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Abstract—We present our asynchronous implementation of the
LM-CMA-ES algorithm, which is a modern evolution strategy for
solving complex large-scale continuous optimization problems.
Our implementation brings the best results when the number of
cores is relatively high and the computational complexity of the
fitness function is also high. The experiments with benchmark
functions show that it is able to overcome its origin on the Sphere
function, reaches certain thresholds faster on the Rosenbrock and
Ellipsoid function, and surprisingly performs much better than
the original version on the Rastrigin function.

I. INTRODUCTION

Evolutionary algorithms are a nice tool for solving complex
optimization problems for which no efficient algorithms are
currently known. They belong to black-box optimization al-
gorithms, i.e. the algorithms which learn the problem instance
they solve by querying the function value, or “fitness”, of
a solution from that instance. In their design, evolutionary
algorithms rely on the ideas which are rooted in natural evo-
lution: problem solutions “mutate” (undergo small changes),
“mate” or “cross over” (new solutions are created from parts of
other solutions), undergo “selection” (only a part of solutions
proceeds to the next iteration).

One of the most prominent features of evolutionary algo-
rithms is the high degree of parallelism. Most evolutionary
algorithms, such as genetic algorithms, evaluate hundreds of
solutions in parallel, which allows efficient usage of multicore
and distributed computer systems. However, many such algo-
rithms are generational, that is, they must have many solutions
to be completely evaluated before taking further actions. If the
time of a single solution evaluation may differ from time to
time, such evaluation scheme may be quite inefficient, because
many threads finish their work too early and wait for long
periods of time until the next work pieces become available. To
overcome this problem, steady-state evolutionary algorithms
are developed, which do not have the notion of generations,
so they have a potential to become asynchronous and to use
computer resources in a better way.

Optimization problems are often subdivided into three
groups: discrete problems, continuous problems and mixed
problems. Among them, continuous problems received signifi-
cant attention in classical mathematical analysis, so a rich body
of methods was developed which makes optimization efficient
by using information about gradient and second derivatives.

Black-box algorithms for solving continuous optimization
problems, while remaining in the black-box setting (i.e. using
only the function value, but not gradient, which may not
exist at all), borrowed many ideas from classic methods. One
of the most famous algorithms of this sort is the Broyden-
Fletcher-Goldfarb-Shanno algorithm, or simply BFGS [1].
Modern evolution strategies, e.g. evolutionary algorithms for
continuous optimization which tend to self-adapt to the prob-
lem’s properties, also follow this direction, which led to the
appearance of the evolution strategy with covariance matrix
adaptation (CMA-ES [2]).

The CMA-ES algorithm, as follows from its name, learns a
covariance matrix which encodes dependencies between deci-
sion variables, together with some more traditional parameters
like the step size. This algorithm shows very good convergence
at many problems, including non-separable, multimodal and
noisy problems. However, it comes with a drawback, which
is high computational complexity (O(n2) per function evalu-
ation, where n is the problem size, and O(n2) memory for
storing the covariance matrix). An attempt to reduce memory
requirements and decrease the running time using numeric
methods for Cholesky factorization was recently done in [3].
Several modifications were developed, including sep-CMA-
ES [4], which gives linear time and space complexity, but
at the cost of worse performance on non-separable functions.
However, most if not all algorithms from this family, while
being generational by their nature, have a cost of maintaining
the algorithm state after evaluation of the generation which is
comparable to or even higher than a single function evaluation.
This makes it nearly impractical to use them in multicore or
distributed computing environments, especially when function
evaluation is cheap.

The only attempt to turn an evolution strategy from the
CMA-ES family into an asynchronous algorithm, which is
known to authors, belongs to Tobias Glasmachers [5]. This
work, however, addresses a so-called natural evolution strat-
egy [6], which is much easier to make asynchronous due to
properties of updates used in this algorithm. This approach
can not be easily extended on other flavours of CMA-ES.

This paper presents our current research results on making
asynchronous a more typical CMA algorithm, proposed by Ilya
Loshchilov [7] and called “limited memory CMA-ES” (LM-
CMA-ES). This algorithm is designed to work with large scale
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optimization problems (with the number of dimensions n ≥
1000) which are not solvable with the usual CMA-ES. The key
idea which made this possible is to compute the approximation
of the product of a square root of the covariance matrix by a
random vector sampled from the Gaussian distribution, which
is a way CMA-ES samples new individuals, by an iterative
process which references only m vectors, m � n, from the
past evaluations. The step sizes are restored in a similar way.
This makes it possible to avoid storing the covariance matrix
or its parts explicitly (which takes O(n2) memory) and finding
its eigenpairs (which takes O(n3) time per generation). In the
same time, this method does not sacrifice rotation symmetry
in the way the sep-CMA-ES does.

The main idea of this paper is to change the algorithm which
updates the stored data in order to make it incremental, which
turns the LM-CMA-ES algorithm into a steady-state one. After
this change, the solutions can be evaluated asynchronously,
which makes the overall implementation asynchronous. The
results of the very early experimentation stage are presented
in our previous paper [8]. Compared to that paper, we use
more evaluation functions, more algorithm configurations,
measure much more data (not only CPU load) and perform
a comparison to the original LM-CMA-ES algorithm.

This is a full version of the paper which was accepted as a
poster to the IEEE ICMLA conference in 2015.

The rest of the paper is structured as follows. Section II
contains the description of our asynchronous modification of
the LM-CMA-ES. Section III sets up the research questions
which are solved in the paper. Section IV describes the
methodology used in experiment design, the experiment setup,
results and their discussion. Section V concludes.

II. ALGORITHM DESCRIPTION

In this section we describe the proposed asynchronous
modification of the LM-CMA-ES algorithm. Section II-A
briefly describes the original LM-CMA-ES algorithm as in [7],
and Section II-B explains the modifications which we made.

A. The Original LM-CMA-ES

The key idea of the LM-CMA-ES algorithm is to implicitly
restore the covariance matrix C from m� n selected vector
pairs (v(t), p

(t)
c ) sampled at some past moments of time. Each

vector pair consists of v(t), the solution represented in the
coordinate system based on eigenvectors of the covariance
matrix C(t) corresponding to the moment of time t, and the
evolution path p(t)c represented in the same coordinate system.

The algorithm itself does not need the entire matrix by itself,
but only its left Cholesky factor A (such that C = A×AT ) and
its inverse A−1. Generally they also require Θ(n2) space to be
stored, but if we know that the matrix C is constructed from
only m pairs of vectors, we can use these vectors to simulate
an effect of A × x and A−1 × x for an arbitrary vector x.
The total time needed to do this is O(nm) per single function
evaluation.

This algorithm, as any algorithm belonging to the CMA-ES
family, has a number of parameters, such as λ, the number of

sampled solutions per iteration, µ, the number of best solutions
which are used to construct the next reference search point,
weights wi for creation of this search point, and a number
of other parameters. However, they all have default values,
which were shown to be efficient for optimization of multiple
benchmark functions [7].

B. Our Modifications

Our implementation is different from the LM-CMA-ES
algorithm in the following key aspects:

• We do not use generations of size λ. Instead, we use
several threads which work independently most of the
time. First, a thread samples a solution based on the
reference search point, the implicit Cholesky factor A
and using generator of random numbers from the normal
distribution N (0, 1). Then it evaluates this solution using
the fitness function. After that, the thread enters a critical
section, performs update operations, makes copies of the
necessary data and leaves the critical section.

• Due to the one-at-a-time semantics of an update, the
modification no longer belongs to the (µ/µw, λ) scheme,
but rather can be described as (m + 1) – the algorithm
maintains m best solution vectors and updates this col-
lection when a new solution comes. This may have some
drawbacks on complex functions, as the algorithm has a
larger probability to converge to a local optimum, but the
simpler update scheme introduces smaller computational
costs inside a critical section, which improves running
times.

III. RESEARCH QUESTIONS

How can we compare the quality of different algorithms,
given a single problem to solve? There are many measures
which assist researchers in doing this. Probably the most three
popular measures, especially when one considers multiple
cores in use, are the following ones:

1) The best possible solution quality. The main aim of
this measure is to determine how good the considered
algorithm is in determining the problem’s features, and
which fitness function values it is able to reach. To
track this value, one can run the algorithm until it finds
an optimum within the given precision (for example,
10−10), or until a sufficiently big computational budget
is spent (for example, 106 fitness function evaluations),
or until one can show that the algorithm cannot find a
better solution in a reasonable time.

2) The best solution quality under a certain wall-clock
time limit. This is quite a “practical” measure widely
used in solving real-world problems. However it suffers
a drawback: one cannot really compare the results of
different algorithms without any problem knowledge.
For example, a difference of 0.1 in the fitness values can
be really big for some problems and negligibly small for
some other problems.

3) The wall-clock time to obtain a solution of the given
quality. This is a more “theoretical” measure because



the computational budget is not limited, and it is of-
ten a known optimum value which is taken to be a
threshold. However we may expect a better scaling of
results achieved in this way, which depends less on the
problem’s properties.

In this paper, we compare our asynchronous modification
of the LM-CMA-ES algorithm with the original generational
implementation of the same algorithm on different benchmark
problems. As these problems have varying difficulty for these
algorithms, it is unrealistic to create the uniform experiment
setups for all these problems. So we drop the second measure
and consider only the first one (the best possible solution
quality) and the third one (the wall-clock time to obtain a
solution of the given quality). Based on these comparisons,
we try to find answers for the following questions:

1) Are the considered algorithms able to solve the problems
to optimality (i.e. within the precision of 10−10)? Which
problems are tractable by which algorithms?

2) What are the convergence properties of the algorithms?
How the changes introduced in the asynchronous version
affect the convergence?

3) How the performance of the algorithms depends on the
number of cores?

4) How the performance of the algorithms depends on the
computational complexity of the fitness function?

5) Which are the problems where the asynchronous version
is better, and where is it worse?

IV. EXPERIMENTS

This section explains the methodology used while designing
the experiments (Section IV-A), shows the setup of the ex-
periments, including technical details (Section IV-B), presents
and explains the results of the preliminary experiments (Sec-
tion IV-C), and ends with the main experiment results and
their discussion (Section IV-D).

A. Methodology

When one configures an experiment, one has to choose one
of the possible values for several parameters. We consider the
following important parameters:

1) The problem type (the type of the function to be
optimized),

2) The problem dimension (the number of decision vari-
ables).

3) The computational complexity of the problem (the com-
putational effort required to evaluate a single solution,
probably as a function of the problem dimension and
the fitness value).

4) The number of CPU cores used to run the algorithm.
All these parameters, except for the third one, have been

considered in the literature before. The third parameter (the
computational complexity) typically was considered as a func-
tion of the problem dimension and the fitness value which
is determined exclusively by the problem type. Due to the
fourth research question, we decided to treat separately the

computational complexity because this gives a chance to adjust
the ratio of fitness time to update time, which influences the
overall CPU utilization, without influencing other problem
characteristics. One can expect that, for example, as the fitness
function becomes more and more “heavy”, while all other
parameters are left unchanged, the CPU utilization becomes
better.

B. Setup

We used the following benchmark functions for the first
experiment parameter:

• the Sphere function: f(x) =
∑n

i=1 x
2
i ;

• the Rastrigin function:
f(x) = 10n+

∑n
i=1

(
x2i − 10 cos(2πxi)

)
;

• the Rosenbrock function:
f(x) =

∑n−1
i=1

(
100

(
xi+1 − x2i

)2
+ (1− xi)2

)
;

• the Ellipsoid function: f(x) =
∑n

i=1

(∑i
j=1 xj

)2
.

For the second experiment parameter (the problem’s dimen-
sion), we use the values 100, 300 and 1000.

For the third experiment parameter (the computational com-
plexity of a fitness function), we either use the fitness function
as it is, or augment it with a procedure which changes nothing
in the fitness function result but introduces additional compu-
tation complexity. This additional complexity is achieved by
running the Bellman-Ford algorithm on a randomly generated
graph with 10 000 edges and 200, 400, or 600 vertices. This
produces the linear growth of the additional complexity, which
is similar to or exceeds the “natural” computational complexity
of the fitness function.

For the fourth experiment parameter (the number of cores),
we use the values 2, 4, 6, and 8.

There were three termination criteria, which stop the algo-
rithm under the following conditions:

1) The function value is close to the optimum with the
absolute precision of 10−10. The optimum values of all
the considered functions are known to be zeros.

2) The number of fitness function evaluations exceeds 106.
3) For the asynchronous implementation, the value of the

parameter σ becomes less than 10−20, which reflects the
algorithm’s stagnation in the current point.

Each experiment configuration was run for 100 times for
configurations without additional computational complexity
and for 50 times otherwise.

For monitoring the overall performance, both in terms of
convergence and of using multiple cores, we track the median
values of the wall-clock running time needed to reach a certain
threshold t, and the median values of the processor’s cores
load for the time from the beginning of the run until the
threshold t. For each problem we have to choose several values
of the threshold t, which we do by analysing the preliminary
experiments.

C. Preliminary Experiments and Their Results

The preliminary experiments were designed to get prelim-
inary answers to the first two research questions, and also



Fig. 1. Example fitness function plots on Sphere

Fig. 2. Example fitness function plots on Rastrigin

to find suitable fitness function thresholds for each fitness
function we used. We did several trial runs of the asyn-
chronous implementation of the LM-CMA-ES algorithm with
the problem dimension of 100 without additional computation
complexity and with different numbers of available cores.

Fig. 1 and 2 show that the Sphere and Rastrigin functions
are typically optimized to the global optimum independently of
the number of cores (in other words, the algorithm always finds
a point with the fitness value less than 10−10). One can notice
the linear convergence in the case of these two functions.
For the Rastrigin function there is one linear piece with a
smaller slope in the beginning, which seems to correspond to
the search for the surroundings of the global optimum. For
these two functions the logarithmically equidistant thresholds
seem to be the optimal choice, so we select the values of 1,
3 · 10−2, 10−5, 3 · 10−7, 10−10.

On Fig. 3 one can see a different kind of convergence
for the Rosenbrock function. This function is quite difficult
for the asynchronous algorithm, as all the runs converge to
approximately 90 and then stop having any progress. This is a
characteristic trait of this function, as the optimizers typically
reach the valley first and then try to find an optimum within
the valley using a very small gradient. For this function we
take as a threshold the value of 100, which is close enough to

Fig. 3. Example fitness function plots on Rosenbrock

Fig. 4. Example fitness function plots on Ellipsoid

the stagnation point, and the value of 3000, which should be
reachable by any sensible optimizer. We also include the value
10−10 from the termination criterion and two intermediate
values of 10−2 and 10−6.

Finally, Fig. 4 shows a similar but slightly different kind
of convergence for the Ellipsoid function. In this case, unlike
Rosenbrock, after a large number of fitness function evalua-
tions the algorithm is sometimes able to learn a new gradient
and find the optimum. This can follow from the 1/5-th rule
used in the algorithm, which is not very efficient in this
problem. For the threshold values, we took the same values
as for the Rosenbrock function.

D. Main Experiment Results and Discussion

The results are presented in Tables I–IV.
For the Sphere function (Table I), one can see that both

algorithms reach the optimum of this problem. The worst
behavior of the proposed algorithm can be seen when the
number of cores is high (e.g. 8) and the fitness function
complexity is low. This corresponds to the case where the
most time is spent on waiting for a critical section. The best
behavior is demonstrated when the number of cores is high
and the fitness function complexity is also high. Under these
conditions, the proposed algorithm, while using an update rule



which is generally worse, reaches the optimum faster due to
more efficient usage of multiple cores.

For the Rastrigin function (Table II), the proposed algorithm
always finds an optimum, but the original LM-CMA-ES never
does that, which was surprising. This change can be attributed
to the update rule as well, but in this case a simpler rule brings
better results.

The Rosenbrock (Table III) and the Ellipsoid (Table IV)
functions are particularly hard for both algorithms. The pro-
posed algorithm typically produces worse results, but in the
case of high computational complexity of the fitness function
it reaches the thresholds faster. This can be attributed both
to the update rule (which seems to be too greedy for these
problems) and to the efficient usage of multiple cores.

V. CONCLUSION

We presented our first attempt to implement an asyn-
chronous version of the LM-CMA-ES algorithm. Our algo-
rithm is the best when the number of cores is high and the
computation complexity of the fitness function is also high. It
uses a different update rule than the LM-CMA-ES algorithm
which generally is not very good, however, the efficient usage
of multiple cores compensates for this fact on the Sphere
benchmark function, and brings to some fitness functions
thresholds faster on the Rosenbrock and the Ellipsoid function.
A surprising fact is that it performs on the Rastrigin problem
much better than the original algorithm.

This work was partially financially supported by the Gov-
ernment of Russian Federation, Grant 074-U01.
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TABLE I
EXPERIMENT RESULTS FOR THE SPHERE FUNCTION. LEGEND: “PROPOSED” IS THE ASYNCHRONOUS MODIFICATION OF LM-CMA-ES DESCRIBED IN
THIS PAPER, “LM-CMA” IS THE ORIGINAL LM-CMA-ES IMPLEMENTATION. THE TABLE ENTRIES CONSIST OF THE MEDIAN WALL-CLOCK TIME TO

REACH THE CORRESPONDING THRESHOLD (IN SECONDS) AND OF THE MEDIAN PROCESSOR LOAD VALUE, SEPARATED BY A FORWARD SLASH.

n Algo Thresholds Thresholds
1 3 · 10−2 10−5 3 · 10−7 10−10 1 3 · 10−2 10−5 3 · 10−7 10−10

2 cores, additional complexity 0 2 cores, additional complexity 200
100 Proposed 0.17/1.6 0.25/1.6 0.42/1.6 0.49/1.6 0.65/1.6 0.46/1.9 0.62/1.9 1.07/1.9 1.28/1.9 1.69/1.9

LM-CMA 0.11/1.7 0.15/1.7 0.24/1.7 0.28/1.7 0.38/1.7 0.26/1.9 0.36/1.9 0.6/1.9 0.71/1.9 0.96/1.9
300 Proposed 1.18/1.7 1.63/1.7 2.67/1.7 3.13/1.7 4.15/1.7 1.72/1.8 2.39/1.8 3.86/1.8 4.52/1.8 6.03/1.8

LM-CMA 0.55/1.7 0.76/1.8 1.22/1.8 1.42/1.8 1.91/1.8 0.97/1.8 1.32/1.8 2.15/1.8 2.5/1.8 3.33/1.8
1000 Proposed 10.38/1.6 14.04/1.6 22.22/1.6 25.75/1.6 33.84/1.6 10.46/1.7 13.98/1.7 22.11/1.7 25.67/1.7 33.75/1.7

LM-CMA 5.45/1.8 7.42/1.8 11.87/1.8 13.88/1.8 18.34/1.8 6.2/1.8 8.56/1.8 13.88/1.8 16.43/1.8 22.08/1.8
2 cores, additional complexity 400 2 cores, additional complexity 600

100 Proposed 1.59/1.9 2.23/1.9 3.74/1.9 4.4/1.9 5.94/1.9 3.23/1.9 4.78/1.9 8.19/1.9 9.49/1.9 12.96/1.9
LM-CMA 1.45/1.9 2.56/1.9 2.97/1.9 4.04/1.9 1.01/1.9 2.29/1.9 3.39/1.9 5.66/1.9 6.8/1.9 9.39/1.9

300 Proposed 3.87/1.9 5.4/1.9 8.79/1.9 10.31/1.9 13.82/1.9 9.27/1.9 12.99/1.9 21.32/1.9 25.49/1.9 34.05/1.9
LM-CMA 3.02/1.9 4.26/1.9 7.02/1.9 8.18/1.9 10.91/1.9 6.31/1.9 8.79/1.9 14.45/1.9 16.84/1.9 22.68/1.9

1000 Proposed 17.3/1.8 23.46/1.8 36.71/1.8 42.81/1.8 56.0/1.8 30.73/1.9 41.52/1.9 65.3/1.9 76.12/1.9 100.51/1.9
LM-CMA 14.73/1.8 20.14/1.8 32.7/1.8 38.11/1.8 52.13/1.8 23.79/1.9 32.4/1.9 51.3/1.9 60.22/1.9 79.74/1.9

4 cores, additional complexity 0 4 cores, additional complexity 200
100 Proposed 0.27/1.1 0.39/1.2 0.66/1.1 0.76/1.1 1.03/1.1 0.22/3.5 0.31/3.5 0.54/3.4 0.64/3.4 0.86/3.4

LM-CMA 0.07/2.5 0.1/2.5 0.17/2.5 0.2/2.5 0.27/2.5 0.16/3.4 0.23/3.4 0.39/3.5 0.46/3.5 0.66/3.5
300 Proposed 1.42/1.7 1.96/1.7 3.2/1.7 3.74/1.7 4.99/1.6 1.09/3.0 1.53/3.0 2.53/3.0 2.98/3.0 3.97/3.0

LM-CMA 0.43/2.6 0.59/2.6 0.95/2.6 1.11/2.6 1.48/2.6 0.65/3.4 0.93/3.4 1.49/3.4 1.75/3.4 2.33/3.4
1000 Proposed 10.31/1.9 13.83/1.9 22.03/1.9 25.52/1.9 33.62/1.9 7.93/2.5 10.69/2.5 16.98/2.5 19.75/2.5 25.95/2.5

LM-CMA 3.77/2.8 5.13/2.8 8.2/2.8 9.52/2.8 12.57/2.8 4.4/3.0 5.96/3.0 9.58/3.0 11.28/3.0 14.83/3.0
4 cores, additional complexity 400 4 cores, additional complexity 600

100 Proposed 0.66/3.9 0.94/3.9 1.59/3.9 1.88/3.9 2.5/3.9 1.31/3.9 1.92/3.9 3.27/3.9 3.81/3.9 5.2/3.9
LM-CMA 0.73/3.6 1.06/3.6 1.76/3.6 2.13/3.6 2.84/3. 1.51/3.7 2.14/3.7 3.64/3.7 4.36/3.7 5.67/3.7

300 Proposed 2.04/3.7 2.85/3.7 4.7/3.7 5.5/3.7 7.27/3.7 4.32/3.9 6.03/3.9 10.03/3.9 11.89/3.9 15.92/3.9
LM-CMA 2.08/3.6 2.88/3.6 4.9/3.6 5.69/3.6 7.49/3.6 4.58/3.7 6.56/3.7 10.88/3.7 12.89/3.7 17.51/3.7

1000 Proposed 9.9/3.0 13.41/3.0 21.28/3.0 24.84/3.0 32.64/3.0 16.55/3.6 22.38/3.6 34.93/3.6 40.52/3.6 53.01/3.6
LM-CMA 8.82/3.2 12.03/3.2 19.97/3.2 23.54/3.2 31.36/3.2 15.15/3.5 20.28/3.5 33.64/3.5 39.07/3.5 52.54/3.5

6 cores, additional complexity 0 6 cores, additional complexity 200
100 Proposed 0.29/1.0 0.42/1.0 0.7/0.9 0.84/0.9 1.12/0.9 0.28/4.4 0.37/4.4 0.61/4.4 0.72/4.4 0.93/4.3

LM-CMA 0.08/2.3 0.11/2.4 0.17/2.3 0.21/2.3 0.28/2.3 0.16/4.7 0.23/4.8 0.37/4.8 0.43/4.8 0.57/4.8
300 Proposed 1.6/1.3 2.24/1.3 3.65/1.3 4.29/1.3 5.7/1.3 1.22/3.3 1.69/3.3 2.77/3.4 3.2/3.4 4.27/3.4

LM-CMA 0.44/2.5 0.6/2.5 0.99/2.5 1.15/2.5 1.54/2.5 0.51/4.6 0.69/4.7 1.16/4.8 1.36/4.7 1.82/4.8
1000 Proposed 11.08/1.7 14.95/1.7 23.6/1.7 27.49/1.7 36.26/1.7 8.83/2.5 11.9/2.5 18.87/2.5 21.96/2.5 29.04/2.5

LM-CMA 3.55/3.0 4.86/3.1 7.76/3.1 9.02/3.1 11.89/3.1 4.34/3.4 5.96/3.5 9.45/3.5 10.96/3.5 14.52/3.4
6 cores, additional complexity 400 6 cores, additional complexity 600

100 Proposed 0.48/5.7 0.7/5.8 1.14/5.8 1.36/5.8 1.88/5.8 0.99/5.9 1.46/5.9 2.47/5.9 2.94/5.9 4.02/5.9
LM-CMA 0.63/5.2 0.86/5.2 1.43/5.2 1.67/5.2 2.2/5.1 1.42/5.3 2.05/5.3 3.2/5.3 3.73/5.3 4.94/5.2

300 Proposed 1.57/5.1 2.23/5.1 3.67/5.1 4.33/5.1 5.81/5.1 3.3/5.7 4.52/5.7 7.49/5.7 8.82/5.7 11.87/5.7
LM-CMA 1.49/5.1 2.12/5.1 3.55/5.1 4.13/5.1 5.52/5.1 3.52/5.3 4.83/5.3 7.85/5.2 9.28/5.2 12.45/5.2

1000 Proposed 9.38/4.0 12.56/4.0 19.8/4.0 23.04/4.0 30.46/4.0 12.66/4.9 16.99/4.9 26.84/4.9 31.11/4.9 40.95/4.9
LM-CMA 8.03/4.0 11.44/4.0 18.44/3.9 21.55/3.9 29.44/3.9 13.02/4.8 17.75/4.8 29.68/4.8 34.6/4.8 46.78/4.8

8 cores, additional complexity 0 8 cores, additional complexity 200
100 Proposed 0.3/1.0 0.43/1.0 0.73/1.0 0.86/1.0 1.16/1.0 0.32/4.1 0.46/4.1 0.76/4.1 0.9/4.2 1.18/4.2

LM-CMA 0.08/2.3 0.11/2.3 0.18/2.3 0.21/2.3 0.28/2.3 0.13/5.3 0.2/5.3 0.35/5.2 0.4/5.3 0.51/5.3
300 Proposed 1.64/1.4 2.27/1.4 3.73/1.4 4.37/1.3 5.83/1.3 1.39/3.2 1.97/3.2 3.16/3.3 3.71/3.2 4.95/3.2

LM-CMA 0.46/2.4 0.64/2.4 1.03/2.4 1.2/2.4 1.6/2.4 0.42/5.6 0.58/5.7 0.97/5.7 1.13/5.7 1.49/5.7
1000 Proposed 11.18/1.7 14.99/1.7 23.83/1.7 27.69/1.7 36.45/1.7 9.22/2.5 12.56/2.5 19.9/2.5 23.13/2.5 30.47/2.5

LM-CMA 3.63/3.0 4.94/3.0 7.91/3.0 9.22/3.0 12.15/3.0 4.72/3.6 6.47/3.7 10.77/3.6 12.28/3.6 16.05/3.6
8 cores, additional complexity 400 8 cores, additional complexity 600

100 Proposed 0.39/7.3 0.55/7.4 0.93/7.4 1.09/7.4 1.46/7.3 1.19/7.8 1.96/7.8 2.3/7.8 3.12/7.8 0.85/7.8
LM-CMA 0.49/6.6 0.68/6.5 1.13/6.5 1.32/6.5 1.77/6.5 1.28/6.8 1.73/6.8 2.96/6.8 3.47/6.8 4.52/6.8

300 Proposed 1.54/6.6 2.12/6.6 3.53/6.5 4.08/6.5 5.39/6.6 2.69/7.4 3.74/7.5 6.25/7.5 7.46/7.5 10.07/7.5
LM-CMA 1.23/6.5 1.79/6.6 3.02/6.6 3.51/6.6 4.79/6.6 2.87/6.8 3.87/6.8 6.34/6.8 7.35/6.8 9.93/6.8

1000 Proposed 9.41/4.4 12.65/4.4 20.17/4.4 23.59/4.4 31.05/4.4 11.86/6.1 16.07/6.1 25.53/6.1 29.48/6.1 39.06/6.1
LM-CMA 8.47/4.4 11.6/4.4 18.91/4.4 22.32/4.3 29.63/4.2 12.41/5.9 17.39/5.8 28.12/5.8 32.75/5.8 43.58/5.8



TABLE II
EXPERIMENT RESULTS FOR THE RASTRIGIN FUNCTION. LEGEND: “PROPOSED” IS THE ASYNCHRONOUS MODIFICATION OF LM-CMA-ES DESCRIBED IN

THIS PAPER, “LM-CMA” IS THE ORIGINAL LM-CMA-ES IMPLEMENTATION. THE TABLE ENTRIES CONSIST OF THE MEDIAN WALL-CLOCK TIME TO
REACH THE CORRESPONDING THRESHOLD (IN SECONDS) AND OF THE MEDIAN PROCESSOR LOAD VALUE, SEPARATED BY A FORWARD SLASH.

n Algo Thresholds Thresholds
1 3 · 10−2 10−5 3 · 10−7 10−10 1 3 · 10−2 10−5 3 · 10−7 10−10

2 cores, additional complexity 0 2 cores, additional complexity 200
100 Proposed 0.29/1.6 0.37/1.6 0.56/1.6 0.64/1.6 0.83/1.6 0.68/1.9 0.91/1.9 1.41/1.9 1.63/1.9 2.16/1.9

LM-CMA — — — — — — — — — —
300 Proposed 1.97/1.7 2.51/1.7 3.72/1.7 4.24/1.7 5.41/1.7 2.53/1.8 3.18/1.8 4.74/1.8 5.45/1.8 6.93/1.8

LM-CMA — — — — — — — — — —
1000 Proposed 17.54/1.6 21.67/1.6 31.17/1.6 35.24/1.6 44.13/1.6 18.83/1.7 23.31/1.7 33.68/1.7 38.37/1.7 48.24/1.7

LM-CMA — — — — — — — — — —
2 cores, additional complexity 400 2 cores, additional complexity 600

100 Proposed 2.26/1.9 3.0/1.9 4.72/1.9 5.53/1.9 7.12/1.9 5.07/1.9 6.67/1.9 10.4/1.9 12.11/1.9 15.81/1.9
LM-CMA — — — — — — — — — —

300 Proposed 6.76/1.9 8.6/1.9 12.74/1.9 14.62/1.9 18.89/1.9 12.32/1.9 15.85/1.9 23.79/1.9 27.34/1.9 35.07/1.9
LM-CMA — — — — — — — — — —

1000 Proposed 32.42/1.8 40.52/1.8 58.98/1.8 67.34/1.8 85.16/1.8 52.96/1.9 66.23/1.9 95.9/1.9 109.09/1.9 136.96/1.9
LM-CMA — — — — — — — — — —

4 cores, additional complexity 0 4 cores, additional complexity 200
100 Proposed 0.38/1.9 0.49/1.8 0.74/1.7 0.85/1.7 1.12/1.7 0.44/3.4 0.59/3.3 0.8/3.2 0.9/3.2 1.17/3.2

LM-CMA — — — — — — — — — —
300 Proposed 1.84/2.3 2.35/2.3 3.5/2.2 4.0/2.2 5.14/2.2 1.54/3.0 2.0/3.0 3.06/3.0 3.49/3.0 4.43/3.0

LM-CMA — — — — — — — — — —
1000 Proposed 14.14/2.3 17.59/2.3 25.5/2.3 28.93/2.3 36.26/2.3 11.6/2.6 14.46/2.6 21.18/2.6 24.16/2.6 30.27/2.6

LM-CMA — — — — — — — — — —
4 cores, additional complexity 400 4 cores, additional complexity 600

100 Proposed 1.0/3.8 1.3/3.8 1.96/3.8 2.23/3.8 2.85/3.8 1.98/3.9 2.53/3.9 3.77/3.8 4.31/3.9 5.49/3.9
LM-CMA — — — — — — — — — —

300 Proposed 2.88/3.7 3.7/3.6 5.46/3.6 6.31/3.6 8.04/3.7 5.79/3.8 7.37/3.8 11.14/3.8 12.79/3.8 16.53/3.8
LM-CMA — — — — — — — — — —

1000 Proposed 14.71/3.1 18.36/3.1 27.13/3.0 30.76/3.0 38.65/3.0 22.88/3.5 28.49/3.5 40.98/3.5 46.64/3.5 58.23/3.5
LM-CMA — — — — — — — — — —

6 cores, additional complexity 0 6 cores, additional complexity 200
100 Proposed 0.48/1.1 0.63/1.1 0.96/1.0 1.11/1.0 1.43/1.0 0.43/3.1 0.55/3.1 0.83/3.2 0.98/3.1 1.32/3.0

LM-CMA — — — — — — — — — —
300 Proposed 2.47/1.6 3.17/1.6 4.72/1.5 5.4/1.5 6.93/1.5 1.59/3.8 2.04/3.7 3.1/3.6 3.54/3.6 4.54/3.7

LM-CMA — — — — — — — — — —
1000 Proposed 15.9/2.1 19.9/2.1 28.98/2.0 32.92/2.0 41.43/2.0 13.12/2.7 16.49/2.6 24.01/2.6 27.29/2.6 34.32/2.6

LM-CMA — — — — — — — — — —
6 cores, additional complexity 400 6 cores, additional complexity 600

100 Proposed 0.7/5.6 0.92/5.6 1.33/5.6 1.55/5.6 2.04/5.6 1.34/5.8 1.76/5.8 2.62/5.7 3.09/5.7 4.24/5.7
LM-CMA — — — — — — — — — —

300 Proposed 2.22/5.0 2.9/5.1 4.3/5.1 4.93/5.1 6.35/5.2 4.16/5.6 5.38/5.6 8.12/5.6 9.36/5.6 12.1/5.6
LM-CMA — — — — — — — — — —

1000 Proposed 13.72/3.8 17.22/3.8 25.13/3.8 28.71/3.8 36.15/3.8 17.74/4.8 22.19/4.7 32.23/4.7 36.81/4.7 46.23/4.7
LM-CMA — — — — — — — — — —

8 cores, additional complexity 0 8 cores, additional complexity 200
100 Proposed 0.47/1.0 0.61/1.0 0.94/0.9 1.09/0.9 1.41/0.9 0.6/2.3 0.81/2.3 1.23/2.3 1.4/2.3 1.78/2.5

LM-CMA — — — — — — — — — —
300 Proposed 2.58/1.4 3.26/1.4 4.85/1.4 5.57/1.4 7.21/1.3 2.15/2.9 2.74/2.8 4.14/2.7 4.74/2.7 6.17/2.7

LM-CMA — — — — — — — — — —
1000 Proposed 16.35/2.0 20.47/1.9 29.7/1.9 33.83/1.9 42.39/1.9 14.83/2.3 18.53/2.3 27.27/2.3 30.8/2.3 38.83/2.3

LM-CMA — — — — — — — — — —
8 cores, additional complexity 400 8 cores, additional complexity 600

100 Proposed 0.7/5.4 0.92/5.5 1.4/5.5 1.61/5.6 2.11/5.8 1.12/7.5 1.5/7.4 2.38/7.4 2.75/7.5 3.56/7.4
LM-CMA — — — — — — — — — —

300 Proposed 2.25/5.3 2.87/5.3 4.35/5.3 4.97/5.3 6.4/5.2 4.01/7.1 5.07/7.1 7.37/7.0 8.41/7.1 10.88/7.1
LM-CMA — — — — — — — — — —

1000 Proposed 14.23/4.2 17.73/4.1 25.76/4.1 29.27/4.1 36.93/4.1 18.1/5.7 22.67/5.7 33.06/5.7 37.62/5.7 46.82/5.6
LM-CMA — — — — — — — — — —



TABLE III
EXPERIMENT RESULTS FOR THE ROSENBROCK FUNCTION. LEGEND: “PROPOSED” IS THE ASYNCHRONOUS MODIFICATION OF LM-CMA-ES DESCRIBED
IN THIS PAPER, “LM-CMA” IS THE ORIGINAL LM-CMA-ES IMPLEMENTATION. THE TABLE ENTRIES CONSIST OF THE MEDIAN WALL-CLOCK TIME TO

REACH THE CORRESPONDING THRESHOLD (IN SECONDS) AND OF THE MEDIAN PROCESSOR LOAD VALUE, SEPARATED BY A FORWARD SLASH.

n Algo Thresholds Thresholds
3000 100 10−2 3 · 10−6 10−10 3000 100 10−2 3 · 10−6 10−10

2 cores, additional complexity 0 2 cores, additional complexity 200
100 Proposed 0.09/1.6 0.23/1.6 — — — 0.29/1.9 0.71/1.9 — — —

LM-CMA 0.05/1.7 1.32/1.7 6.41/1.7 6.55/1.7 6.72/1.7 0.16/1.8 1.9/1.9 20.5/1.8 21.07/1.8 21.61/1.8
300 Proposed 0.71/1.6 — — — — 1.08/1.8 — — — —

LM-CMA 0.43/1.8 47.04/1.7 53.22/1.7 54.03/1.7 54.7/1.7 0.72/1.8 69.03/1.8 23.27/0.9 24.21/0.9 25.05/0.9
1000 Proposed 7.04/1.6 — — — — 7.15/1.7 — — — —

LM-CMA 6.08/1.8 — — — — 6.9/1.8 — — — —
2 cores, additional complexity 400 2 cores, additional complexity 600

100 Proposed 0.92/1.9 2.44/1.9 — — — 1.9/1.9 4.81/1.9 — — —
LM-CMA 0.59/1.9 2.9/1.9 78.27/1.9 80.25/1.9 82.35/1.9 1.51/1.9 6.76/1.9 179.06/1.9 183.73/1.9 188.64/1.9

300 Proposed 2.81/1.9 — — — — 5.84/1.9 — — — —
LM-CMA 2.92/1.8 136.75/1.7 — — — 5.82/1.9 459.66/1.8 252.88/1.7 180.88/0.9 187.57/0.9

1000 Proposed 12.46/1.8 — — — — 19.8/1.9 — — — —
LM-CMA 9.5/1.8 — — — — 28.82/1.9 — — — —

4 cores, additional complexity 0 4 cores, additional complexity 200
100 Proposed 0.13/1.8 0.31/1.8 — — — 0.14/3.4 0.34/3.4 — — —

LM-CMA 0.04/2.6 1.23/2.5 5.12/2.3 5.24/2.3 5.38/2.3 0.1/3.4 0.38/3.5 12.53/3.5 12.85/3.5 13.16/3.5
300 Proposed 0.75/2.1 — — — — 0.66/3.0 — — — —

LM-CMA 0.34/2.6 33.76/2.6 16.01/1.2 16.38/1.2 — 0.51/3.4 36.05/3.2 — — —
1000 Proposed 6.51/2.1 — — — — 5.59/2.5 — — — —

LM-CMA 4.2/2.8 — — — — 4.63/3.1 — — — —
4 cores, additional complexity 400 4 cores, additional complexity 600

100 Proposed 0.37/3.9 0.88/3.9 — — — 0.82/3.9 2.15/3.9 — — —
LM-CMA 0.32/3.6 2.93/3.6 40.15/3.6 41.13/3.6 42.09/3.6 0.77/3.6 3.03/3.7 90.25/3.6 92.21/3.6 94.42/3.6

300 Proposed 1.21/3.7 — — — — 2.29/3.9 — — — —
LM-CMA 2.03/3.5 86.35/2.9 — — — 3.47/3.6 310.07/3.6 — — —

1000 Proposed 6.83/3.0 — — — — 9.83/3.5 — — — —
LM-CMA 10.33/3.4 — — — — 18.41/3.5 — — — —

6 cores, additional complexity 0 6 cores, additional complexity 200
100 Proposed 0.16/1.5 0.4/1.4 — — — 0.16/4.0 0.37/4.2 — — —

LM-CMA 0.04/3.1 0.44/3.0 5.33/2.4 5.44/2.4 5.57/2.3 0.08/4.8 0.79/4.9 11.45/4.9 11.77/4.9 12.06/4.9
300 Proposed 0.9/1.7 — — — — 0.75/3.5 — — — —

LM-CMA 0.34/2.6 34.74/2.6 39.48/2.5 40.67/2.5 19.86/1.2 0.33/4.5 26.4/4.6 29.54/4.4 30.36/4.4 30.95/4.4
1000 Proposed 6.98/2.0 — — — — 6.5/2.4 — — — —

LM-CMA 3.78/3.2 — — — — 4.17/3.8 — — — —
6 cores, additional complexity 400 6 cores, additional complexity 600

100 Proposed 0.29/5.7 0.73/5.8 — — — 0.62/5.9 1.68/5.9 — — —
LM-CMA 0.3/5.1 2.44/5.1 38.03/5.1 39.0/5.1 39.91/5.1 0.76/5.3 6.53/5.3 86.33/5.2 88.47/5.2 90.83/5.2

300 Proposed 0.96/5.1 — — — — 1.93/5.7 — — — —
LM-CMA 0.96/5.1 79.83/5.1 37.55/4.8 39.06/4.8 40.67/4.8 2.1/5.3 150.7/5.1 35.79/4.4 36.47/4.4 —

1000 Proposed 6.21/4.0 — — — — 7.87/4.9 — — — —
LM-CMA 7.73/4.2 — — — — 14.87/4.7 — — — —

8 cores, additional complexity 0 8 cores, additional complexity 200
100 Proposed 0.17/1.3 0.42/1.2 — — — 0.2/3.6 0.47/3.6 — — —

LM-CMA 0.05/2.3 1.24/2.2 5.58/2.1 5.69/2.1 5.83/2.1 0.08/5.8 1.04/5.8 9.28/5.9 9.47/5.9 9.7/5.9
300 Proposed 0.94/1.7 — — — — 0.87/2.8 — — — —

LM-CMA 0.34/2.5 44.85/2.4 41.63/2.4 40.6/2.4 34.76/2.4 0.34/5.5 29.96/5.6 26.72/5.2 24.77/5.2 12.68/2.6
1000 Proposed 7.22/2.0 — — — — 6.74/2.3 — — — —

LM-CMA 3.92/3.2 — — — — 4.54/4.1 — — — —
8 cores, additional complexity 400 8 cores, additional complexity 600

100 Proposed 0.22/7.1 0.55/7.2 — — — 0.49/7.7 1.17/7.8 — — —
LM-CMA 0.24/6.6 1.23/6.7 32.18/6.6 32.95/6.6 33.67/6.6 0.71/6.9 9.63/6.9 87.36/6.8 88.94/6.8 91.39/6.8

300 Proposed 0.88/6.1 — — — — 1.3/7.3 — — — —
LM-CMA 0.89/6.4 66.77/6.2 36.36/5.5 37.58/5.4 38.56/5.4 2.43/6.8 233.21/6.5 — — —

1000 Proposed 6.35/4.7 — — — — 6.8/5.9 — — — —
LM-CMA 7.4/5.4 — — — — 15.54/5.8 — — — —



TABLE IV
EXPERIMENT RESULTS FOR THE ELLIPSOID FUNCTION. LEGEND: “PROPOSED” IS THE ASYNCHRONOUS MODIFICATION OF LM-CMA-ES DESCRIBED IN

THIS PAPER, “LM-CMA” IS THE ORIGINAL LM-CMA-ES IMPLEMENTATION. THE TABLE ENTRIES CONSIST OF THE MEDIAN WALL-CLOCK TIME TO
REACH THE CORRESPONDING THRESHOLD (IN SECONDS) AND OF THE MEDIAN PROCESSOR LOAD VALUE, SEPARATED BY A FORWARD SLASH.

n Algo Thresholds Thresholds
3000 100 10−2 3 · 10−6 10−10 3000 100 10−2 3 · 10−6 10−10

2 cores, additional complexity 0 2 cores, additional complexity 200
100 Proposed 0.02/1.6 0.06/1.6 — — — 0.04/1.8 0.1/1.8 — — —

LM-CMA 0.02/1.7 0.37/1.7 1.89/1.7 3.4/1.7 4.92/1.7 0.05/1.8 0.93/1.9 4.57/1.9 8.54/1.8 12.49/1.8
300 Proposed 0.32/1.7 0.58/1.7 — — — 0.36/1.8 0.52/1.7 — — —

LM-CMA 1.43/1.7 13.11/1.8 48.54/1.8 84.02/1.8 119.75/1.8 1.54/1.8 16.88/1.8 63.1/1.8 110.26/1.8 157.16/1.8
1000 Proposed 7.3/1.8 5.66/0.9 — — — 6.95/1.8 5.12/0.9 — — —

LM-CMA 181.06/1.9 660.1/1.9 — — — 185.05/1.9 660.87/1.9 — — —
2 cores, additional complexity 400 2 cores, additional complexity 600

100 Proposed 0.14/1.9 0.39/1.9 — — — 0.29/1.9 0.9/1.9 — — —
LM-CMA 0.19/1.9 3.23/1.9 17.41/1.9 32.68/1.9 47.76/1.9 0.6/1.9 7.49/1.9 40.08/1.9 73.33/1.9 108.08/1.9

300 Proposed 0.67/1.9 0.72/1.9 — — — 1.44/1.9 2.0/1.9 — — —
LM-CMA 4.07/1.9 41.38/1.9 158.47/1.9 276.14/1.9 387.09/1.9 8.48/1.9 90.54/1.9 344.16/1.9 603.95/1.9 844.17/1.8

1000 Proposed 7.78/1.9 — — — — 9.72/1.9 — — — —
LM-CMA 244.14/1.9 893.87/1.9 — — — 319.63/1.9 201.08/1.9 — — —

4 cores, additional complexity 0 4 cores, additional complexity 200
100 Proposed 0.03/1.7 0.08/1.4 — — — 0.04/3.2 0.07/2.9 — — —

LM-CMA 0.02/2.8 0.28/2.7 1.43/2.6 2.61/2.5 3.74/2.5 0.04/3.5 0.64/3.6 3.36/3.5 6.1/3.5 8.82/3.5
300 Proposed 0.26/2.6 0.46/2.5 — — — 0.24/3.0 0.4/2.9 — — —

LM-CMA 0.9/2.9 8.29/2.9 30.65/2.9 53.38/2.9 76.15/2.9 0.86/3.5 8.99/3.5 34.29/3.5 59.95/3.5 86.08/3.5
1000 Proposed 4.35/3.3 6.81/3.3 — — — 4.24/3.2 6.27/3.1 — — —

LM-CMA 97.71/3.7 357.67/3.7 — — — 104.96/3.4 395.21/3.3 — — —
4 cores, additional complexity 400 4 cores, additional complexity 600

100 Proposed 0.07/3.8 0.18/3.8 — — — 0.2/3.9 0.37/3.9 — — —
LM-CMA 0.13/3.6 2.02/3.6 10.49/3.6 19.14/3.6 27.64/3.6 0.36/3.7 4.45/3.6 24.19/3.6 43.76/3.6 62.9/3.6

300 Proposed 0.41/3.7 0.63/3.5 — — — 0.73/3.9 — — — —
LM-CMA 2.23/3.6 24.57/3.6 93.33/3.6 161.2/3.6 228.31/3.6 6.11/3.4 58.09/3.4 234.18/3.3 400.76/3.4 570.06/3.3

1000 Proposed 5.0/3.4 — — — — 5.54/3.5 — — — —
LM-CMA 134.38/3.4 495.07/3.4 — — — 187.61/3.6 681.65/3.6 — — —

6 cores, additional complexity 0 6 cores, additional complexity 200
100 Proposed 0.04/1.3 0.1/1.1 — — — 0.04/3.5 0.08/2.4 — — —

LM-CMA 0.02/3.5 0.3/3.1 1.45/2.7 2.61/2.8 3.77/2.8 0.03/4.7 0.46/4.9 2.74/4.9 5.0/4.9 7.26/4.9
300 Proposed 0.34/2.3 0.6/2.1 — — — 0.3/3.3 0.2/1.1 — — —

LM-CMA 0.88/3.2 7.98/3.2 29.82/3.2 51.71/3.2 73.57/3.2 0.93/4.5 8.04/4.5 31.01/4.4 53.49/4.4 76.14/4.4
1000 Proposed 3.9/4.0 — — — — 3.64/4.1 — — — —

LM-CMA 89.57/4.5 322.84/4.5 — — — 79.45/4.9 289.77/4.8 — — —
6 cores, additional complexity 400 6 cores, additional complexity 600

100 Proposed 0.08/5.3 0.15/5.1 — — — 0.08/5.3 0.15/5.1 — — —
LM-CMA 0.11/5.1 1.42/5.2 7.73/5.1 14.54/5.1 21.31/5.1 0.24/5.3 3.36/5.3 17.92/5.2 33.2/5.2 48.78/5.2

300 Proposed 0.36/4.7 0.57/4.4 — — — 0.36/4.7 0.57/4.4 — — —
LM-CMA 2.26/5.1 20.84/5.0 80.58/5.1 138.97/5.0 198.07/5.0 4.16/5.3 39.42/5.3 146.97/5.3 251.66/5.3 361.75/5.3

1000 Proposed 4.16/4.5 2.74/2.0 — — — 4.16/4.5 2.74/2.0 — — —
LM-CMA 97.49/5.0 359.01/5.0 — — — 161.67/4.6 613.68/4.6 — — —

8 cores, additional complexity 0 8 cores, additional complexity 200
100 Proposed 0.04/1.3 0.1/1.0 — — — 0.05/3.2 0.11/2.6 — — —

LM-CMA 0.02/2.8 0.31/2.7 1.56/2.6 2.77/2.5 3.98/2.5 0.03/6.0 0.41/6.0 2.13/6.0 3.89/6.0 5.64/6.0
300 Proposed 0.37/1.9 0.64/1.8 — — — 0.33/2.7 0.54/2.3 — — —

LM-CMA 0.97/3.1 9.13/3.0 35.07/3.0 60.18/3.0 86.06/3.0 0.9/5.3 7.91/5.0 29.44/5.0 51.42/4.9 72.73/4.9
1000 Proposed 3.95/3.9 — — — — 3.95/4.2 — — — —

LM-CMA 85.91/5.1 319.85/5.1 — — — 72.46/5.6 269.39/5.6 — — —
8 cores, additional complexity 400 8 cores, additional complexity 600

100 Proposed 0.07/6.6 0.15/5.2 — — — 0.14/7.3 0.22/6.9 — — —
LM-CMA 0.1/6.6 1.14/6.7 6.84/6.6 12.26/6.5 17.53/6.5 0.22/7.0 3.75/6.9 18.11/6.8 33.17/6.8 48.28/6.8

300 Proposed 0.36/5.0 0.57/3.4 — — — 0.54/7.1 0.6/5.4 — — —
LM-CMA 1.65/6.1 15.71/6.2 60.05/6.2 105.71/6.2 150.66/6.2 3.26/6.6 28.07/6.7 109.14/6.7 193.33/6.7 277.51/6.7

1000 Proposed 3.72/5.0 — — — — 4.28/6.1 — — — —
LM-CMA 82.97/6.0 316.75/5.9 — — — 141.83/5.4 546.15/5.3 — — —
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