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Abstract—Recent work in off-line Reinforcement Learning has
focused on efficient algorithms to incorporate feature selection,
via `1-regularisation, into the Bellman operator fixed-point esti-
mators. These developments now mean that over-fitting can be
avoided when the number of samples is small compared to the
number of features. However, it remains unclear whether existing
algorithms have the ability to offer good approximations for the
task of policy evaluation and improvement. In this paper, we
propose a new algorithm for approximating the fixed-point based
on the Alternating Direction Method of Multipliers (ADMM).
We demonstrate, with experimental results, that the proposed
algorithm is more stable for policy iteration compared to prior
work. Furthermore, we also derive a theoretical result that states
the proposed algorithm obtains a solution which satisfies the
optimality conditions for the fixed point problem.

I. INTRODUCTION

A core problem in off-line reinforcement learning (RL)
emerges in situations where the state space is large and the
dynamics are unknown. In such cases, explicit computation of
the value functions becomes infeasible. Instead approximation
techniques provide the only way forward. In particular, com-
mon choices to represent the value functions are those of linear
architecture [24] where the hypothesis space F is defined by a
set of feature vectors. In this domain, Least-Squares Temporal
Difference (LSTD) algorithms [1], [8], [9] attempt to find the
fixed point of the projected Bellman operator, ΠT , by using
a rich number of samples. Unfortunately, in off-line learning,
it is typically the case that the amount of available data is
not sufficient, leading LSTD to poor predictions. Indeed, in
the regression setting, when only a small number of samples
are available relative to the number of features, the least-
squares method is known to be very vulnerable to over-fitting.
A typical way to overcome this issue is by incorporating `1- or
`2-regularization known as LASSO [10] and ridge-regression
[11], respectively. The former turns out to be of particular
interest in the context of high-dimensional problems since
it produces sparse solutions and therefore performs feature
selection.

Many authors have explored regularized approximations
for the value functions [3], [5], [12], [13] as a means to
address the over-fitting problem in RL. However, none of these
methods are able to both produce sparse solutions and treat the
function approximation as a fixed-point problem. On the other
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hand, several recent methods has been proposed which add an
`1 penalty to the fixed-point [2], [14]. Kolter and Ng [14]
were the first to introduce the `1-regularization of the least-
squares fixed-point. As the name suggests, their LARS-TD
algorithm is inspired by the Least Angle Regression (LARS)
algorithm. However, as is shown, the algorithm only converges
to the fixed-point under some strong assumptions which rarely
hold in the context of policy iteration. In [2] Johns et al.
compute the same fixed point using the linear complementarity
formulation but again the algorithm shares the same conditions
with LARS-TD. Thus, there still remains an apparent need to
introduce new algorithms to TD learning in order to efficiently
evaluate the `1-regularized fixed-point problem within policy
iteration.

In this work we propose to solve the `1-regularized fixed-
point problem with the help of the ADMM [15]— a general
optimisation framework which has recently received a wave
of attention for various large regression problems. We also
establish some theoretical properties of ADMM in the TD
context. As in [2], [14], our problem formulation does not
correspond to any convex optimization problem. However,
our experimental results show that the proposed algorithm is
able to find the fixed-point solution in both the prediction
and control problem. More importantly, our results indicate
a more efficient performance in the off-policy case compared
to LARS-TD. On the other hand, LARS-TD is able to offer a
richer set of solutions as a path method.

This paper is organized as follows. In Section II, we
review the basic RL theory along with LSTD and LARS-
TD. In Section III, we present the new ADMM algorithm
for TD learning. In Section IV, we validate the efficiency of
the algorithm through several experiment. In Section V, we
discuss our contributions in the context of the most relevant,
recent work and, finally, in Section VI we provide a general
discussion for the proposed method and conclusions.

II. PRELIMINARIES AND NOTATION

A Markovian Decision Process (MDP) [16] is defined as
the tuple 〈S,A, P,R, γ〉, where S denotes the set of states and
A(s) the set of actions available at each state; a policy, π :
S → A, is a mapping from states to actions; P : S×A×S →
p(s′|s, π(s)) ∈ [0, 1] are the transition probabilities of moving
to a new state, s′, after executing an action π(s) ∈ A(s). When
reaching a new state the system returns a reward (or a cost),
R(s, π(s), s′) : S → R; γ ∈ [0, 1) is the discount factor.



The quality of a policy can be determined by the value
function defined as the expected discounted reward, V π(s) =
Eπ[
∑∞
t=0 γ

tR(st)]. For simplicity, we assume large finite state
and action space, and thus the value function can be expressed
in matrix form as a set of linear equations

V π = R+ γPπV π.

If R and P are known, one can analytically solve the above
linear system: V π = (I−γPπ)−1R. Finally, the value function
can be seen as the unique fixed point of the Bellman operator,
T : R|S| → R|S|, namely

V π = TπV π, TπV π = R+ γPπV π.

A. Function Approximation
We often deal with large action and state spaces where

P and R are not known at hand, and hence deriving the
value function explicitly is infeasible. In such situations,
approximation of the value function is necessary. The most
common approach is to employ a linear representation of the
value function

V̂ π = Φw =

|S|∑
i=1

φi(s)wi, (1)

where Φ ∈ R|S|×n is the feature matrix, and w the vector of
the weights, w ∈ Rn.

B. Least-Squares Temporal Difference
Approximating value function, as in (1), defines a hypothe-

sis space spanned by the columns of Φ, F = {Φw,w ∈ Rn}.
However, when applying the Bellman operator, the point
TπV̂ π does not necessarily lie on F . LSTD [1] solves the
problem of approximating the vector w by projecting TπV̂ π

back onto the hypothesis space. The objective function subject
to approximation is therefore defined as, V̂ π = ΠTπV̂ π ,
where Π is the projection operator. As a consequence, LSTD
searches for the fixed-point, V̂ π , of the composed operator
ΠTπ . The latter fixed-point problem can be then written as
the optimization problem:

w = argmin
θ∈Rn

‖Φθ − (R+ γPΦw)‖2ξ , (2)

where ξ ∈ R|S|×|S| is a diagonal matrix with entries repre-
senting the stationary distribution of the states.

The fixed-point problem (2) requires knowledge of P and
the construction of a large matrix, Φ. To this end LSTD
collects m samples of the form, {si, ai, ris′i}i=1,...,m, possibly
sampled over several trajectories. This results in the sampled
matrices

Φ̃ =


φ(s1)T

...
φ(sm)T

 , Φ̃′ =


φ(s′1)T

...
φ(s′m)T

 R̃ =


r1
...
rm

 ,

where Φ′ = PΦ. Replacing the sampled features and reward
matrices in (2) we have that

w = argmin
θ∈Rn

‖Φ̃θ − (R̃+ γΦ̃′w)‖2.

The above problem can be solved explicitly yielding the
following set of linear equations

Ãw = b̃,

where Ã ∈ Rn×n, b̃ ∈ Rn are defined as Φ̃T
(

Φ̃− γΦ̃′
)

and

Φ̃T R̃, respectively.
The main drawbacks of applying least-squares to function

approximation emerge often if m < n. In this case, least-
squares is prone to over-fitting and results in poor approxima-
tions, and also the matrix Ã need not be full column rank—
hence its left-inverse is not even guaranteed to exist.

C. LARS-TD

To overcome the limitations arising in LSTD, Kolter and
Ng proposed LARS-TD [14]. They apply the `1-regularization
penalty to the LSTD objective function which has the charac-
teristic of avoiding over-fitting and performing feature selec-
tion. More precisely, the penalty is added to the projection of
TπV onto the hypothesis space F , which yields the following
optimization problem

w = argmin
θ∈Rn

‖Φ̃θ − (R̃+ γΦ̃′w)‖2 + λ‖θ‖1. (3)

The above optimization problem can be alternatively written
as a fixed-point

Φ̃w = Π̃`1 T̃ (Φ̃w),

for which it has been proved that the operator Π̃`1 T̃ is a γ-
contraction, which in turn ensures the existence and unique-
ness of the fixed-point Φ̃w [17]— although we note that w,
itself, need not be unique.

Least Angle Regression (LARS) [18] is then adapted ap-
propriately to problem (3) to efficiently solve for the `1-
regularized fixed-point. Furthermore, LARS is based on a
homotopy method which allows the computation of the com-
plete regularization path. During this procedure, the algorithm
maintains an active set, I , indicating the number of non zero
elements of w. At each step, the regularization path is shrunken
and a new element I is added or removed to ÃI,I and wI in
order for the optimality conditions never to be violated. It has
been shown that as long as Ã is a P -matrix1, each LARS-TD
step satisfies the optimality condition, and thus the algorithm
always finds a solution to (3).

It is instructive to analytically review the major steps of
the optimality conditions since the play a important role for
LARS-TD and our proposed algorithm (cf. Section III). Define
G(θ) = 1

2‖Φ̃θ−(R̃+γΦ̃′w)‖2+λ‖θ‖1, and thus the optimality
condition for the convex problem is

0 ∈ ∂G(θ), (4)

1A square matrix A, not necessarily symmetric, is a P -matrix when all its
principle minors are positive.



where ∂ denotes the sub-differential (since ‖θ‖1 is not dif-
ferentiable). Moreover, ∂G(θ) = Φ̃T (Φ̃θ − (R̃ + γΦ̃′w)) +
λ∂‖θ‖1, where:

∂‖θ‖1 ∈


{+1}, θi > 0

[−1, 1], θi = 0

{−1}, θi < 0,

Therefore, equation (4) implies that

[Φ̃T (Φ̃θ − (R̃+ γΦ̃′w)]i ∈


{−λ}, θi > 0

[−λ, λ], θi = 0

{λ}, θi < 0.

Now, setting w = θ, as required at the fixed point, the
optimality conditions for the problem (3) become

[b̃− Ãw]i ∈


{λ}, wi > 0

[−λ, λ], wi = 0

{−λ}, wi < 0,

(5)

A solution w satisfying the optimality conditions yields the
fixed point Φ̃w of the composed operator Π`1T

π .
LARS-TD enjoys many of the benefits of LARS, in that it

follows a homotopy path and hence it offers all the solutions
w∗(λ). Its computational complexity is O(mnk2), where k
denotes the cardinality of the active set. Therefore, if the
solution is sparse enough, the algorithm can compute the fixed-
point very efficiently, i.e., after a few numbers of iterations. On
the other hand, LARS-TD also inherits the LARS drawbacks,
too. If the whole path need to be computed, the complexity
reduces to a full least-squares, requiring to invert a nearly
dense Ã, many times. Additionally, LARS-TD converges to
the fixed point under the assumption that Ã is a P -matrix.
However, Ã is not necessarily a P -matrix when samples are
collected off-policy where, inevitably, the distribution of states
is different from the distribution of the underlying policy.
To overcome this issue, the authors propose adding an `2-
penalty to the fixed-point problem, known as elastic net [19],
to ensure that Ã is positive definite. Elastic net formulation of
the problem (3) nevertheless comes at cost of reduced sparsity.
More importantly, in context of policy iteration, computing an
almost complete regularization path could be inefficient, as
also discussed in [2].

III. ADMM-TD
Our proposed approach is to apply ADMM to TD learning

for solving the fixed-point problem (3). ADMM exploits some
nice characteristics of the structure of (3) which matches those
of `1-regularization in linear regression [15]. For this reason,
we name the algorithm ADMM-TD.

A. The Algorithm

We proceed by deriving the ADMM steps. Problem (3) can
be seen as an optimization problem of the form

minimize
1

2
‖Φ̃θ − (R+ γΦ̃′w)‖+ λ‖θ‖1.

The above problem has the property of being separable and,
hence, it can been split into two parts, namely f(x) and g(z).
Furthermore, the requirement that the separate variables are
equal yields the following equivalent problem:

minimize f(x) + g(z)

subject to x = z,

where f(x) = 1
2‖Φ̃θ − (R + γΦ̃′w)‖ and g(z) = λ‖z‖1.

The ADMM steps for the fixed point problem can be derived
through the augmented Lagrangian which, in terms of the
proximal form [20, Section 4.4], reduces to

θk+1 := proxµf (zk − uk) (6)

zk+1 := proxµg(θ
k+1 + uk) (7)

uk+1 := uk + θk+1 − zk+1, (8)

where u = 1
ρy denotes the dual variable and µ = 1

ρ the step-
size parameter. The proximal operator of the first subproblem
(6) is equal to

θk+1 :=argmin
θ

{
1

2
‖Φ̃θ − (R+ γΦ̃′w)‖+

ρ

2
‖θ − zk + uk‖

}
,

which can be solved by setting the gradient, w.r.t. θ, of 1
2‖Φ̃θ−

(R̃+ γΦ̃′w)‖+ ρ
2‖θ − zk + uk‖. equal to zero:

Φ̃T (Φ̃θ − (R̃+ γΦ̃′w)) + ρ(θ − zk + uk) = 0

At the fixed point we require w = θ, and thus it follows the
fixed point solution

wk+1 :=
(
Ã+ ρI

)−1 (
b̃+ ρ(zk − uk)

)
, (9)

where Ã = Φ̃T
(

Φ̃− γΦ̃′
)

and b̃ = Φ̃T R̃. Note that ρ equal to
zero yields exactly the LSTD fixed point solution. For solving
the second subproblem (7), we evaluate the proximal operator
with respect to the previous iteration, i.e.,

zk+1 := argmin
z

{
‖z‖1 +

ρ

2
‖wk+1 − z + uk‖

}
,

which reduces to the soft-thresholding shrinkage operator [21]

zk+1 := Sλ/ρ(w
k+1 + uk), (10)

with
Sβ(x) = sgn(x)�max {|x| − β, 0} , (11)

and where sgn(x) is the signum function define as

sgn(x) =


{+1}, xi > 0

{0}, xi = 0

{−1}, xi < 0.

The soft-thresholding is a component-wise operation, and thus
� denotes the component-wise multiplication.

The stopping criteria used in the following algorithm are the
same with those discussed by the authors in [15, Section 3.3].
Note that the value w will be equal to z, and hence sparse,
only in the limit. The ADMM-TD pseudocode is presented in
Algorithm 1.



Algorithm 1 ADMM-TD
1: Input:
2: {si, ri, s′i}i=1,...,n and form Φ̃ and Φ̃′

3: Initialize:
4: γ ∈ [0, 1], λ ≥ 0 , ρ > 0

5: Ã← Φ̃T
(

Φ̃− γΦ̃′
)
, b̃← Φ̃TR

6: for k = 0, 1, . . . do
7: wk+1 ← (Ã+ ρI)−1(b̃+ ρ(zk − uk))
8: zk+1 ← Sλ/ρ(w

k+1 + uk)
9: uk+1 ← uk + wk+1 − zk+1

10: end for
11: return w

B. Properties of ADMM-TD

In what follows, we show that the ADMM-TD fixed point
solution, w, is also a solution to the `1-regularized fixed point
problem (3) with optimality conditions (5).

Lemma 1. The fixed point solution, w∗, as obtained from the
ADMM-TD iterations in Algorithm 1, satisfies the optimality
conditions (5), and is thus a solution to problem (3), for any
λ ≥ 0 and ρ > 0.

Proof. At the fixed point, ADMM-TD iterations satisfy the
following equations

w∗ = (Ã+ ρI)−1(b̃+ ρ(z∗ − u∗)) (12)
z∗ = Sλ/ρ(w

∗ + u∗) (13)
u∗ = u∗ + w∗ − z∗. (14)

Equation (14) implies that w∗ = z∗. From (12) it follows that

u∗ =
1

ρ
(b̃− Ãw∗). (15)

Similarly, equation (10) can be rewritten as:

w∗ = Sλ/ρ(w
∗ + u∗). (16)

Now, combining (15) with (16) we have that

w∗ = Sλ/ρ

(
w∗ +

1

ρ
(b̃− Ãw∗)

)
. (17)

From this point, the proof parallels those in [21] and [22].
Using now the definition of the shrinkage operator (11), the
right-hand side of the equation (17) can be written as

sgn

(
w∗i +

1

ρ
[b̃−Ãw∗]i

)
max

{∣∣∣∣w∗i +
1

ρ
[b̃− Ãw∗]i

∣∣∣∣− λ

ρ
, 0

}
.

Since the max operator is nonnegative, the sign of operator
sgn must agree with the sign of w∗i . Therefore, if w∗i > 0, it
follows that

sgn

(
w∗i +

1

ρ
[b̃− Ãw∗]i

)
= 1,

and also

max

{∣∣∣∣w∗i +
1

ρ
[b̃− Ãw∗]i

∣∣∣∣− λ

ρ
, 0

}
= wi+

1

ρ
[b̃−Ãw∗]i−

λ

ρ
.

Replacing the above results to the equation (17) we have that

[b̃− Ãw∗]i = λ, w∗i > 0,

as the optimality conditions (5) indicate. With similar opera-
tions one can show that [b̃ − Ãw∗]i = −λ, for any w∗i < 0.
Finally, w∗i = 0 implies either that

sgn

(
1

ρ
[b̃− Ãw∗]i

)
= 0, (18)

or

max

{∣∣∣∣1ρ [b̃− Ãw∗]i
∣∣∣∣− λ

ρ
, 0

}
= 0. (19)

In the first case, (18), we must have that [b̃−Ãw∗]i = 0, which
satisfies the optimality conditions. From the second case, (19),
it follows that | 1ρ [b̃ − Ãw∗]i| ≤ λ

ρ ⇒ −λ ≤ [b̃ − Ãw∗]i ≤ λ,
which concludes the proof.

The above Lemma shows that the ADMM-TD solves the
fixed point problem (3), and that the above proof also holds
for w = z. A convergence proof of the ADMM-TD to the
fixed point remains outstanding. However, our experimental
results in Section IV below indicate comparable, if not better,
behavior relative to the LARS-TD algorithm. In particular,
unlike LARS-TD, the proposed ADMM-TD converges to the
fixed point in both on- and off-sampling cases.

IV. EXPERIMENTS

The four-rooms grid problem, as discussed in [23, Section
5], was used to compare the proposed ADMM-TD with
LARS-TD. The problem involves a two dimensional grid with
total number of states S = M × N , where M and N are
chosen as the largest factors of S. The grid is split into
four interconnected rooms where only the neighbor rooms are
connected to each other. Goal states are the states S−1, S−2.
The agent receives a reward of 1 when it visits the goal
states and receives −1 elsewhere. The action set available
to the agent comprises eight actions (towards all possible
directions) —agents with this characteristics are called “king-
move” agents. Each action has a probability of success of 0.85.
We use the four-rooms environment with a total of 25 states
in all our experiments. The value functions are represented
with Gaussian Radial Basis Functions (RBFs) concatenated
over different two-dimensional grids. Training samples are
collected in different episodes of 5 steps each. The step-size
parameter is kept fixed for all the experiment, ρ = 0.1. To
select the most effective value of the regularization parameter,
we use K-fold cross-validation, for a total of 100 values of λ,
with K either 5 or 10 according to the magnitude of samples.

In the first experiment, Figure 1a, we approximate the
state-value function using 1365 features concatenated over
[2, 4, 8, 16, 32] grids. We compare the performance of the
algorithms over different number of samples (400, 700, 1000)
collected on-policy, in 50 trials. As expected, LARS-TD
and the LASSO formulation of ADMM-TD yielded similar
averaged approximation errors.
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Fig. 1. (a) Averaged approximation error over 50 trials for V function using
1365 features versus samples m. (b) Averaged approximation error over 50
trials for Q function using 2728 features versus samples m.

(a)

(b)

Fig. 2. (a) 10-fold cross-validation (CV) versus regularization parameter
λ; minimum CV achieved for λ = 0.214. (b) averaged sparsity versus
regularization parameter λ; λ = 0.214 yields approximately 227 nonzero
features.

Subsequently, we test both algorithms in the context of Q
value approximation. In this experiment we supply both meth-
ods with 2728 features concatenated over [2, 4, 8, 16] grids.
Again, we average our results over 50 trials using different
number of samples (see Figure 1b). This time, we collect
our samples off-policy (executing a random policy each time).

TABLE I
MEAN SIMULATED REWARD (20 TRIALS) ± STANDARD ERROR BETWEEN
ADMM-TD AND LARS-TD FOR m = (1500, 2000) SAMPLES AND 2728

FEATURES.

averaged simulated reward
No. of samples ADMM-TD LARS-TD

1500 73.06± 5.001 66.76± 6.91
2000 73.77± 3.47 67.78± 7.14

Under these circumstances, LARS-TD was not always able to
find a solution. In particular, we found LARS-TD to violate
the optimality conditions 27/150 times, while ADMM-TD
never failed. For this reason, the LARS-TD results, illustrated
in Figure 1b, incorporate `2-regularization as proposed in
[14]. The results, though, indicate identical behavior for both
algorithms, showing the same averaged approximation error,
even with the elastic net formulation of LARS-TD. However,
this modification in LARS-TD comes with the drawback of
increased computational cost due to reduced sparsity. For
instance, 10-fold cross-validation in the case of m = 1500
indicates λ = 0.214 producing about 200 nonzero features
(Figures 2a, 2b), while for the same example, LARS-TD
produces approximately 2000 nonzero features.

In the final experiment, the ability of both algorithms to
find good policies (policy iteration) is evaluated. We use
(1500, 2000) samples and, as before, the samples are collected
in the same manner. The results are averaged over 20 trials
where each policy iteration trial is run until either convergence
to the optimal solution or a maximum of 15 steps is reached.
In this setting, we found that LARS-TD violated the optimality
conditions repeatedly, and hence was never able to find a
good policy. This is understandable because the policy changes
drastically at each step due to the rich available action set.
On the other hand, given enough samples, ADMM-TD never
failed to reach the optimal policy —we only found ADMM-
TD not satisfying the optimality conditions for m < 1000.
Therefore, in order to compare both methods in terms of the
simulated reward, we, again, aplly the an `2 penalty in LARS-
TD algorithm. Nevertheless, LARS-TD now requires storing
and inverting a square matrix with almost 2000 entries (as
described in the previous paragraph) many times at each policy
iteration step. The fact that LARS-TD computes a complete
homotopy path within policy iteration makes the algorithm
inefficient with respect to time complexity (the same issue is
also discussed in [2]). As a result, for practical purposes, we
tuned both algorithms to produce no more than 200 nonzero
features. In this context, ADMM-TD yielded better policies
compared to LARS-TD, as shown in Table I. Furthermore, we
noted that approximately 5 steps were needed for ADMM-TD
to reach an optimal policy, while LARS-TD needed always
more than 10 steps.

V. RELATED WORK

There has been several works recently which perform
feature selection in Temporal Difference learning. In [2],
the `1-regularized fixed point problem is solved as Linear



Complementarity Problem rather than using LARS algorithm.
This approach overcomes the limitations of LARS-TD in the
context of policy iteration by allowing for warm-starts at each
step. However, for finding a solution to (3), LCP requires Ã
to be a P -matrix. Loth et al. [3] perform `1-regularization
to the Bellman Residual Minimization which cannot then be
considered as a fixed point problem. Furthermore, Petrick et
al. [4] propose `1-regularization in the context of approximate
linear program which suffers when applied to noisy samples.
Geist and Scherrer [5] take a different route by solving a
convex optimization problem. They apply `1-regularization to
the Projected Bellman Residual (PBR), instead. Although this
formulation enjoys the benefits of a convex problem, it comes
with the increased computational cost requiring the calculation
of the projection, Π̃, and moreover it cannot then be interpreted
as a fixed-point problem.

Finally, the only other ADMM approach to RL that we are
aware of, called ADMM-BPDN [6], solves the `1-PBR prob-
lem as a constrained convex problem, with ‖C̃w+d̃‖ ≤ ε. This
formulation reduces to a first-order method which effectively
corresponds to the basis pursuit denoising problem (BPDN)
[7]. It has been proved that the algorithm converges to a
solution if τ ≤ 1

eigmax(C̃T C̃)
, where τ is the proximal step-

size parameter. However, eigmax(C̃T C̃) is often too large and
hence it is unclear whether the method is efficient, in terms
of time complexity, when dealing with large problems.

VI. CONCLUSION

We here proposed an alternative off-line algorithm for solv-
ing the `1-regularized fixed-point. We validated the efficacy
of our algorithm against LARS-TD in a complex experimental
environment with many available actions. Results indicate that,
given enough samples, ADMM-TD is able to find the fixed-
point solution even within the policy iteration procedure.

The advantage of ADMM-TD as a direct method committed
to only a single value of λ is that, even in the case where
the optimality conditions are violated, one may discard the
coefficient for the specific λ without affecting the other
solutions. However, when LARS-TD violates the optimality
conditions, the complete homotopy path is affected. As also
shown in [14], the homotopy path reaches discontinuities
which makes the algorithm return multiple fixed-point. On
the other hand, LARS-TD, as path algorithm, is able to return
the complete set of solutions, while ADMM-TD only returns
a subset over a fixed grid. Further, we demonstrated that
LARS-TD modified to incorporate `2-regularization loses its
computational efficiency due to the decreased sparsity. We
also note that, similar to the usual ADMM, the proposed
ADMM-TD can be easily extended to allow other forms of
regularization (eg. Tikhonov regularization or elastic net).

As a future direction, we plan for a proof of convergence
of the ADMM-TD. We conjecture that the algorithm could
be shown to converge to the fixed point under much weaker
assumption compared to the existing work. Our anticipation
is driven, first, from the fact that the step-size parameter ρ
is incorporated in the diagonal of Ã and, second, due to the

behavior of our algorithm in the context of policy iteration.
We also plan to apply ADMM-TD to control problems.
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