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Abstract

Every organism in an environment, whether biological, robotic or virtual, must be able
to predict certain aspects of its environment in order to survive or perform whatever task is
intended. It needs a model that is capable of estimating the consequences of possible actions,
so that planning, control, and decision-making become feasible. For scientific purposes, such
models are usually created in a problem specific manner using differential equations and other
techniques from control- and system-theory. In contrast to that, we aim for an unsupervised
approach that builds up the desired model in a self-organized fashion. Inspired by Slow
Feature Analysis (SFA), our approach is to extract sub-signals from the input, that behave as
predictable as possible. These “predictable features” are highly relevant for modeling, because
predictability is a desired property of the needed consequence-estimating model by definition.
In our approach, we measure predictability with respect to a certain prediction model. We
focus here on the solution of the arising optimization problem and present a tractable algorithm
based on algebraic methods which we call Predictable Feature Analysis (PFA). We prove that
the algorithm finds the globally optimal signal, if this signal can be predicted with low error.
To deal with cases where the optimal signal has a significant prediction error, we provide a
robust, heuristically motivated variant of the algorithm and verify it empirically. Additionally,
we give formal criteria a prediction-model must meet to be suitable for measuring predictability
in the PFA setting and also provide a suitable default-model along with a formal proof that
it meets these criteria.
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1 Introduction

The motivation for Predictable Feature Analysis (PFA) comes from typical reinforcement-learning
settings, where an autonomous agent is placed in an environment and aims to achieve some goal.
While many common scenarios are discrete (board-game-like) with rather few states, we consider
more natural scenarios, where the input is a continuous signal over time and of high dimension like
vision or some other sensory input.1

PFA is intended as a tool to help the agent make sense of this vast amount of incoming data.
Our approach is to look for information in the signal that helps to understand and manipulate
the environment in the desired way. To achieve its goal, the agent must be able to plan its
actions and thus needs to understand, how the environment behaves – it needs a model that
is capable of predicting the outcomes of possible actions. It has been frequently proposed that
predictable features are crucial to obtain such a model, see [1] for a review. In contrast to most
common approaches from control theory, we attempt to perform the modeling without putting
previously known, problem-specific information (usually a representation of the environment in
form of differential equations and system theoretic setups) into the model, but look for a truly
unsupervised, self-organized approach.

Slow Feature Analysis (SFA) is an algorithm that has most characteristics we are looking for
(and as such also served as the name-giving pattern for PFA). It is an algorithm that has proven
valuable in several fields and problems concerning signal- and data analysis. The idea is that a
drastic, yet reasonable dimensionality reduction can be obtained by focusing on slowly varying sub-
signals, the so-called “slow features”. These are considered most relevant, because slowness usually
indicates invariance and invariant problem representations are crucial for typical data-analysis and
recognition tasks, such as regression and classification. Many of these tasks have proven to become
much more feasible on the reduced signal after SFA has been applied. For instance, tasks like
the self-organization of complex-cell receptive fields, the recognition of whole objects invariant to
spatial transformations, the self-organization of place-cells, extraction of driving forces, or nonlinear
blind source separation were successfully performed on the basis of SFA (see [2, 3, 4, 5, 6]).

PFA extracts sub-signals from the input using the same methods like SFA does, but instead
of the slowest features, it selects those that are best predictable by a certain prediction model.
In section 3 we give the criteria a model must meet to be suitable for this purpose. While there
are also model-independent notions of predictability like in the information bottleneck approach
[7, 8], focusing on concrete models has the advantage that if PFA finds predictable sub-signals,
one is directly able to actually perform the prediction, since the appropriate model is given. The
arising optimization problem turned out to be significantly harder than that of SFA, because it is
a nested problem: The features extracted must be optimized for predictability, but judging their
predictability is an optimization problem by itself. Optimizing these problems in turns usually
converges to sub-optimal solutions that depend on the starting point. In this work we discuss the
details of the PFA-problem and present a tractable algorithm, thus setting up the basis for future
PFA-related work.

There have been other approaches to use notions of predictability. For instance [9] considers
scenarios involving embodied agents. They let two sensors predict each other in order to retrieve
representation-invariant information. [8] combines notions of predictability with SFA to better
understand principles of sensory coding strategies. There also exists an ICA-based approach to

1 Since it comes from a technical setup, the signal would still be discrete. However, we would not regard its
discreteness as states but would conceptually treat it as a continuous signal.
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predictability-driven dimensionality reduction, see [10]. ForeCA (Forecastable Component Analy-
sis), an independently developed method, is based on the same paradigm as PFA, but proposes a
model-independent approach [11]. A further difference is that PFA (optionally) searches for well
predictable Systems, while ForeCA selects best predictable single components. In future work, we
are going to compare PFA- and ForeCA-results to get a better understanding for strengths and
weaknesses of the two approaches. Finally, there has also been a previous version of our PFA
approach [12].

2 Extracting predictable features

Given an input-signal x(t) with n components, our goal is to extract a certain number (r) of well
predictable output-components, referred to as “predictable features”. Since our approach is inspired
by SFA, we start with a summary of that algorithm.

2.1 Recall SFA

In the SFA-setting, the optimized property is slow variation. Extraction is in principle performed
by linear transformation and projection.2 The parameters of these mappings are optimized over a
finite training-phase Ωt consisting of equidistant time points. To make the method more powerful,
a non-linear expansion h can be applied to the signal – usually using monomials of low degree.

In order to avoid the trivial constant solution, the output is constrained to have unit vari-
ance and zero mean. Additionally, the output-components must be pairwise uncorrelated.
This way the repeated occurrence of the same component is avoided. Mean is defined using
〈s(t)〉t := 1

|Ωt|

∑

t∈Ωt
s(t) (average of a signal over the training phase). To fulfill the constraints,

the expanded signal is sphered over the training-phase, i.e. its mean is shifted to zero and the
covariance-matrix is normalized to the identity matrix:

z̃(t) := h(x(t)) − 〈h(x(t))〉t (make mean-free) (1)

z(t) := Sz̃(t) with S :=
〈
z̃z̃T

〉− 1
2 (normalize covariance) (2)

Summing up all SFA-constraints, the following optimization problem is derived:

For i ∈ {1, . . . , r}

minimize
ai∈Rn

aTi
〈
żżT

〉
ai

subject to aTi 〈z〉 = 0 (zero mean)

aTi
〈
zzT

〉
ai = 1 (unit variance)

aTi
〈
zzT

〉
aj = 0 ∀ j < i (pairwise uncorrelated)

(3)

To describe the algorithm, we first define the extraction matrix Ar := (a1, . . . , ar) ∈ Rn×r and the
reduced identity Ir ∈ Rn×r consisting of the first r euclidean unit vectors as columns. Now please

2In a strict sense, the transformation is affine because it clears the signal’s mean. Additionally one can count the
non-linear expansion as part of the extraction.
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note that because of the sphering, it holds that 〈z〉 = 0 and
〈
zzT

〉
= I, thus having the constraints

equal to
∃A ∈ O(n) : Ar = AIr (4)

where O(n) ⊂ Rn×n denotes the space of orthogonal transformations, i.e. AAT = I. Choosing
ai as the eigenvectors of

〈
żżT

〉
, corresponding to the eigenvalues in descending order, yields an

Ar that solves (3) globally. We denote the extracted signal with m := AT
r z. [13] describes this

procedure in detail.

2.2 Modeling the PFA-problem

In order to measure predictability, we focus on a certain prediction-model. Because it is simple and
very popular, we use linear, auto-regressive prediction as our default model – it is successfully
used in many fields for modeling time-related problems. A signal is regarded well predictable, if
each value can be approximated by a linear combination of some (p) recent values. Expressing this
formally, we face the problem of finding vectors a and b such that

aT z(t)
!
≈ b1a

T z(t− 1) + . . .+ bpa
T z(t− p) (5)

= aT histz,p(t) b (6)

with hist defined as the signal’s history over the recent p time-steps:

histz,p,∆(t) :=

p
∑

i=1

z(t− i∆)eTi with ei ∈ Rp, (e1, . . . , ep) = Ip,p. (7)

Here Ip,p denotes the p-dimensional identity, thus ei denotes the i-th p-dimensional Euclidean unit
vector. ∆ defaults to 1: histz,p := histz,p,1.

PFA
z(t) aT z(t)

Figure 1: Illustration of PFA

Like in SFA, we optimize the parameters over the training phase Ωt and also adopt the SFA
constraints to avoid trivial or repeated solutions. The first steps of PFA are indeed equal to those
in SFA, i.e. we also allow for a non-linear expansion and also start with a sphering-step. As far
as possible, we use the notation that was introduced in 2.1. The common way to extend (52) to
multiple dimensions can be written as

m(t)
!
≈ B1m(t− 1) + . . .+Bpm(t− p) with Bi ∈ Rn×n, diagonal (8)

In this form, it does not fulfill all criteria from section 3 (it is not orthogonal agnostic for n > 1).
Nevertheless, we mention strategies to solve (54) in the appendix, section A.2. Here we proceed
by refining it to be suitable for PFA:

m(t)
!
≈ B1m(t− 1) + . . .+Bpm(t− p) with Bi ∈ Rn×n . (9)
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The difference to the first formulation is that each extracted component’s prediction may depend on
all other extracted components. Note that (54) and (9) are equal for n = 1. A massive advantage
of model (9) is that we can initially fit it to our data in full dimension and search for the best-fitted
components afterwards. For (54), this would not be possible, because the fitting-quality of each
component is not invariant under the transformation used for extraction. We formalize the need
for such a model-property in section 3.

To formalize fitting, we briefly introduce the notion of a general prediction model and of the
fitting-error. We speak of a general prediction-model g as

g ∈ G : z(t)
!
≈ g(histz,p,∆(t)) (10)

where G is the model-class, i.e. the set of possible realizations of g. We measure the prediction
error in an average least squares sense by

err(g, z) :=
〈
‖z− g(histz,p,∆)‖

2
〉

(11)

Now fitting a prediction-model on a given sample in a least squares sense can be expressed as

minimize
g∈G

err(g, z) (12)

By g∗
z, we denote the global solution of (12) and define the following shortcut-notation:

err(z) := err(g∗
z, z) (13)

To formalize (9) as a prediction model in this notation, we combine the coefficient-matrices Bi to
a single broad matrix and define gB and G(9):

B := (B1, . . . ,Bp) ∈ Rn×np (14)

gB(histz,p(t)) := B vec(histz,p(t)) (15)

G(9) := { gB : B ∈ Rn×np } (16)

By analytic optimization, we obtain the following regression formula to fit gB ∈ G(9) to m = AT
r z:

Bz(Ar) = AT
r

〈
zζT

〉
Ar

(

Ar
T
〈
ζζT

〉
Ar

)−1

(17)

Here we used ζ(t) := vec(histz,p(t)) and the following shortcut notation defined for any matrix M:

M := Ip,p ⊗M =

(
M 0

. ..
0 M

)

︸ ︷︷ ︸

p times M

(18)

If r = n, A = I and thus Ar = I, we write W := Bz(I) =
〈
zζT

〉 〈
ζζT

〉−1
. (See A.1 for an overview

of all notation in this document.) It sometimes happens that
〈
ζζT

〉
is not (cleanly) invertible due to

some very small or even zero eigenvalues. We regard it best practice to project away the eigenspaces
corresponding to eigenvalues below a critical threshold. The intuition behind this is that spaces
corresponding to (almost-)zero eigenvalues indicate redundancies in the signal and should not be
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used for prediction anyway. To perform this, first compute an eigenvalue decomposition on
〈
ζζT

〉
.

Replace eigenvalues below the threshold by 0 and replace the other ones by their multiplicative

inverse. After that undo the decomposition and use the resulting matrix as a proxy for
〈
ζζT

〉−1
.

For r = n and A ∈ O(n), we have Bz(A) = ATWA. Since z is sphered, we can state the
following compact notation of the PFA-problem:

minimize
A∈O(n)

err(AT
r z) (19)

Inserting our default model, we have err(AT
r z) =

〈
‖AT

r z − Bz(Ar)Ar
T ζ‖2

〉
. However, because

(17) is an involved term, mainly due to the projection under an inversion symbol, (19) appears
to be intractable by every method known to us3. Instead of solving it directly, we propose the
following tractable relaxation:

minimize
A∈O(n)

〈
‖AT

r z− ITr Bz(A)AT ζ‖2
〉

=
〈
‖AT

r (z−Wζ)‖2
〉

(20)

Informally speaking, problem (20) asks for components that are optimally predictable, if the
prediction may be based on the entire input signal, rather than just on the extracted components

themselves. From now on we denote a global optimum of (19) with A∗
r and of (20) with A

(0)
r .

PFA
z(t)

m(t) = AT
r z(t)

Figure 2: Illustration of relaxation (20)

To solve (20) globally, we write it as

minimize
A∈O(n)

Tr
(

AT
r

〈
(z−Wζ) (z−Wζ)

T 〉
Ar

)

(21)

and choose A such that it diagonalizes
〈
(z−Wζ) (z−Wζ)

T 〉
and sorts the r smallest eigenvalues

to the upper left. This method can be described as performing PCA on the residuals of the least
squares fit. By some calculus, one can show formal equivalence of this approach to the method

proposed in [14]. In section 4 we prove that if err((A∗
r)

T z) = 0, then A
(0)
r is also a global solution of

(19).4 More precisely speaking, the relaxation gap of (20) depends on err((A∗
r)

T z) in a continuous
manner and is zero, if that error is zero. If the optimal sub-signal has a significant prediction error,

the solution obtained as A
(0)
r usually suffers from overfitting and is sub-optimal for (19). In the

following, we offer a heuristic method to overcome this overfitting.

3Not counting evolutionary and other inherent local optimization approaches, since we aim for the global solution.
Experiments showed us that locally optimal solutions are usually still of high error and of low relevance for the model.

4Note that if A
(0)
r is used as solution for (19), the prediction model must be refitted to the reduced signal to get

optimal prediction. For this, calculate Bz(A
(0)
r ) as defined in (17).
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2.3 Avoiding overfitting

To reduce overfitting, we propose the heuristics that signals well predictable in terms of (19) yield
a lower error-propagation to subsequent predictions than signals that are well predictable in terms
of (20) but not in terms of (19). We ground this on the intuition that the prediction of the latter
ones is partly based on noisy data – thus subsequent predictions inherit a higher error. To formalize
this idea we define

V :=
〈
ζ(t+ 1)ζT (t)

〉

t

〈
ζζT

〉−1
(22)

and can thus perform iterated prediction as follows:

z(t) ≈ WViζ(t− i) (23)

PFA
z(t)

m(t) = AT z(t)

Figure 3: Illustration of iterated prediction

Based on this, we propose the following optimization problem:

minimize
A∈O(n)

k∑

i=0

〈
‖AT

r (z−WViζ(t− i)‖2
〉

t
(24)

We can solve it globally in a rather similar way like (20). To do so, we write it as

minimize
A∈O(n)

Tr
(

AT
r

k∑

i=0

〈 (
z−WViζ(t− i)

) (
z−WViζ(t − i)

)T 〉

t
Ar

)

(25)

and then solve it by diagonalizing
∑k

i=0

〈 (
z−WViζ(t− i)

) (
z−WViζ(t− i)

)T 〉

t
and sorting

the lowest r eigenvalues to the upper left. We denote the global solution of (24) by A
(k)
r . How to

optimally choose k for a certain problem is currently an open question, but we know from experi-

ments that up to some value, increasing k improves err((A
(k)
r )T z). Beyond that value, increasing

k lowers the quality again. Our intuition is that the critical value is related to the maximal time
distance, over which the signal holds any auto-correlation – investigating this formally will be
subject of future work. To give some impression of the technique and as a proof of concept, we
demonstrate it on a synthetic example. We know that basic trigonometric functions are losslessly
predictable with our default model for p = 2. Because of the theorem in section 4, it would make
no sense to work with a losslessly predictable signal. So we add some white noise η(t) to it and
define an example signal x(t) := (sin(0.1t)+0.7η(t), sin(0.2t)+η(t), sin(0.4t)+5.3η(t))T . We train
the algorithm with ∆ = 1 once on 1000 samples and once on 2000 samples, always extracting
two components, i.e. r = 2, p = 2. As a lower bound for any error not involving overfitting, we
evaluate (20). For our example we get a lower bound of ≈ 1.206 for 1000 samples and ≈ 1.22 for
2000 samples. These are plotted as red horizontal lines in the following. To measure the amount
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of overfitting, we add many dimensions of white random data to our signal and mix everything up
by a random, orthogonal transformation. While x has always the same noise-seed, the added data
is generated with different noise in every run. The following results are averaged over about 150
runs, and plot the prediction error against the noise-dimension:5
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Figure 4: k = 0, . . . , 4 from left to right;
k = 4 dashed; 1000 samples
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Figure 5: k = 4, . . . , 14 from right to
left; k = 4 dashed; 1000 samples
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Figure 6: k = 0, . . . , 4 from left to right;
k = 4 dashed; 2000 samples
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Figure 7: k = 4, . . . , 14 from right to
left; k = 4 dashed; 2000 samples

Obviously k = 4 yields the best results in this example. The result for k = 0 with no additional
noise can be considered to be the optimal solution. Solutions below the red line indicate overfitting
conform with (19). This kind of overfitting can only be reduced by using larger samples. That it
decreases for higher noise-dimension indicates that the best solution is not found any more. So
we conclude that in our example, the algorithm is robust for about 50 dimensional noise if 1000
samples are used and for about 100-dimensional noise, if 2000 samples are used. Future work will
include more detailed research about these relationships.

5Note that the vertical axis ranges from 1.15 onward to provide a better focus.
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3 Criteria for suitable prediction models

In this section we discuss what properties of a prediction model are crucial to make the procedure
described in 2.2 feasible.

Definition 1 (Orthogonal agnosticity criterion)
We say that a prediction-model G is orthogonal-agnostic on Ωt, if for every A ∈ O(n),g ∈ G:

err(z) = err(AT z) (26)

(26) means that the model fits equally well to any orthogonal transformation of the data.
In section 4 we will need a more restrictive variant of this criterion that additionally considers
projections of the data to subspaces:

Definition 2 (Projective orthogonal agnosticity criterion)
We say that a prediction-model G is projective orthogonal-agnostic on Ωt, if for every A ∈
O(n), r ≤ n the following holds:

〈
‖AT

r z− ITr g
∗
AT z(A

T histz,p)‖
2
〉

=
〈
‖AT

r z−AT
r g

∗
z(histz,p)‖

2
〉
. (27)

Note that for r = n, (27) simplifies to (26) and projective orthogonal agnosticity becomes equiv-
alent to ordinary orthogonal agnosticity (since the Frobenius-norm is invariant under orthogonal
transformations). An even stronger and very intuitive criterion is the following:

Definition 3 (Commuting with orthogonal transformations)
We say that a prediction-model G commutes with orthogonal transformations, if for every
A ∈ O(n) the following holds:

g∗
AT z = ATg∗

z. (28)

It is rather obvious that this criterion implies projective and ordinary orthogonal agnosticity.
To assure projective orthogonal agnosticity, it is a straightforward procedure to construct models
such that they commute with orthogonal transformations.

Definition 4 (Information consistency criterion)
We say that a prediction-model G is information-consistent on Ωt, if for every A ∈ O(n), r ≤ n

the following holds:

〈
‖AT

r z− g∗
AT

r z(A
T
r histz,p)‖

2
〉

≥
〈
‖AT

r z−AT
r g

∗
z(histz,p)‖

2
〉

(29)

An information-consistent model always benefits from more data rather than getting confused
by it. Note that for r = n, (29) follows from orthogonal agnosticity.

Theorem 1

Model G(9) is projective orthogonal agnostic and information consistent.

Proof. Projective orthogonal agnosticity follows, because the model commutes with orthogonal
transformations, as Bz(A) = ATBz(I)A. To show that G(9) is information consistent, we need the
solution of the following optimization problem:

minimize
B∈Rn×np

〈
‖AT

r z− ITr gB(A
T histz,p)‖

2
〉

(30)

9



Analytically we find a (not unique) solution to be Bz(A). Note that Bz(Ar) ∈ Rr×rp. We extend
each (r × r)-block at the bottom and right with zeroes to get (n × n)-blocks and overall get an
(n× np)-matrix Bz(Ar)

(n×np), which can be seen as a candidate to solve (30). Thus we have

Bz(Ar) = ITr Bz(Ar)
(n×np)Ir (31)

which implies that

〈
‖AT

r z− gBz(Ar)(A
T
r histz,p)‖

2
〉

=
〈
‖AT

r z− ITr gBz(Ar)(n×np)(AT histz,p)‖
2
〉

(32)

Since we know that Bz(A) is an optimal solution of (30), we have

〈
‖AT

r z− ITr gBz(Ar)(n×np)(AT histz,p)‖
2
〉

≥
〈
‖AT

r z− ITr gBz(A)(A
T histz,p)‖

2
〉

(33)

and thus

〈
‖AT

r z− g∗
AT

r z(A
T
r histz,p)‖

2
〉

≥
〈
‖AT

r z− ITr g
∗
AT z(A

T histz,p)‖
2
〉

(34)

With the projective orthogonal agnosticity criterion (27), we can transform the right side of (34)
into the right side of (29) and have formally shown information consistency for model (9).

3.1 General formulation of PFA

The criteria in section 3 assure that a problem analog to (19) can be relaxed to a tractable problem
like (20) and that it can be solved like in the corresponding section. Additionally they assure that
the theorem in section 4 holds and that the procedure from 2.3 is applicable. For any projective
orthogonal agnostic and information consistent prediction model, (19) can be relaxed to

minimize
A∈O(n)

〈
‖AT

r (z− g∗
z(histz,p))‖

2
〉

(35)

which can be solved by diagonalizing
〈
(z− g∗

z(histz,p)) (z− g∗
z(histz,p))

T 〉
and sorting the smallest

eigenvalues to the upper left. To extend this generalization to (24), a version of (22) that only
uses g∗

z is needed. However this construction is straight forward, but can generally not be written
as a matrix like in (22). One uses g∗

z only for prediction of the first (i.e. the new) components of
ζ(t + 1), while the other components can be copied from ζ(t).

4 Relaxation Gap Theorem

Theorem 2

For any prediction model class G that is projective orthogonal agnostic and information consistent,
the following holds:

If ∃ r ≤ n, A∗ ∈ O(n) : err(A∗
r
T
z) = 0 (36)

and ∄ r̃ > r, A∗ ∈ O(n) : err(A∗
r̃
T
z) = 0 (37)

then err(A(0)
r

T
z) = 0 (38)

10



Line (37) has the purpose to ensure that the maximal r holding (36) is used in line (38).
To prove the theorem, we need to setup some lemmas and the following definition:

Definition 5 (Space-partition preserving orthogonal transformations)

O(r, s) := diag(O(r),O(s)) (39)

This means that every Ã ∈ O(r, s) ⊂ O(r + s) has the form
(
Arr 0
0 Ass

)
with Arr ∈ O(r)

and Ass ∈ O(s). Now we can elegantly formulate the following lemma, which deals with the
non-uniqueness of A(0):

Lemma 1

Let A(0) and B(0) be two different global solutions of (35) and assume that the best r components
are well defined (i.e. component r + 1 has worse error than component r).

∃ Ã ∈ O(r, n− r) : A(0) = B(0)Ã (40)

A problem would arise, if for instance the rth-worst component and the (r + 1)th-worst com-
ponent had equal error. In that case it would not be well defined, which signal space to extract
and the lemma would not hold.

Proof of Lemma 1. As mentioned earlier, we can obtain one global solution by diagonalizing
〈
(z− g∗

z(Z)) (z− g∗
z(Z))

T 〉
and sorting the r smallest eigenvalues to the upper left. Since lemma 1

requires to have a unique choice of r best components, every optimal solution must have the same
set of eigenvalues in the upper left (r × r)-sub-matrix. Thus we can create every solution by or-
thogonally transforming the eigenspace of the r smallest eigenvalues in itself. In an analog way, the
eigenspace of the n− r largest eigenvalues may be transformed. The set of partition preserving or-
thogonal transformations O(r, n−r) is exactly defined to consist of the transformations performing
this.

Lemma 2

∀ r ≤ n,A ∈ O(n), Ã ∈ O(r, n− r) :

err( ITr A
T z ) = err( ITr (AÃ)T z ) (41)

Lemma 2 implies that solutions of (19) stay solutions, if transformed by any Ã ∈ O(r, n− r).

Proof of Lemma 2. First observe the following fact:

∀ Ã ∈ O(r, n− r) : ∃ Arr ∈ O(r) : ITr Ã
T = AT

rrI
T
r (42)

With (42) and the orthogonal agnosticity criterion it is straight forward to transform the right side
of (41) into the left:

err(ITr Ã
TAT z) =

(42)
err(AT

rrI
T
r A

T z) =
orth.
agn.

err(ITr A
T z) (43)

Now we are ready to assemble the proof of the relaxation gap theorem:
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Proof of the relaxation gap theorem. By condition (36), we have

err(A∗
r
T
z) =

〈

‖A∗
r
T
z− g∗

A∗

r
T z(A

∗
r
T
Z)‖2

〉

= 0 (44)

By information consistency, it follows that

〈

‖A∗
r
T
z− ITr g

∗
A∗T z

(A∗TZ)‖2
〉

= 0 (45)

So A∗ is a common global optimum of (19) and (35). Since (37) ensures maximality of r, we can
apply lemma 1 and get:

∃ Ã ∈ O(r, n− r) : A(0) = A∗Ã (46)

Finally by lemma 2 we conclude that A(0) must also be an optimum of (19).

By continuity arguments, the implication of theorem 2 extends to signals with components of
low error – the lower the error is, the more precise we can find an optimum of (19) by solving
(35). Providing bounds for the steepness of this continuous relationship is still an open problem
and may be subject of future work.

5 Future Work

An important aspect of our future work will be the application of PFA to real world problems. We
plan to approach scenarios where SFA is known to produce good results, so we can compare PFA
and SFA and get a clearer notion for the differences between the paradigms. On the other hand, we
have new scenarios in mind, that specifically would benefit from predictable features. For instance
we are working on applications related to robotic navigation and the lane-keeping problem of a
simulated car.

As mentioned in some sections of this document, another fork of our future work will be to
extend the analytic understanding of the heuristic aspects of the algorithm. This way we also aim
to improve our methods to avoid overfitting.
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A Appendix

A.1 Notation overview

This section gives an overview of the notation used in this paper.
x(t) denotes the raw input signal and might only be available for a

discrete sequence of t’s.
Ωt := {t0, . . . , tk} denotes a discrete time sequence (considered as

equidistant with step size normalized to 1). We usually refer to
Ωt as the training phase.

〈s(t)〉t∈S
:= 1

|S|

∑

t∈S s(t) denotes the average of some signal s over a

finite set S. For S = Ωt we just write 〈s(t)〉t or even 〈s〉, if it
is obvious, what unbound variable is targeted.

h(x) denotes the expansion function and usually consists of a set of
monomials of low degree.

z(t) denotes h(x(t)) after sphering it.
m(t) denotes the optimized output signal (m for model).
n denotes the number of components to be analyzed (after expan-

sion).
r denotes the number of extracted components (“features”).
A, a denotes the matrix (or vector if r = 1) holding the linear com-

position of the output-signal. We set m(t) = AT z(t).
ai denotes the i’th column of A, so we can write mi(t) = aTi z(t).
O(n) ⊂ Rn×n denotes the orthogonal group of dimension n, i.e. ∀ A ∈

O(n) : AAT = ATA = I

p denotes the number of recent signal-values involved in the pre-
diction. We also call it the prediction-order.

Is,r denotes the s × r identity matrix (s counting rows, r counting
columns). For s = r this is a usual square identity, while in the
non-square case it consists of a square identity block in the top
or left area, filled up with zeroes to fit the given shape.

Ir := In,r
Ar := AIr

We frequently use the p-step time-history of a signal z, which we formalize by the following
function:

histz,p,∆(t) :=

p
∑

i=1

z(t− i∆)eTi with ei ∈ Rp (47)

histz,p(t) := histz,p,1(t) (48)

Here ei denotes the i-th p-dimensional euclidean unit vector, which is 1 at position i and 0 every-
where else.

Further more we sometimes use the Kronecker product ⊗ and the vec-operator defined as
follows:
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For matrices A ∈ Rm×n and B ∈ Rk×l and with aij denoting the entries, ai the columns of A:

A⊗B :=






a11B · · · a1nB
...

. . .
...

am1B · · · amnB




 ∈ Rmk×nl (49)

vec(A) :=






a1
...
an




 ∈ Rmn (50)

Additionally, we sometimes make use of the following shortcut:

A := Ip,p ⊗A =






A 0

. . .

0 A






︸ ︷︷ ︸

p times A

(51)

A.2 Extracting predictable single components

In section 2.2 we initially stated a prediction model that always scopes on single components. This
idea was not suitable for PFA because it contradicts the orthogonal agnosticity criterion. In this
section we propose a strategy to extract well predictable single components even though. We begin
by recalling our initial notion of linear auto regressive predictability:

aT z(t)
!
≈ b1a

T z(t− 1) + . . .+ bpa
T z(t− p) (52)

= aT histz,p(t) b (53)

It is possible to write this for multiple dimensions by constraining the coefficient-matrices to be
diagonal:

m(t)
!
≈ B1m(t− 1) + . . .+Bpm(t− p) with Bi ∈ Rn×n, diagonal (54)

This model is not orthogonal agnostic, so a different approach than in section 2.2 is needed. To
minimize the least-squares-error of (52), the following optimization problem needs to be solved:

minimize
a∈Rn, b∈Rp

〈(
aT (z− histz,p b)

)2
〉

subject to aT 〈z〉 = 0 (zero mean)

aT
〈
zzT

〉
a = 1 (unit variance)

(55)

Via analytic optimization it is straight forward to find the optimal a, if b is fixed and vice versa:
If b is fixed, choose a as the eigenvector corresponding to the smallest eigenvalue in

〈
zzT

〉
−
〈
zbT histz,p

〉
−
〈
histTz,p bz

T
〉
+
〈
histz,p bb

T histTz,p
〉

(56)
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If a is fixed, choose b as

bT :=
〈
zTaaT histz,p

〉〈
histTz,p aa

T histz,p
〉−1

(57)

By inserting (57) into (55) one could obtain a problem written in a only:

minimize
a∈Rn

〈(

aT (z − histz,p
〈
zTaaT histz,p

〉〈
histTz,p aa

T histz,p
〉−1

)
)2
〉

subject to aT
〈
z
〉

= 0 (zero mean)

aT
〈
zzT

〉
a = 1 (unit variance)

(58)

Problem (58) is not efficiently globally solvable by any method known to us, which is mainly due
to the occurrence of a in a matrix-term under an inversion-symbol. However a possible strategy is
to approximate the solution by choosing an initial value for a or b and applying (56) and (57) in
turns until a stable state is reached.

As a reasonable initial value for this procedure we choose b such that it is the best predictor
of z on average, in absence of any a:

z(t)
!
≈ b1z(t− 1) + . . .+ bpz(t− p) = histz,p(t)b (59)

To minimize the error of (59) on average over all components of z, we propose the following
least-squares optimization:

minimize
b∈Rp

〈
(z − histz,p b)

T (z− histz,p b)
〉

(60)

The solution of this problem is

b :=
〈
zT histz,p

〉〈
histTz,p histz,p

〉−1
(61)

Solution (61) does not change, if we replace z by AT z with any orthogonal, full ranked A. However,
one quickly finds examples, where the procedure stabilizes in sub-optimal states. Though one can
partly overcome this issue by estimating better starting points, the method still has unknown
success-probability.

Probably a better possibility is to solve (55) with PFA as described in section 2 for r = 1.
After extracting one component either way, one can project z to the signal space uncorrelated

(i.e. orthogonal) to the extracted component. The extraction- and projection-procedure can be
repeated until any desired number of components is extracted.
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