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Abstract—We describe here the recent results of a multidis-
ciplinary effort to design a biomarker that can actively and
continuously decode the progressive changes in neuronal orga-
nization leading to epilepsy, a process known as epileptogenesis.
Using an animal model of acquired epilepsy, we chronically
record hippocampal evoked potentials elicited by an auditory
stimulus. Using a set of reduced coordinates, our algorithm can
identify universal smooth low-dimensional configurations of the
auditory evoked potentials that correspond to distinct stages
of epileptogenesis. We use a hidden Markov model to learn
the dynamics of the evoked potential, as it evolves along these
smooth low-dimensional subsets. We provide experimental evi-
dence that the biomarker is able to exploit subtle changes in the
evoked potential to reliably decode the stage of epileptogenesis
and predict whether an animal will eventually recover from
the injury, or develop spontaneous seizures.

I. INTRODUCTION

A. The Challenge: Decoding Epileptogenesis

Epilepsy is a neurological disease that is characterized by
the occurrence of several unprovoked seizures. Despite vari-
ous causes of epilepsy and varying degrees of disease sever-
ity in the human population, hippocampal sclerosis is the
most consistent neuropathological feature of temporal lobe
epilepsy [1]. Animal models have been developed to study
the neuronal changes underlying the clinical manifestations
of epilepsy (chronic-spontaneous seizures). One popular
model relies on controlled administration of a convulsant
drug (e.g., pilocarpine) to induce status-epilepticus, a life-
threatening condition in humans. This condition is followed
by a latent seizure-free period of weeks to months, where
progressive neuronal damage and network reorganization
eventually lead to the development of spontaneous seizures.
Most of our understanding of the progression of epilepsy,
or epileptogenesis, is derived from such animal models.
It is therefore critical to define a biomarker to monitor
epileptogenesis. An accurate biomarker would be invaluable
for the design of novel anti-epileptogenic drugs, and could
eventually be translated into a diagnostic tool for humans.

B. From Passive Recording to Active Sensing

Current efforts toward the development of a reliable and
predictive biomarker of epileptogenesis fall in three main
classes: molecular and cellular biomarkers [2], imaging
biomarkers [3], and electrophysiological biomarkers [4]. The
present work focuses on the last class of biomarkers that
rely on recordings of the electrical activity associated with

neuronal firing. The development of electrophysiological
biomarkers has focused on the analysis of both epileptiform
spikes [5], and high frequency oscillations [6]. Interictal
spikes are sharp electrical impulses. Their morphology has
been shown to be correlated with the progression of epilep-
togenesis [5]. Recent experiments combined with computa-
tional models [5] suggest that epileptogenesis systematically
modifies the morphology of the spikes in a predictable
manner. High frequency oscillations detected in local field
potentials are created by synchronously bursting pyramidal
cells, and have been observed in healthy patients when the
frequency of the ripples is lower than 250 Hz. Conversely,
frequencies in the range of 250Hz to 800Hz are considered
to be pathological ripples and are reliable biomarkers for
the epileptogenic zone [7]. While recordings of spontaneous
neuronal spiking can be indicative of neuronal excitability,
and therefore correlate with the propensity for seizures, such
methods cannot actively probe the hippocampal circuit in liv-
ing animals during epileptogenesis. Consequently, one could
argue that the passive electrophysiological recordings may
not provide enough information to observe early changes in
neuronal excitability associated with epileptogenesis.

The present work addresses this limitation and proposes
for the first time a “computational biomarker” that relies
on actively probing the excitability of the hippocampus
using an auditory stimulus. We advocate an active approach
whereby we probe the excitability of the hippocampus, a
brain region known to be epileptogenic. Because the hip-
pocampus also receives several sensory inputs (through the
entorhinal cortex), we propose to record in the hippocampus
the evoked potential elicited by an auditory stimulus. Since
epilepsy does not modify the primary auditory cortex, any
alterations in the evoked potential should be indicative of
neuronal changes in the hippocampus underlying epilepto-
genesis. To quantify the property of this biomarker, we use
a pilocarpine animal model of temporal lobe epilepsy, and
chronically record hippocampal auditory evoked potentials
during epileptogenesis.

We design a decoding algorithm to demonstrate that
changes in the morphology of the hippocampal auditory
evoked potential have universal predictive value and can be
used to accurately quantify the progression of epilepsy. The
authors are not aware of any work that uses machine learning
methods to construct an active biomarker of epileptogenesis
(but see [5] for approaches based on passive recordings).
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Figure 1. Timeline and nomenclature of the different conditions.

II. THE ANIMAL MODEL

All procedures were performed in accordance with the
University of Colorado Institutional Animal Care and Use
Committee guidelines for the humane use of laboratory rats
in biological research. Twenty-four male Sprague-Dawley
rats (200-250 gm) were implanted with a hippocampal wire
electrode, a ground screw, and a reference screw. The 24
rats were divided into two groups: a group of 17 rats that
received lithium-pilocarpine, and a control group of 7 rats.
The control group was composed of 2 rats that received
all drug injections associated with the lithium-pilocarpine
model except for pilocarpine, which was substituted with
saline; and 5 rats that received no drugs. After full recovery
from the electrode implantation (2 weeks) and at least one
additional week of chronic recording of baseline video/EEG,
17 rats were given an injection of lithium chloride followed
by an injection of pilocarpine hydrochloride 24 hours later
(see Fig. 1). After one hour of status epilepticus, the animals
were administered a dose of paraldehyde to terminate con-
vulsions. Throughout the experiment, every ∆t = 30 min, an
auditory stimulus, composed of a sequence of 120 square-
wave clicks (0.1 ms duration, 2 sec ISI, 45dB SPL), was
played in a top-mounted speaker. The 300 ms hippocampal
responses to each click were filtered and sampled at 10 kHz,
and the average of the 120 responses was computed. In
the remainder of the paper, we denote by h(k) the average
evoked potential, measured at time k∆t. To further simplify
the exposition, h(k) is simply referred to as the evoked
potential measured at time k.

Figure 1 provides a detailed timeline, along with the
nomenclature of the different periods associated with the
progress and eventual onset of epilepsy. The period before
the injection of pilocarpine is called baseline. Conversely,
the period following the first spontaneous seizure is called
chronic. We further define the silent period to be the 72 hour
period of recovery immediately following the termination of
status epilepticus, and the latent period to be the remaining
period leading to the eventual onset of the first spontaneous
seizure.

III. OVERVIEW OF THE DECODING FRAMEWORK

We give here a brief overview of the decoding approach.
Given an animal r = 1, . . . , 24, we consider the sequence
of evoked potentials h(0)r , h

(1)
r , . . .. The first stage involves

the construction of a denoised representation of h(k)r (see ,1
in Fig. 2). We decompose h(k)r (t) using a discrete stationary
wavelet transform and retain a vector of s (carefully chosen)
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Figure 2. Overview of the decoding algorithm. ,1 : a vector of wavelet
coefficients, w(k)

r , is computed from the evoked potential h(k)r . A vector
of time-delay wavelets coordinates, z(k)r , is formed by concatenating τ

consecutive w(k)
r . ,2 : spectral embedding maps w(k)

r to ζ(k)r . ,3 : the
distance between ζ(k)r and the low-dimensional structure formed by each
condition is computed.

wavelet and scaling coefficients, w(k)
r , (see ,1 in Fig. 2).

The second stage involves characterizing the association
between the condition of the disease (baseline, silent, la-
tent, or chronic) and the vector of wavelet coefficients
w

(k)
r . We tackle this question by lifting w(k)

r into Rτ×s
using time-delay embedding: we concatenate the consecu-
tive vectors w(k)

r , . . . ,w
(k+τ−1)
r to form a τ × s vector,

z
(k)
r , of time-delay wavelet coordinates (see ,1 in Fig. 2).

Low-dimensional structures, which uniquely characterize the
stage of epileptogenesis, emerge in the high-dimensional
space. We use spectral embedding to parameterize these
low-dimensional structures, and map z(k)r to ζ(k)r (see ,2
in Fig. 2). The first decoding stage involves geometrically
computing the likelihood that a given vector ζ(k)r corre-
sponds to one of the four conditions. To this end, we quantify
the distance of ζ(k)r to the low-dimensional cluster formed
by each condition (see ,3 in Fig. 2). In the final decoding
stage, we use a hidden Markov model to capture the intrinsic
dynamics of epileptogenesis.

To alleviate the notation, and unless we explicitly compare
or combine several animals, we dispense with the subscript
r, denoting the dependency on rat r, when we discuss the
analysis of the evoked potentials for a fixed animal.

IV. DENOISING THE INPUT DATA

To compensate for the alteration of the tissue impedance
around the electrodes, the evoked potentials h

(k)
r , k =

0, 1, . . . were normalized for each animal. For a given animal
r, all evoked potentials for that animal were rescaled, in
such a way that the average energy computed during the
baseline condition, 〈h2r〉, was one. In order to use the noisy
evoked potentials to predict the state of epileptogenesis,
we extract a denoised representation of h(k). We use a
discrete stationary wavelet transform (CDF 9-7) to compute
a redundant representation of h(k). We used a “leave-one-
animal-out” cross-validation to determine the time intervals
and the scales of the wavelet coefficients that resulted in the
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Figure 3. Top: average wavelet coefficients with the average evoked
potential (across all animals). Bottom: average approximation coefficients.
Only the scales j = 3 (top) to 10 (bottom) are displayed. White rectangles
delineate the time-frequency blocks used to construct w(k).

the most accurate prediction of the condition of the animal
that was not part of the training data. For most of the ani-
mals, the wavelet coefficients in the time-frequency region
[0, 100] ms× [5, 10] Hz, and the approximation coefficients
from the time-frequency regions [70, 120] ms× [10, 20] Hz
and [100, 150] ms× [5, 10] Hz (see Fig. 3) resulted in either
the optimal, or very close to optimal, decoding perfor-
mances. To simplify the decoding, we therefore kept the
same time-frequency regions for all animals. In summary,
each evoked potential was represented with a feature vector
w(k) of 2,000 entries composed of 1,000 wavelet coefficients
and 1,000 approximation coefficients. This representation is
consistent with reports of disruption in the θ rhythm (4-12
Hz) during the latent period preceding the onset of epilepsy
[8].

V. UNIVERSAL CONFIGURATIONS OF EPILEPTOGENESIS

We now describe the construction of universal (stable
across all animals) low-dimensional smooth sets that are
formed by all the hippocampal auditory evoked potentials
collected during the same stage of epileptogenesis. These
sets are created by lifting the wavelet coefficients w(k)

of each h(k) into high-dimension. This lifting effectively
creates smooth low-dimensional coherent structures that can
then be parameterized with a drastically smaller number of
coordinates.

A. Time-Delay Embedding of the Wavelet Coordinates

Given the time series
{
w(k), k = 0, 1, . . .

}
for a given

animal, we analyze the dynamics of this time series by
considering the time-delay wavelet coordinates formed by
concatenating τ consecutive vectors of wavelet coefficients,

z(k) =
[
w(k) w(k+1) · · · w(k+τ−1)

]
. (1)

We characterize the dynamical changes in the evoked po-
tentials by studying the geometric structures formed by the
trajectory of z(k) in Rτ×s, as k evolves. In practice, the
number of time-delay vectors, τ , is determined using cross-
validation. We confirmed that τ = 1, to wit no time-delay
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Figure 4. Distribution of the local dimension of the state space according
to the condition. Top: baseline and silent; bottom: latent and chronic.

embedding, yielded poor prediction of the animal’s condi-
tion. While τ was optimized for each animal, the average
of the optimal values was τ = 12, which corresponds to six
hours.

To learn the geometry of the set formed by the different
trajectories z(k)r , k = 0, 1 . . ., we consider the union – over
all the animals in the training set – of the vectors z(k)r , and
define the set

Z =
⋃

r ∈ training animals

{
z(k)r , k = 0, 1, . . .

}
. (2)

B. What is the local dimension of the state-space?

Because we have only a limited number of training data,
we need to drastically reduce the dimensionality of the state
space (on average τ × s = 24, 000) in order to reliably
decode the condition of each animal. We used a kernel-based
version of the correlation dimension [9] to compute the local
dimension of the point-cloud formed by the state space Z.
We discovered that the points z(k)r were organized along low
dimensional subsets that correspond to well defined stages
of epileptogenesis and exhibit different local dimensions.
Figure 4 displays histograms (as well as the mean, and
standard deviation) of the estimates of the local dimensions
for the four different conditions. These experiments suggest
that we should be able to represent the state-space associated
with the dynamic of the disease using d = 5 dimensions.
However, our results (not shown) indicate that the traditional
linear approach, PCA, provides a very poor parameterization
of the set Z.

C. Nonlinear Parameterization of the State Space

In order to identify the separate regions of Rτ×s that
correspond to the four conditions, we seek a smooth low-
dimensional parameterization of Z. A nonlinear approach
spectral embedding [10], yields a low-dimensional parame-
terization of Z that naturally clusters the different conditions



−0.03
−0.02

−0.01
0

0.01
0.02

0.03
0.04

0.05
0.06

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

100 ms

100 μV

baseline

silent

chronic

latent

Figure 5. The training set of evoked potentials, Z, displayed using the
reduced coordinates ζ(k). Each condition, baseline (blue), silent (cyan),
latent (green), and chronic (red), forms a coherent sub-cloud.

into coherent disconnected smooth subsets. Briefly, we de-
fine a similarity matrix K that quantifies how any two evoked
potentials h(k) and h(l) extracted from the same or from
different conditions, and from the same or from a different
animal, at the respective times k and l co-vary,

K(k, l) = exp
(
−‖z(k) − z(l)‖2/σ2

)
. (3)

The scaling constant σ was chosen to be a multiple of the
median distance ‖z(k) − z(l)‖, k, l = 0, 1, . . .. We used the
d eigenvectors of K that optimally separated the dataset
Z into four clusters related to the four conditions. The
ith eigenvector of K provided the ith reduced coordinate,
ζ(k)(i), of z(k),

ζ(k) =
[
ζ(k)(1) · · · ζ(k)(d)

]T
. (4)

As explained in section V-B, we use d = 5. Figure 5 displays
the nonlinear parameterization of Z. Each dot represents
an evoked potential h(k)r measured at a time k from an
animal r, and parameterized by the reduced coordinates
ζ
(k)
r . The color indicates the condition during which h

(k)
r

was recorded. When collapsed across animals and time of
recordings, four distinct clusters can be visually discerned,
which can be interpreted in terms of the corresponding
conditions. The evoked potentials in the silent condition are
grouped together around a low-dimensional structure. The
latent condition displays the largest spread: some evoked po-
tentials are morphologically close to silent evoked potentials;
while others are close to chronic evoked potentials. These
visual observations are consistent with the computation of
the local dimensionality described in section V-B. To further
help with the interpretation of this nonlinear representation
of Z, we trace the trajectory of ζ(k)r , k = 0, 1, . . . for a
single rat (H37) over several weeks of recordings (see thick
black line in Fig. 5). The animal first spends several days in
the baseline cluster (blue), then briskly traverses the entire
space to reach the silent cluster (cyan) after status epilepticus
has been induced. Eventually, as the animal recovers, it
joins the latent condition (green), and advances toward the
chronic cluster (red). Four representative evoked potentials

are shown along this trajectory, confirming changes in the
morphology of h(k) during epileptogenesis.

D. Learning Epileptogenesis from the Reduced Coordinates
The natural division of Z into coherent subsets, which cor-

respond to well defined stages of epileptogenesis, suggests
that a purely geometric algorithm could be used to quantify
the development of epilepsy. Indeed, given an unclassified
evoked potential, ζ(k), the distance from ζ(k) to each of the
four clusters (baseline, silent, latent, and chronic) provides
an estimate of the likelihood of being in the corresponding
condition at time k.

We denote by Zc, c = 0, 1, 2, 3, the four clusters formed
by the evoked potentials in Z that were collected during the
baseline, silent, latent, and chronic conditions, respectively.
We found that using a mixture of probabilistic principal com-
ponents [11] to represent each Zc resulted in a remarkably
low dimensional parameterization of that condition. Indeed,
the mixture model is able to describe with a small number
of components the geometric structure created by each Zc.
Furthermore, unlike other models, the mixture model does
not require the stringent assumption that Zc be a smooth
sub-manifold.

Formally, for each c = 0, 1, 2, 3, we use a different mix-
ture of probabilistic principal components to parameterize
Zc. To reduce the number of indices, we do not make
the dependency on c explicit in the following discussion.
For a given cluster Zc, the mixture is composed of M
local Gaussian densities, each describing the local principal
directions with a d × q matrix, Ui, around a collection of
centers ζi, i = 1, . . . ,M . The local spread of the ζ(k)r

around ζi is given by the covariance matrix UiU
T
i + ε2i I .

The mixture model associated with the cluster Zc can be
written as

ζ(k)r ∼
M∑
i=1

πiN
(
Uini + ζi, ε

2
i I
)
, (5)

where the ni, i = 1, . . . ,M are q-dimensional latent Gaus-
sian variables, and the mixture proportions πi are non
negative and sum to one. The parameters of the model are
estimated using the EM algorithm [11]. For a given animal
r, we compute the posterior probability that the model (5)
associated with condition c would generate the reduced
coordinates ζ(k)r ,

γ(k)r (c) = Prob(c|ζ(k)r ). (6)

We use the posterior probability of class membership γ(k)r (c)
as a raw measurement of the progression of epileptogenesis.
Because the instantaneous posterior probability γ

(k)
r (c) is

oblivious to the past trajectory {ζ(k−1)
r , ζ

(k−2)
r , . . .}, it can

be noisy. To address this limitation, and enforce the temporal
coherence that defines the progression of the disease, we
introduce a Markovian description of the dynamics of the
changes in the evoked potential h(k) as a function of time.



2000
Time (0.5 hr)

0 500 1000 1500 2500 3000 3500 4000
0

0.5

1
baseline
silent
latent
chronic

SE

25000 500 1000 1500 2000 3000 3500 4000 4500
Time (0.5 hr)

0

0.5

1
SE baseline

silent
latent
chronic

SRS

5000

Figure 6. Biomarker probabilities π(k)(c) of being in condition c for a non-epileptic (top) and an epileptic (bottom) animal. Seizure count (clipped at 1)
is displayed in magenta. The black bar SE corresponds to Status Epilepticus; the second bar SRS corresponds to the first Spontaneous Recurring Seizure.

VI. THE DYNAMICS OF EPILEPTOGENESIS

We use a hidden Markov Model to capture both the
dynamics of epileptogenesis, and the resulting changes in
the shape of h(k)r triggered by this hidden condition. We
define x

(k)
r to be a discrete random variable that encodes

the state of animal r at time k, x(k)r ∈ {0, 1, 2, 3}, where
the states 0, 1, 2, and 3 encode the baseline, silent, latent,
and chronic conditions, respectively. We further assume that
x
(k)
r is a Markov chain with probability transition matrix
Pi,j = Prob(x

(k+1)
r = i|x(k)r = j). We define y

(k)
r to

be a discrete random variable, which takes its values in
{0, 1, 2, 3}, and encodes the most likely condition of animal
r at time k, given the measurement h(k)r ,

y(k)r = argmax
c=0,1,2,3

γ(k)r (c), (7)

where γ
(k)
r (c) is the posterior probability that condition c

generates the reduced coordinates ζ(k)r , and is given by
(6). We denote by Qi,j = Prob(y

(k)
r = i|x(k)r = j) the

measurement probability distribution matrix. The probability
transition matrix P and the measurement probability matrix
Q were estimated from the training data. The trained hidden
Markov model was then used in a “reverse mode” [12]
to estimate the posterior probability of animal r to be in
condition c,

π(k)
r (c) = Prob(x(k)r = c | y(k)r ), c = 0, 1, 2, 3. (8)

Because the hidden Markov model was trained on the
epileptic animals, we regularized the probability transition
matrix P to allow a transition, which was never observed in
the training data, from chronic to baseline with a very small
probability.

Figure 6 displays the four probabilities π(k) of being in
baseline, silent, latent, and chronic state for a non-epileptic
animal (top), and an epileptic animal (bottom). We plot the
seizure count (clipped at 1) in magenta for the epileptic
animal. The biomarker clearly identifies the baseline pe-
riod (blue), and is able to detect changes in the evoked
potential h(k) that are indicative of neuronal alterations
leading to epilepsy, before the first spontaneous recurring

seizure (SRS), and shifts from latent (green) to chronic
(red) before SRS. The probability of being in the chronic
state, π(k)(3), remains at one after SRS, indicating that the
animal is irreversibly in the chronic state, as confirmed by
the uninterrupted sequence of seizures.

VII. RESULTS

We evaluated our approach using a “leave-one-animal-
out” cross-validation: the algorithm was trained on 11
epileptic rats, and evaluated with one animal that was not
part of the training data. For each test animal r, the decoding
algorithm computed from h

(k)
r the posterior probability

π
(k)
r (c), given by (8). Figure 7 displays the temporal profile

of the median probability π(k)(c) computed over all the
epileptic animals (left, N=12), and the non epileptic animals
(right, N=5). The computation of the median probability
π(k)(c) required care: because each condition varied in
length across the different animals, we could not use the
beginning of each recording as the origin, and bluntly
average across the animals.

As an alternative, we used two physiologically mean-
ingful temporal landmarks to align the time series{
π
(k)
r (c), k = 0, 1, . . .

}
of the different animals before av-

eraging. We used the time of the insult (status epilepticus)
to study the transition from baseline to silent, and we also
used the onset of the first spontaneous seizure to study the
transition from latent to chronic. As shown in Figs. 7-left and
Fig. 8, this led to two different median probability profiles
for each condition. In each figure, the origin corresponds to
the physiological landmark used to realign the time series.
To help visually compare the two figures, we added the latent
period to Fig. 7-left, and the silent period to Fig. 8. We note
that the median probability for the silent and latent periods
are different in both figures: indeed, the large variation in
the onset of the first spontaneous seizure leads to different
realignment results.
Epileptic animals. The baseline and chronic periods were
well defined for the 12 epileptic animals (see Fig. 7-left and
8), and corresponded to the period before status epilepticus,
and the period after the first spontaneous seizure, respec-
tively. The sensitivity was found to be 1 for both the baseline
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and chronic periods. The specificity was 1 for the baseline
period, and 0.59 for the chronic period, indicating that the
probability π(k)(3) rises to 1 before the first spontaneous
seizure (see Fig. 8). Indeed, the biomarker is able to detect
changes in the evoked potential h(k) that are indicative
of neuronal alterations leading to epilepsy, before the first
spontaneous seizure.
Non-epileptic animals. Five of the 17 animals, which
received the convulsant (pilocarpine), never developed spon-
taneous seizures. After the injections of paraldehyde, and the
subsequent recovery from status epilepticus, these animals
returned to a baseline condition. These animals were inter-
esting, as they allowed us to address a common limitation of
machine learning based biomarkers with regard to specificity
of the biomarker to the general population. The biomarker
was able to predict the return to baseline condition (see
Fig. 7-right) in spite of the fact that the training dataset
never included non-epileptic rats. This result is significant
since it indicates that the low-dimensional clusters formed
by embedding the time-delay wavelet coordinates have a
universal aspect that can be reliably used to decode the status
of the disease.
Control animals. The 5 rats that received no drugs where
classified as being in the baseline condition with probability
1 at all time (results not shown). The 2 rats that received all
drug injections except for pilocarpine, were also classified
as being in the baseline conditions at all time, except for a
brief suppression of amplitude, classified as silent (results
not shown).
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