
requires pre-configurations of a few steps which should be
set for a given image set and the segmentation algorithm to
which EFIS is integrated. This limits the efficiency of EFIS;
either the algorithm should be pre-configured for each dataset
and/or segmentation algorithm or it is possible that a fixed
pre-configuration will adversely affect its performance. In this
paper, we present an extended version of EFIS which we call
self-configuring EFIS (short SC-EFIS) that has a higher level
of automation. The new extension of EFIS proposed in this
paper will enhance EFIS through removing these limitations
by introducing self-configuration into different stages of EFIS.

This paper is organized as follows: In section II, a brief
review of the EFIS (evolving fuzzy image segmentation) will
be provided. In section III, we present the proposed self-
configuring EFIS (SC-EFIS). In section IV, experiments are
described and the results are presented and analyzed. Finally,
section V concludes the paper.

II. A BRIEF REVIEW OF EFIS

The concept of Evolving Fuzzy Image Segmentation, EFIS,
was proposed recently [1], [2]. The problem that EFIS attempts
to address is parameter adjustment in image segmentation. The
basic idea of EFIS is to adjust the parameters of segmentation
to increase the accuracy by using user feedback in form of
corrected segments. To do so, EFIS extracts features from
a region inside the image and assigns them to the best
parameters that are exhaustively detected in an offline stage or
maintenance cycle. Clustering or other methods are then used
to generate fuzzy rules, which are then continuously updated
when new images are processed. EFIS needs to be trained
for specific algorithms and image categories. In other words,
in order to employ EFIS, the following components must be
pre-designated:

• Parent algorithm: any segmentation algorithm with at
least one parameter that affects its accuracy

• Parameter(s) to be adjusted (e.g., thresholds, scales)
• Images and corresponding gold standard images
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• Procedure to find optimal parameters (e.g., brute force
or trial-and-error via comparison with the gold standard
images)

Once the above-mentioned components are made available,
the following steps need to be specified in EFIS:

• ROI-detection algorithm: An algorithm that detects the re-
gion of interest (ROI) around the subject to be segmented
by EFIS.

• Procedure for feature extraction around available seed
points: Methods like SIFT are used to generate seed
points. But a certain number of expressive features should
be calculated in the vicinity of each seed point to be fed
to fuzzy inference system.

• Rule pruning: Upon processing a new image, a new rule
can be learned only if the features and corresponding
output parameters had not been observed previously. In
other words, by looking at the difference between an input
(features plus outputs) with all rules in the database, the
information of a new image is added only if not captured
by existing rules.

• Label fusion: When EFIS is used with multiple algo-
rithms at once, the segmentation results are fused using
a fusion method namely STAPLE algorithm [3].

EFIS includes two main phases namely training and testing.
In training phase, images with their gold standard results are
fed to the algorithm where features are extracted from each
image. The parent algorithm, e.g., thresholding [4], [5], [6],
[7], [8], [9], [10], is applied to each image and the results
are compared to the gold standard image. The algorithm’s
parameters are continuously changed until the best possible
result is achieved. The parameter which yields the best result
(i.e., the highest agreement with the gold standard image)
along with the image feature extracted in the previous stage
are stored. Once all training images are processed, the fuzzy
rules are generated from the stored data using a clustering
algorithm.

In testing phase, new images are first processed to extract
features. Next, the image features are fed to the fuzzy inference
system to approximate the parameters. The parent algorithm is
then applied to the input image using the estimated parameter.
EFIS can address both single-parametric and multi-parametric
problems. EFIS was applied to three different thresholding
algorithms and significant improvements in terms of segmen-
tation accuracy were achieved [1].

III. SELF-CONFIGURING EFIS (SC-EFIS)

This section introduces a new version of EFIS, namely
a self-configuring evolving fuzzy image segmentation (SC-
EFIS) which represents a higher level of automation compared
to the original EFIS scheme. The proposed SC-EFIS scheme
consists of three phases; self-configuration phase, training
phase, and online or evolving phase. In the following, each
of these phases is described in detail.

A. Self-Configuring Phase

In the self-configuring phase (Algorithm 1), all available
images are processed in order to determine two crucial factors:

1) the size of the feature area around each seed point, and 2)
the final features to be used for the current image category.

The Z × Z rectangle around each SIFT point to be used
for feature calculation is determined based on different sizes
of all available images (Algorithm 1). Following this step, the
set of features that should be used for the available images is
selected from a large number of features which are calculated
for each image from the vicinity of the SIFT points located
in the entire image (since there is no longer an ROI) (Fig.
1). This process starts with the determination of the number
of SIFT points NF that should be used in the current image
(algorithm 1). This step is identical to the procedure used in
the EFIS training phase, as previously explained in section II,
with three exceptions: the SIFT points are detected across the
entire image (as opposed to selecting SIFT points inside an
ROI as a subset of the image), the final number NF of SIFT
seed points is not fixed, and the points returned are separated
from each other by Z in each direction. For all NF seed
points, features are extracted from a rectangle RC around
each point, based on the discrete cosine transform (DC) of
RC , the gradient magnitude (GM ) of RC , the approximation
coefficient matrix AC of RC (computed using the wavelet
decomposition of RC), and the SIFT descriptors DS . The
following set of features is extracted (Algorithm 1):

1) The mean, median, standard deviation, co-variance,
mode, range, minimum, and maximum of RC , DCRC

,
and ACRC

, and GMRC
(32 features)

2) The mean, median, standard deviation, co-variance,
range, minimum, maximum, and zero population of DS

(eight features) with the minimum of DS changed to be
the minimum number after zero

3) The contrast, correlation, energy, and homogeneity of
the gray level co-occurrence matrices (computed in four
directions 0 ◦, 45 ◦, 90 ◦, and 135 ◦) of RC , DCRC

, and
ACRC

, and GMRC
(64 features)

4) The contrast, correlation, energy, and homogeneity of
the gray level co-occurrence matrices (computed in only
one directions of 0 ◦) of DS (four features)

5) A feature matrix F1 of size NF × NT generated for I
(in this case NT = 108)

Fig. 1. Feature extraction process (from top left to bottom right): original
image, seed points detected by SIFT, selected seed points via sorting the
descriptor, calculating features around each selected seed point.
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Algorithm 1 Self-Configuration Phase
1: Set the variables and initialize all matrices
2: Read the available images I1, I2, · · · , INI

.
3: Read the size of the images, namely all rows
R1, R2, · · · , RNI

, and all columns C1, C2, · · · , CNI
.

4: Determine the size of the rectangle
Z = 0.1×max(mediani(Ri),mediani(Ci)).

5: Create the initial matrix F1 and the final matrix F ∗.
6: for each image do
7: Determine NF , the number of SIFT points, that should

be used for image Ii.
8: for each SIFT point do
9: Extract features f1, f2, · · · , fNT

from the Z × Z
rectangle around each SIFT point.

10: Append the features as a new row to the initial matrix
F1, which becomes of size NF ×NT .

11: end for
12: Calculate ST different statistics from F1 and assigned

in F2.
13: Append F2 of the current image of size ST × NT to

the feature matrix F3 (the feature matrix F3 becomes
of size L×NT , L = ST ∗NI )

14: end for
15: Remove very similar features from F3 (e.g., at least 99%

correlated). F4 is a reduced matrix of F3 of size L×NT1
,

NT1
≤ NT .

16: Determine the number of features by discarding similar
ones from F4 (e.g., at least 90% correlated). FC is
a feature matrix generated from F4 of size L × NT2

,
NT2
≤ NT1

.
17: Use k different unsupervised feature selection methods to

generate k different feature matrices in addition to FC :
FP , FM , FF , FG, and FL. All of these matrices are of
size L×NT2

.
18: Select any features found in at least half of the matrices

to form F5 of size L×NT3
, NT3

≤ NT2
.

19: Generate a final feature matrix F ∗ from F5 by removing
similar features (e.g., at least 90% correlated). F ∗ is of
size L×NL, NL ≤ NT3 .

The next step is to calculate ST different statistical measures
from F1 (e.g., ST = 8: mean, median, mode, standard
deviation, co-variance, range, minimum, and maximum). The
resulting matrix F2 (size ST ×NT ) is returned, in which each
row represents a statistical measure (Algorithm 1, CSF). F2 is
then appended to the feature matrix F3 (Algorithm 1). After
all images are processed, the feature matrix F3 is formed from
the features of all images, with each image being represented
by ST rows. In the last step, the final set of features that should
be used in the current image category are selected from F3.
This process starts with the removal of very similar features
in F3 based on the calculation of the correlations between all
features. Hence, if two features are highly correlated, e.g. with
a correlation coefficient of at least 99%, then one is kept and
the other is discarded. The output of this process is a matrix
F4 (Algorithm 1).

Determine the 
Number of SIFT 

points 

All Images 

Extract Features 

Discard 99% 
correlated features 

Determine the size of the 
rectangle around SIFT 

points 

Determine the number of features 
(Discard 90% correlated )  

Multi-
cluster FM 

Spectral FP 
Correlated 

Fc 
Laplacian FL Similarity FF Greedy FG 

Combine Features 

Final feature matrix  

Fig. 2. The process of feature selection

Five methods, along with an additional correlation-based
method, were combined to produce an ensemble of final
relevant features that could be used for training (see Fig. 2):
Mitra et al. [11]- FF (feature similarity), He et al. [12]- FL

(Laplacian score), Zhao et al. [13]- FP (spectral graph), Cai
et al. [14]- FM (multi-cluster), Farahat et al. [15]- FG (greedy
algorithm), and FC (correlation method).

For any unsupervised feature selection technique, the num-
ber of features NT2

that should be returned must be established
in advance. A correlation with a threshold of 90% is used
in order to determine the number of features that should
be returned from F4 (Algorithm 1). Following this process,
FC is the resulting feature matrix. In addition to FC , five
different unsupervised feature selection methods are also used
for feature selection. The matrix F4 and the variable NT2

are
passed to the methods, and each method returns a different
matrix with its selected features. The resulting matrices are
FG [15], FL [12], FF [11], FP [13], and FM [14] (Algorithm
1). For all features in the six matrices, any feature extracted
by at least three of the six methods are selected and appended
to a matrix F5 (Algorithm 1). The final matrix F ∗ is generated
based on the discarding of features from F5 that are at least
90% correlated (Algorithm 1).

B. Offline Phase

In the offline phase, the best parameters for segmenting each
image are calculated through an exhaustive search and then
stored in matrix T (Algorithm 2). The process is performed
as explained in [1].

C. Training Phase

In this phase, the features selected for the training images
are used for the training of the fuzzy system. A set of images
are randomly selected for training (Algorithm 2). A matrix
M is created and filled with the rows from F ∗ that belong
to the training images (Algorithm 2). A matrix O is created
and filled with the rows from T that belong to the training
images (Algorithm 2). A pruning step is performed starting
from the second training image in order to ensure that M
and O do not contain similar rows (Algorithm 2). The pruned
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Algorithm 2 Offline and Training Phases
1: ———— Offline phase ————
2: Determine the parent algorithm(s) and their parameters
p1, p2, · · · , pk.

3: Read the gold standard images G1, G2, · · · , Gn.
4: Via exhaustive search or trial-and-error comparisons

with gold standard images, determine the best segments
S1, S2, · · · , Sn and the best parameters p∗1, p

∗
2, · · · , p∗k that

generate the best segments and store them in matrix T .
5: ———— Training phase ————
6: Determine the available training images I1, I2, · · · , INR

.
7: Create two empty matrices M for input and O for output.

8: for all NR images do
9: Fill matrix FT with rows from matrix F ∗ that belong

to the training image Ii (FT = F ∗(Ii)).
10: Fill matrix TR with rows from matrix T that belong to

the training image Ii
(TR = T (Ii)).

11: if i=1 then
12: Append FR to M , and TR to O.
13: else
14: Pruning step: Discard rows from FR and TR that are

similar to rows in M and O, respectively.
15: Append the updated matrices FR and TR to M and

O respectively.
16: end if
17: end for
18: Generate fuzzy rules RF1 , RF2 , · · · from the input matrix

M and the output matrix O (e.g., using clustering).

matrices M and O are used for the generation of the initial
fuzzy rules (Algorithm 2). The initial fuzzy system is built
through the creation of a set of rules using the Takagi-Sugeno
approach to describe the in- and output matrices. Based on NL

different features from the input and one optimal parameter as
the output, a set of rules is generated whereby the features are
in the antecedent part and the optimal parameters are in the
consequent part of the rules.

D. Online and Evolving Phase

The evolving process is performed in order to increase the
capabilities of the proposed system. For each test image, a
matrix FS is filled with the rows from F ∗ that belong to
the test image (Algorithm 3). Fuzzy inference using FS is
applied, and a parameter vector TO is returned (size 1 × 8)
and the final output parameter T ∗ is calculated (Algorithm 3).
The resulting parameter is used for the segmentation of the
image (Algorithm 3), and the resulting segment is stored and
then displayed to the user for review and eventual correction
(Algorithm 3). The best parameter for the current image is
then calculated based on the user-corrected segment and is
stored in TB (Algorithm 3). A pruning procedure is performed
on FS and TB as described in [1], with the exception that the
Euclidean distance thresholds are, in contrast to EFIS, different
for different techniques. After pruning, revised versions of FS

and TB are appended to M and O (Algorithm 3). In the final

Algorithm 3 Online/Evolving Phase
1: Load the fuzzy rules RFi

and the matrices M , O, and F ∗.

2: Load the test images I1, I2, · · · , INE
.

3: for all NE images do
4: Fill matrix FS with the rows from matrix F ∗ that belong

to the test image Ii (FS = F ∗(Ii)).
5: Perform fuzzy inference to generate output:

TO = FUZZY-INFERENCE(RF1
, RF2

, · · · ).
6: Generate a single output T ∗ from TO using the mean

of TO (µTO
), the median of TO (MTO

), the fuzzy
membership (mTO

) of the standard deviation of TO
(σTO

) using a Z-shaped function (zmf )
mTO

= zmf(σTO
, [(µTO

∗ 0.10) (µTO
∗ 0.20)]), and

T ∗ = mTO
∗ µTO

+ (1−mTO
) ∗MTO

.
7: Apply the parameters to segment Ii.
8: Display segment S and wait for user feedback (user

generates a gold standard image G by editing S)
9: ——— *Rule Evolution - Invisible to User* ———

10: Determine the best output vector p∗1, p
∗
2, · · · , p∗k (via

comparison of S with G) and store it in TB .
11: Pruning – Discard rows from FS and TB that are similar

to rows in M and O, respectively.
12: Append the matrices FS and TB to M and O, respec-

tively.
13: Generate fuzzy rules RFi

from the updated matrices M
and O (e.g., using clustering).

14: end for

step, the current fuzzy inference system, i.e., its rule base, is
regenerated using the updated matrices M and O (Algorithm
3), and the process is repeated as long as new images are
available.

IV. EXPERIMENTS AND RESULTS

This section describes the experiments conducted in order
to test the proposed self-configuring EFIS (SC-EFIS). To
build the initial fuzzy system, for each training set, a set of
randomly selected images from the data set were used for the
extraction of the features along with the optimum parameters
as output. This initial fuzzy system was then used to test
the proposed method using the remaining images. The initial
fuzzy system evolves as long as new (unseen) images are
fed into the system and as long as the segmentation results
produced by the algorithms are corrected by an expert user
in order to generate optimal parameter values. This process
drives the evolution of the fuzzy rules for segmentation. We
used a 10-fold leave-n-patients-out cross-validation for the
experimentation. The results of ten different trials for each
segmentation technique and for each parent algorithm are
presented in order to validate the performance of SC-EFIS.
The number of rules was monitored during the evolution
process in order to acquire empirical knowledge about the
convergence of the evolving process. The experimental results
using an image dataset for global thresholding are presented.
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A. Image Data

The target dataset was developed from 35 breast ultra-
sound scans that were segmented by an image-processing
expert with extensive experience in breast lesion segmentation
(the second author). The images, collected from the Web, are
of different dimensions, ranging from 230× 390 to 580× 760
pixels (Figure 3, images resized for sake of illustration). These
are the same images used to introduce EFIS originally [1].

Ultrasound images are generally difficult to segment, pri-
marily due to the presence of speckle noise and low level
of local contrast. It should be noted that the segmentation of
ultrasound actually does require a complete processing chain,
(including proper preprocessing and post-processing steps).
However, the purpose of using these images was solely to
demonstrate that the accuracy of the segmentation can be
increased with the application of SC-EFIS.

B. Evaluation Measures

Considering two segments S (generated by an algorithm)
and G (the gold standard image manually created by an
expert), we calculate the average of the Jaccard index J (area
overlap) [16]:

J(S,G) =
|S ∩G|
|S ∪G|

, (1)

and its standard deviation σJ . As well, the 95% confidence
interval (CI) of the Jaccard index CIJ is calculated . Fi-
nally, we performed t-tests to validate the null hypothesis for
comparing the results of a parent algorithm and its evolved
version in order to establish whether any potential increase
in accuracy is statistically significant. Ground-truth images G
were created so that the objects of interest (i.e., lesions and
tumours) could be labeled as white (1) and the background as
black (0). All thresholding techniques were used consistently
to label object pixels in this way as this was done in EFIS.
We also calculate “Maximum Achievable Accuracy” (MAA)
determined via exhaustive search and through comparison with
gold standard images. MAA of each i hence the maximum
accuracy that any global thresholding method can achieve.

C. Results

To compare with EFIS, the SC-EFIS results are calculated
for global thresholding. The results are discussed with respect
to rule evolution, and accuracy verification using the Jaccard
results. As well, we compare the results of EFIS and SC-EFIS
with other methods such as local thresholding by Niblick [4],
the Huang/Wang method for fuzzy thresholding [5], the Kittler
algorithm [6], the interval-based fuzzy thresholding according
to Tizhoosh [7], [17] and the Otsu method. It should be noted
that comparing with the Niblack method is actually not a
correct comparison because it is a local method whereas all
other methods operate globally, so it is expected that Niblack
should generally outperform global methods.

Rule Evolution – Fig. 4 indicates the change in the number
of rules during the evolving of the thresholding (THR) process.
The initial number of rules increases with any incoming image
and then begins to decrease as additional images become
available. Accuracy Verification – Ten different trials/runs

Fig. 4. Rule evolution for SC-EFIS for thresholding: The number of rules
increases first as more images are processed but then drops and seems to
converge toward a lower number of rules. Each curve shows the number of
rules for a separate trial/run.

TABLE I
COMPARISON OF EFIS, SC-EFIS, AND 4 OTHER GLOBAL THRESHOLDING
TECHNIQUE AS WELL AS ONE LOCAL THRESHOLDING METHOD ([7], [17],

[4], [6], [5]): AVERAGE AND STANDARD DEVIATION OF THE JACCARD
INDEX J ± σJ AND 95% CONFIDENCE INTERVAL CIJ .

Run Method J ± σJ CIJ
MAA 79%±12% [75% 84%]

EFIS-THR 62%±25% [53% 71%]
SC-EFIS-THR 63%±23% [54% 72%]
Niblack (local) 56%±24% [47% 65%]

1 Huang 45%±27% [35% 55%]
Kittler 39%±32% [27% 51%]
Tizhoosh 35%±32% [23% 47%]
Otsu 28%±25% [18% 37%]
MAA 79%±11% [75% 83%]

EFIS-THR 60%±24% [51% 69%]
SC-EFIS-THR 59%±26% [49% 69%]
Niblack (local) 57%±25% [48% 66%]

2 Huang 44%±29% [34% 55%]
Kittler 41%±31% [29% 52%]
Tizhoosh 38%±32% [26% 50%]
Otsu 29%±25% [19% 38%]
MAA 79%±12% [74% 83%]

EFIS-THR 63%±23% [54% 71%]
SC-EFIS-THR 65%±21% [57% 73%]
Niblack (local) 59%±24% [49% 68%]

3 Huang 46%±27% [35% 56%]
Kittler 41%±33% [29% 53%]
Tizhoosh 35%±33% [23% 48%]
Otsu 28%±23% [20% 37%]

are presented for each method. Each run is an independent
experiment involving different training and testing images.
Table I enables a comparison of EFIS and SC-EFIS results for
global thresholding with different global and local thresholding
techniques. It is clear that, in the three experiments, EFIS and
SC-EFIS provide outcomes that are more accurate than those
produced with the non-evolutionary thresholding techniques.
As well, if the results for SC-EFIS are sightly lower than
EFIS (e.g. in the 2nd run, Table I), it is statistically significant.
Besides one should be keep in mind that SC-EFIS does not
have EFIS limitations.
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Fig. 3. Breast ultrasound scans used in our experiments. All images were segmented by an image-processing expert.

V. CONCLUSIONS

Evolving fuzzy image segmentation (EFIS) has been re-
cently proposed to provide evolving and user-oriented adjust-
ment. EFIS is a generic segmentation scheme that relies on
user feedback in order to improve the quality of segmenta-
tion. Its evolving nature makes this approach attractive for
applications that incorporate high-quality user feedback, such
as in medical image analysis.

However, EFIS entails some limitations, such as parameters
that must be selected prior to the running of the algorithm and
the lack of an automated feature selection component. These
drawbacks restrict the use of EFIS to specific categories of
images. An improved version of EFIS, called self-configuring
EFIS (SC-EFIS) was proposed in this paper. SC-EFIS is a
generic image segmentation scheme that does not require
setting of most parameters, such as number of features or
detecting a region of interest. SC-EFIS operates with the
data available and extracts major parameters necessary for
its operation from those data. A comparison of the SC-
EFIS results with those obtained with EFIS demonstrates the
comparable accuracy of both schemes with SC-EFIS offering
a much higher level of automation.
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