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Abstract—Ransomware, a class of self-propagating malware
that uses encryption to hold the victims’ data ransom, has
emerged in recent years as one of the most dangerous cyber
threats, with widespread damage; e.g., zero-day ransomware
WannaCry has caused world-wide catastrophe, from knocking
U.K. National Health Service hospitals offline to shutting down
a Honda Motor Company in Japan [1]. Our close collaboration
with security operations of large enterprises reveals that defense
against ransomware relies on tedious analysis from high-volume
systems logs of the first few infections. Sandbox analysis of freshly
captured malware is also commonplace in operation.

We introduce a method to identify and rank the most discrim-
inating ransomware features from a set of ambient (non-attack)
system logs and at least one log stream containing both ambient
and ransomware behavior. These ranked features reveal a set of
malware actions that are produced automatically from system
logs, and can help automate tedious manual analysis. We test
our approach using WannaCry and two polymorphic samples by
producing logs with Cuckoo Sandbox during both ambient, and
ambient plus ransomware executions. Our goal is to extract the
features of the malware from the logs with only knowledge that
malware was present. We compare outputs with a detailed anal-
ysis of WannaCry allowing validation of the algorithm’s feature
extraction and provide analysis of the method’s robustness to
variations of input data—changing quality/quantity of ambient
data and testing polymorphic ransomware. Most notably, our
patterns are accurate and unwavering when generated from
polymorphic WannaCry copies, on which 63 (of 63 tested) anti-
virus (AV) products fail.

I. INTRODUCTION

Ransomware is a class of self-propagating malware that uses
encryption to hold victim’s data ransom and has emerged as
a dominant worldwide threat, crippling personal, industrial,
and governmental networked resources [2–5]. Most notably,
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the recent epidemic of WannaCry [6, 7] was one of the
largest ransomware attacks in history, halting hospital facilities
and infecting large corporations and consumers in over 150
countries. From initial exploit to completing encryption of a
host’s data, ransomware must perform a series of actions; e.g.,
identifying files for encryption/deletion and exchanging en-
cryption keys with a command and control (CC) server. Hence,
discovery of the malware’s pre-encryption footprint promises
accurate, in-time detection and is the focus of ransomware
analysis efforts. Our hypothesis is that data analytics on host
logs can automate discovery of features that are indicative of
ransomware’s presence before encryption (and of malware’s
executions in general). Such a capability promises automated
pattern-generation and analysis capabilities that are robust
to syntactic polymorphism in ransomware and more general
classes of malware; a critical necessity given the unfortunate
success of the ransomware economy.

This work is motivated by our close collaboration with cyber
operations at large enterprises. Most notably the 2015 infection
by polymorphic and then novel CryptoWall 3.0 induced a 160
man-hour forensic effort to manually analyze the few infected
hosts’ logs in an attempt to produce shareable threat intelli-
gence reports and pre-encryption detection capabilities. This
operational scramble begs the question, “How to automatically
extract the sequence of events induced by malware given a
large volume of logs from a few hosts that were infected with
potentially polymorphic malware?” Moreover, such facilities
regularly receive freshly discovered malware samples, which
are analyzed in sandboxes; hence, an automated pattern-
generation tool that is provably (more) robust to polymorphism
from dynamic analysis is needed.

To our knowledge no automated method for extracting
the footprint of malware from the ambient and/or sandbox-
generated logging data is known. Yet our close collaboration
with security analysts reveals that such a method is needed
in practice to benefit two primary use cases—(1) to expedite
currently timely (hundreds of man hours) manual analysis of
logs used to identify malwares actions from ambient system
logs in forensic efforts, (2) to automatically generate behav-
ioral analysis of malware samples from sandbox logging data
(which is currently investigated manually). Our contribution
is to present an algorithm for automatically extracting the

ar
X

iv
:1

70
9.

08
75

3v
1 

 [
cs

.C
R

] 
 2

5 
Se

p 
20

17



features that discriminate malware from ambient logging ac-
tivity given collections of logs known to contain malware
executions (in addition to ambient logs) and logging data
known to contain no malware executions. Further, we present
systematic testing of our method using Cuckoo Sandbox to
generate WannaCry ransomware logs showing when and how
it is robust to changes in input data.

To this end, we propose an information relative approach
using a Term Frequency-Inverse Document Frequency (TF-
IDF) metric to automatically extract and rank the most dis-
criminating features of the new malware from logging data.
The TF-IDF method also preserves human-understandable
features, which is necessary for operators to understand their
analytics, e.g., in automatic malware analysis.

We leverage Cuckoo Sandbox (https://cuckoosandbox.org),
an automatic malware analysis system, for dynamic analysis
of executables including both WannaCry variants and scripts
simulating non-malicious user activity. Cuckoo reports activity
relating to files, folders, memory, network traffic, processes,
and API calls, thus giving source data for experimentation
with ground truth. This builds results on a well-adopted, open-
source malware analysis tool (Cuckoo), ensures repeatability
of results, and proves a concept that we believe will be
transferable to more general system logs, e.g., Windows Log-
ging Service output (https://digirati82.com/wls-information)
that are not shareable outside the organization.

The algorithm’s outputs are validated using a detailed
analysis of WannaCry. Our contributions include feature ex-
traction techniques from Cuckoo output, and, most notably,
a method to automatically extract the most discriminative
ransomware features from event logs given a set of ambient
(non-attack) logs and logs containing ransomware (potentially
mixed with logs from many normal activities). We present four
experiments showing our method (1) can automatically extract
features that are indicative of the malware, (2) the method is
robust to the quantity of known, non-malicious logging data
included, (3) the method succeeds when the logs containing
malware activity also include a majority of non-malicious
ambient logs, and (4) our method can produce a pattern that
is robust to polymorphic changes that bypass 63 (of 63 tested)
anti-virus (AV) detectors.

A. Related Work

Malware analysts usually adopt static and dynamic analysis
techniques to determine behavior and risks of a specific
malware sample. Static analysis analyzes malware samples
before it is executed [8] but struggles to analyze self-modifying
and polymorphic code. Dynamic analysis is more powerful
for malware forensics analysis because it allows analysts to
understand malware behavior and activities by executing the
malware sample. In this work, we use Cuckoo Sandbox for
dynamic analysis.

Cuckoo has been used to identify polymorphic malware
samples [9], trigger malware that detects it is in a sandbox,
and identifies particular malware actions in different network
profiles [10], find IP addresses, domains and file hashes of

malware samples to generate network-related indicators of
compromise [11], and providing ground-truth training and
testing data for supervised Intrusion Detection System (IDS)
approaches [12–22]. Therefore, Cuckoo is an established tool
to generate repeatable malware analysis results.

UNVEIL [23] is a novel dynamic analysis system for
detecting ransomware attacks and modeling their behaviors.
UNVEIL tracks changes to the analysis systems desktop by
calculating dissimilarity scores of desktop screenshots before,
during, and after executing the malware samples to identify
ransomware. UNVEIL successfully identified previously un-
known evasive ransomware that was not detected by the anti-
malware software.

UNVEIL focuses on ransomware attack detection while
our work is a generic approach to extract the most discrim-
inative features of malware in logging data. We specially
tested our approach with WannaCry malware. Our approach
automatically discovers features that are indicative of Wan-
naCry ransomware’s presence before encrypting targeted files.

TABLE I
WANNACRY FILES & FOLDERS

Name Meaning
b.wnry Bitmap file for Desktop image
c.wnry Configuration file
r.wnry Q&A file, payment instructions
s.wnry Tor client
t.wrny WANACRY! file with RSA keys
u.wnry @WannaDecryptor@.exe

\msg
Folder containing RTF files with
payment instructions in 128
languages (e.g., korean.wnry)

taskse.exe Launches decryption tool
taskdl.exe Removes temporary files

II. PREREQUISITES

A. WannaCry
Ransomware Attack

Our primary goal is
to extract malware’s ac-
tivity from a set of
logs only knowing the
logs contain malware
activity and thereby au-
tomating malware anal-
ysis and pattern generation. Before testing the capability, we
present an overview of WannaCry to be used as ground
truth for validating the malware features extracted from our
tests. In May 2017, the WannaCry ransomware attack in-
fected over 300k Windows computers in over 150 countries.
The dropper of the malware carries two components. One uses
the “EternalBlue” exploit against a vulnerability of Windows’
Server Message Block (SMB) protocol to propagate, and the
other is a WannaCry ransomware encryption component [6].
Static analysis of WannaCry has been documented by analysts
and cyber security companies [24]. The analyzed WannaCrys
files and action sequence are summarized in Tables I and II,
respectively.

Fig. 1. Behavioral Log Example

More details
are available in
Appendix A. This
gives ground-truth
for evaluating the
features identified
from Cuckoo logs.

B. Cuckoo Sandbox
& Produced Logs

Cuckoo Sandbox
is an automatic
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malware analysis
system, which
provides detailed
results of suspicious
files’ activities
and behaviors by
executing the files
(e.g., Windows
executables,
document exploits,
URLs and HTML
files, Java JAR,
ZIP file, Python files etc.) in a virtualized and isolated
environment.

The suspicious file’s performance, such as changes of files
and folders, memory dumps, network traffic, processes and the
API calls are monitored and analyzed by Cuckoo. The Cuckoo
reporting module elaborates the analysis results and saves
the produced report into a human readable JavaScript Object
Notation (JSON) and HTML formats. In our experiments
Cuckoo outputs ranged from 1MB to 1GB per analyzed file.

TABLE II
WANNACRY ACTIONS

Pr
e-

E
nc

ry
pt

io
n

No. Action
1 Imports CryptoAPI from advpi32.dll
2 Unzips itself to files in Table I
3 Generates machine-unique identifier

4 Creates a registry, HKEY_LOCAL_MACHINE\
Software\WanaCrypt0r\wd

5 Runs ‘attrib +h’, which sets the
current directory as a hidden folder

6
Runs ‘icacls . /grant Everyone:F /T /C
/Q’, which grants all users permissions
to the current directory

7 Imports public and private RSA AES
keys (000.pky, 000.eky) from t.wrny

E
nc

ry
pt

io
n

8 Creates 00000000.res, a file containing unique user ID,
total encrypted file count, and total encrypted file size

9 Uses SHGetFolderPathW API to scan the file system
starting at the desktop folder

10 Finds the target files and generates one AES key per file

11 Uses the public RSA key to encrypt AES key of target
file and saves encrypted AES key to the target file

12
Uses CreateFileW, ReadFile and WriteFile APIs to create
encrypted files. The string WANNACRY is written on
the infected files.

13 Calls taskdl.exe and MoveFileW API to replace
.WNCRYT temp files to .WCRY files

14

Calls taskse.exe C:\DOCUME˜1\cuckoo
\LOCALS˜1\Temp\@WanaDecryptor@.exe
to launch the decryption tool and
replace desktop image to “!WannaCryptor!.bmp”

15

Runs cmd.exe/cregaddHKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run
/v\"thsgvkvtwaipdcd971\"/tREG_SZ/d\
"\"C:\DOCUME˜1\cuckoo\LOCALS˜1\
Temp\tasksche.exe\\"\"/f to create
a unique identifier registry key

16 Runs @WanaDecryptor@.txt to create a copy of r.wnry
17 Temporary files with prefix ‘∼SD’ created then deleted

Although Cuckoo reports seven categories of malware anal-
ysis outputs, we restrict ourselves to the behavior category,
as these are analogous to system logs collected by security
operations from workstations. This category contains the raw
behavioral logs for each process running by the analyzed files,
including logs of the complete processes tracing, a behavioral
summary and a process tree.

The enhanced class generates a more extensive high-level
summary of the processes and their activities.Instead of read-
ing from raw behavioral logs, the enhanced class helps to

TABLE III
EXTRACTED FEATURE FORMAT FOR LOGS IN FIGURES 1 & 2

Log Examples Feature
Fig. 1 “bigram: api=regcreatekeyexw+arguments=software\\wanacrypt0r”

Fig. 2
(“eid”:1)

“enhanced: object=registry+event=read+data=
regkey:activecomputernamecomputername ”

Fig. 2
(“eid”:3)

“enhanced: object=file+event=write+data=
file:c:\\docume∼1\\cuckoo\\locals∼1\\temp\\b.wnry ”

interpret and summarize essential activities performed by the
analyzed files, e.g., read, write, and delete from registry, files,
and directories; load Windows libraries; and execute files.

See Fig. 2. Additionally, Cuckoo searches VirusTotal.com,
checking 63 AV vendors for signatures detecting the file under
analysis. We leverage this to compare the capabilities of our
pattern generation for polymorphic samples to that of AV
vendors. See Appendix B for more information on Cuckoo.

Fig. 2. Enhanced logs of a Cuckoo Analysis JSON Report File

III. METHOD: FEATURES & TF-IDF

The general problem we consider is how to extract the most
indicative features of malware from logs of the host on which
the malware was active. Note that this set of logs may contain
a majority of logs from non-malicious, ambient user activity.
Our approach is to obtain a second set of logs from only
non-malicious activity (e.g., by creation in our case, or in the
operational case of a ransomware outbreak, from system logs
of non-infected hosts), and seek features of the infected logs
set that are uncommonly common (are high frequency in a
few malicious documents only). Below we describe the feature
representation from Cuckoo behavior logs and the ranking
method.

Conceptually, we consider a set of logs (Cuckoo enhanced
and behavior logs in our experiments) as a “document” and a
selected subset of the log entries as “terms” or features. Two
entries are considered the same term/feature if they agree in all
fields except time and event ID. All enhanced logs are used.
Only those behavior (non-enhanced) logs with the fields “cat-
egory” and “api” taking values registry and RegCreatKeyExW,
respectively, are included. Altogether, a document (log stream)
is represented as a count of each term/feature (a bag-of-words
model). See Table III.

For application to ransomware pattern generation, we only
consider pre-encryption features; specifically, for WannaCry
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logs before the creation of the private key 00000000.eky. In
practice, given the initial infection host logs, operators would
have to identify a pre-infection cutoff and apply our method
to all logs previous. Although for general malware forensics /
analysis this is not necessary.

Given two sets of documents (in our case, at least one
with logs containing malware activities, the some contain-
ing ambient activity), we apply Term-Frequency-Inverse-
Document-Frequency (TF-IDF) an information relative term-
weighting scheme [25]. Letting f(t, d) denote the frequency
of term t in document d, and N the size of the cor-
pus, the TF-IDF weight is the product of the Term Fre-
quency, tf(t, d) = ft,d/

∑
t′∈d ft′,d (giving the likelihood of

t in d) and the Inverse Document Frequency, idf(t,D) =
logN/1 + |{d ∈ D : t ∈ d}| (giving the Shannon’s informa-
tion of the a document containing t). Intuitively, given a
document, those terms that are uncommonly high frequency
in that document are the only that receive high scores.

Our application is to consider all logs from infected hosts
as a single document, then regard only the features from this
“infected” document and apply TF-IDF; hence, highly ranked
features occur often in (and are guaranteed to occur at least
once in) the “infected” document, but infrequently anywhere
else.

IV. EXPERIMENTS & RESULTS

A. Analysis of WannaCry & Four Normal Activities

In our first experiment, we first analyze malicious behavior
of the WannaCry executable file by sending it to the Cuckoo
Sandbox. Besides obtaining a Cuckoo analysis report of the
WannaCry sample (i.e., a malicious document), Python scripts
of users’ normal activity (i.e. read, write and delete files, open
websites, watch YouTube videos, send and receive emails,
search flight tickets, post and delete tweets on Twitter) are
submitted to and executed by Cuckoo. One WannaCry mali-
cious document and four normal documents (Cuckoo analysis
reports of users’ normal activity) are used to calculate TF-
IDF weights for 74 pre-encryption WannaCry specific features.
Note that the normal activity analysis reports contain various
features that may or may not be in the malware analysis report,
and some of the 74 features extracted from the malicious logs
may have occurred from ambient (non-malicious) behavior
(see Section IV-C where this is known).

Table IV shows the most important 43 features (top-ten
TF-IDF weights). These highly ranked features are also the
patterns of WannaCry obtained from the detailed technical
analysis of the WannaCry executable file (Section II-A).

B. Analysis of WannaCry & Varying Normal Activities

This experiment aims to validate that the ranking of Wan-
naCry features is not influenced by varying the number of
normal documents. To validate the hypothesis, we calculate
the TF-IDF weights in the following three scenarios.

1) One analysis report of the WannaCry executable file and
five normal performance analysis files.

TABLE IV
THE RANKING OF FEATURES AND THEIR TF-IDF WEIGHTS

Ranking Feature TF-IDF
Weight

1 “enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\s.wnry” 299.36

2 “enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\b.wnry” 33.80

3 “enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\u.wnry ” 24.14

4 “enhanced: object=file+event=read+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\t.wnry ” 9.66

5

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m korean.wnry ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m vietnamese.wnry”

9.66

6

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m chinese (traditional).wnry”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m japanese.wnry”

8.05

7

”enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m chinese (simplified).wnry”,
. . . (24 various language features)
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m turkish.wnry”

4.83

8

“enhanced: object=file+event=read+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\c.wnry ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\c.wnry”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\taskdl.exe”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\taskdl.exe”,
“enhanced: object=registry+event=read+data=regkey:
\\ activecomputernamemachineguid”

3.22

9
“enhanced: object=registry+event=read+data=regkey:
hkey local machine\\software\\microsoft\\cryptography\\defaults\\provider\\
microsoft enhanced rsa and aes cryptographic provider (prototype)image path”

2.04

10

“bigram: api=regcreatekeyexw+arguments=software\\wanacrypt0r”,
“enhanced: object=dir+event=create+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg”,
“enhanced: object=file+event=execute+data=file:attrib +h . ”,
“enhanced: object=file+event=execute+data=file:icacls . /grant everyone:f /t /c /q ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\00000000.pky”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\r.wnry”

1.61

2) The same analysis report of the WannaCry executable
file and six normal performance analysis files.

3) The same analysis report of the WannaCry executable
file and 17 normal performance analysis files.

Normal activities are analyzed by Cuckoo Sandbox via sub-
mitting Python files. From the three experiments we find that
the highest 10 weights calculated by TF-IDF and their features
are the same as the ranking shown in Table IV, regardless of
the number of normal activity analysis files.

C. Combining Normal Activities with WannaCry

In this experiment, we create a Python file that executes
normal activities first and then trigger the WannaCry malware.
The Python file is analyzed by the Cuckoo Sandbox, and the
analysis report along with various non-malicious log files are
sent to the TF-IDF method. This experiment aims to validate
that our method can accurately identify specific features of the
malware when a large majority of the features are indicative
of non-malicious activity. In operations, this gives evidence
that our method can help IT staff distinguish the malware’s
footprint from majority ambient logging data.

To create the mixed normal + malware logs, we use a
Python script to search flight ticket information by opening the
website (i.e., www.google.com/flights) and changing
the date and airport codes of the URL link for various requests.
After the normal activities, the system executes the WannaCry
executable files. The Python script combining both normal and
WannaCry activities is submitted to the Cuckoo analyzer, and
the report of the analysis is used to calculate and determine
the most important patterns of the combination scenario.
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We still search for the timeline when the private key was
first generated, and consider all features before the timeline
(pre-encryption features only). Since the Python file executes
normal activities (i.e., search for flight information) before the
WannaCry malware, the number of pre-encryption features has
increased from 74 to 1,085.

Two experiments are designed as follows.
1) One combination analysis of flight-search (normal) ac-

tivities and WannaCry malware versus four flight-search
normal activity analysis reports.

2) The same combination analysis report versus 21 normal
activities (including four normal analysis reports used in
the above experiments).

As we introduced in Section III, the “IDF” term down
weights the features occurring in many documents; hence,
although most of the 1,085 features appearing in the nor-
mal+malware reports are not indicative of WannaCry, the
malware-specific features are still ranked as top features,
but the ranking of some malware features are scaled down.
This is because some normal activities appear frequently in
the combination analysis report, but relatively infrequently in
other normal reports, especially in Scenario Two where many
different normal activities are included. The ranking of the
features for two experiments conducted in this Experiment are
shown in Table V. We only list the rankings of the malware
specific features in Table IV.

For example, "enhanced:_object=file+event=
write+data=file:c:\\documentsandsettings\
\cuckoo\\applicationdata\\mozilla\
\firefox\\profiles\\qk4ev1cw.default\
\places.sqlite", is a Firefox activity for reading
and writing the “places.sqlite” file to save browsing history,
store bookmarks, annotations etc. As it is a common activity
in all analysis reports where Firefox applications are executed,
it is frequent in the combination analysis file (increasing
TF), but occurs in (only) 14 out of 21 normal performance
analysis (so IDF is not too small). Therefore, in the second
scenario, the TF-IDF weight of the feature is 69.1, which is
higher than many of the WannaCry specific features.

It is easy to mathematically prove, and we have empirically
verified that this method will produce false positives if and
only if non-malicious features occurring often in the document
containing malware are infrequent elsewhere.

D. Analysis of Polymorphic WannaCry Malware

As introduced in Section III, Cuckoo Sandbox analyzes all
the behavioral activities of the submitted files while searching
on VirusTotal.com for matching 63 AV vendor’s signatures
with the suspicious file. The WannaCry malware is identified
in Experiment IV-A and IV-B since we submitted a single
WannaCry executable file to Cuckoo Sandbox. In Experiment
IV-C, we combined normal activities and the malware exe-
cutable file into one Python file. Although the same WannaCry
executable is called by the Python script, 0 of the 63 AV
vendors alert on it. We conjecture this is because the content of
the Python file has no malware patterns. Although our method

TABLE V
FEATURES RANKINGS FOR EXPERIMENT IV-C

Feature Ranking
(case 1)

Ranking
(case 2)

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\s.wnry” 1 2

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\b.wnry” 2 7

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\u.wnry ” 4 13

“enhanced: object=file+event=read+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\t.wnry ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m korean.wnry ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m vietnamese.wnry ”

7 32

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m chinese (traditional).wnry”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m japanese.wnry”

8 36

“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m chinese (simplified).wnry”,
“enhanced: object=file+event=write+data=file:
c:\\docume 1\\cuckoo\\locals 1\\temp\\msg\\m romanian.wnry ”

9 40

“enhanced: object=file+event=write+data=file:
c:\\docume 1\\cuckoo\\locals 1\\temp\\msg\\m bulgarian.wnry ”
. . . (22 various language features)
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg\\m turkish.wnry”

10 45

“enhanced: object=file+event=read+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\c.wnry ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\c.wnry”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\taskdl.exe”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\taskdl.exe”,
“enhanced: object=registry+event=read+data=regkey:
\\ activecomputernamemachineguid”

12 54

“enhanced: object=registry+event=read+data=regkey:
hkey local machine\\software\\microsoft\\cryptography\\defaults\\provider\\
microsoft enhanced rsa and aes cryptographic provider (prototype)image path”

9 58

“bigram: api=regcreatekeyexw+arguments=software\\wanacrypt0r”,
“enhanced: object=dir+event=create+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\msg”,
“enhanced: object=file+event=execute+data=file:attrib +h . ”,
“enhanced: object=file+event=execute+data=file:icacls . /grant everyone:f /t /c /q ”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\00000000.pky”,
“enhanced: object=file+event=write+data=file:
c:\\docume∼1\\cuckoo\\locals∼1\\temp\\r.wnry”
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can still identify the malware in this case, we design a final
experiment to validate that our TF-IDF method can identify
more subtle polymorphism.

To create a very similar variant, we modify the HEX code
file of the WannaCry malware; specifically, we change the
upper-case letters of the message “This program cannot be
run in DOS mode.” to all lower-case letters and the space
characters to “-”. The polymorphic WannaCry executable file
is then submitted to Cuckoo Sandbox, and none of the 63 virus
databases of the VirusTotal scanner finds matched signatures
of the polymorphic WannaCry malware. By using the same
technique with the same four normal activity analysis reports
as shown in Experiment One (Section IV-A), the features and
weights calculated by using the polymorphic malware analysis
report but are the same as Table IV.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a method to automatically extract
features of malware from host logs. Our experiments employed
the relatively new and impactful WannaCry ransomware. For
empirical validation we employed behavior logs from the
analysis reports generated by Cuckoo Sandbox under various
scenarios of normal and malware activities. Our experimental
results validate that the method can extract distinguishing
features of the malware from logs containing a majority of
non-malicious events, and is robust to polymorphism. Most
importantly, given a majority of ambient logs with ransomware
activities also included, accurate extraction of many ran-
somware features are automatically identified.
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Furthermore, we have identified and empirically exhibited
exactly how false indicators of malware could arise from our
method—by non-malware features occurring in the malware
document, but relatively infrequently otherwise. In practice,
for creating patterns from dynamic analysis, this scenario
is easily avoided. Testing the malware analysis and pattern
generation capability on ambient logs collected by operations
will be next-step research. Our results in Experiment IV-C
indicate that in these adverse scenarios, although some highly
ranked features may be spurious, the majority of the ≈40 top-
ten ranked features are accurate indicators.

Although presentation of the method and results is outside
the scope of this paper, the TF-IDF approach gives better
results for analyzing WannaCry malware than other discrimi-
nant analysis algorithms based on Fisher’s Linear Discriminant
Analysis [26]. Further, the preservation of understandable
features is a prerequisite for automating malware analysis that
TF-IDF provides that other analysis capabilities do not.

Future research will consider integration with other detec-
tion systems [27, 28] for automatic pattern generation, or
enhancing autonomic security systems [29, 30]. Overall, we
hope this contribution leads to operational implementations
to expedite manual analysis of logs, malware analysis, and
to provide accurate pattern generation from both dynamic
analysis tools and host logs.
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VI. APPENDIX (SUPPLEMENTAL INFORMATION)

A. WannaCry Ransomware Details

The encryption component imports CryptoAPI from
advapi32.dll, makes a file copy of itself, and extracts a
zip archive from the encryptor’s resource section [24]. The zip
archive contains six .wnry files, a folder and two executable
files, and they are

1) b.wnry: bitmap file used as the victim’s desktop wall-
paper

2) c.wnry: config file with websites, target addresses, and
Tor communication endpoints

3) s.wnry: Tor client
4) t.wrny: WANACRY! file containing default public and

private keys
5) u.wnry @WannaDecryptor@.exe file
6) r.wnry Q&A file with payment instructions
7) \msg folder with 128 RTF files in different languages

to inform victims their data is encrypted and give
instructions to decrypt the files.

8) taskse.exe: file for launching the decryption tool
9) taskdl.exe executable file for removing temporary

files with .WNCRYT extension in the current folder that
has the executable file and the Recycle Bin folder

The WannaCry malware then generates a unique identifier
based on the name of the victim machine. The unique identifier
consists of 8-15 random lowercase characters followed by
three numbers. For example, the WannaCry malware unique
identify generated for a Cuckoo Sandbox with a victim
Windows XP computer used for our experiment is thsgvkvt-
waipdcd971.

The current directory where the WannaCry malware is
located is updated by the malware and it also creates a registry
HKEY_LOCAL_MACHINE\Software\WanaCrypt0r\wd
and sets its value to the current directory (See Figure 3), e.g.,
C:\DOCUME˜1\cuckoo\LOCALS˜1\Temp.

Fig. 3. Set Current Directory to a New Registry Key by the WannaCry
Malware

The configuration file, c.wnry, which contains
websites, targeted addresses and Tor communication
endpoints is modified by the malware. A string
“12t9YDPgwueZ9NyMgw519p7AA8isjr6SMw” is
added to the original configuration file. After
that, the malware sets the current directory
C:\DOCUME˜1\cuckoo\LOCALS˜1\Temp as a hidden

folder by executing the attrib +h . command (see Figure 4.
The current directory and their sub-directories are granted
all user permissions by the malware with executing this
command: “icacls . /grant Everyone:F /T /C /Q” (check
Figure 5) [6].

Fig. 4. Hide the Folder Containing Malware

Fig. 5. Grant All User Permissions to the Malware Folder

The malware then imports the RSA AES key from the
t.wnry file, and loads a Win32 PE DLL into memory to start
encrypting files by calling TaskStart. The WannaCry malware
generates public and private RSA keys (e.g., 00000000.pky
and 00000000.eky), and saved them into the current direc-
tory. After that, the malware keeps writing 136 bytes including
current time of the system to the file, 00000000.res, every
25 seconds.

The malware uses SHGetFolderPathW API to find target
files in the hard drive (expect CDROM) and scans for new
drives attached to the system every three seconds. One AES
key per target file is generated, and the public RSA key is
used to encrypt AES keys. CreateFileW, ReadFile and
WriteFile APIs are called to create encrypted files. The
string WANNACRY is written on the infected files.

Note that files in the shared folder of the host are also
encrypted. Meanwhile, the malware starts a thread to execute
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taskdl.exe every 30 seconds to replace the temporary
encrypted files with an .WNCRYT extension to .WCRY.

The malware executes the command: “taskse.exe
C:\DOCUME˜1\cuckoo\LOCALS˜1\Temp\
@WanaDecryptor@.exe” to launch the decryption
tool. A registry key named with the unique identify (i.e.,
thsgvkvtwaipdcd971) is created by the malware using
the command cmd.exe/cregaddHKLM\SOFTWARE\
Microsoft\Windows\CurrentVersion\Run/
v\"thsgvkvtwaipdcd971\"/tREG_SZ/d\"\"C:
\DOCUME˜1\cuckoo\LOCALS˜1\Temp\tasksche.
exe\\"\"/f

The @WanaDecryptor@.exe is then executed, and the
updates of the bitcoin address is saved in c.wnry. The file
u.wnry is then copied to @WanaDecryptor@.exe,
and the contents of r.wnry are copied to the
@WanaDecryptor@.txt file. The WannaCry malware
scans the victim’s desktop and documents folders.
Temporary files starting with “∼SD” are created then
deleted automatically.

Once the malware completes the encryption process, it
executes taskkill.exe to kill the processes of Mi-
crosoft Exchange and SQL. The malware also encrypts
files on logical drives and replaces the desktop image to
!WannaCryptor!.bmp, a copy of b.wnry.

The most significant features of the WannaCry malware
summarized from the above technical analysis are shown in
Table II. These features are separated into two categories,
Pre-Encryption Features and Encryption Features. From the
WannaCry technical analysis, we can find that the file systems
will not be encrypted until the malware generates the private
key 00000000.eky. Therefore, the features extracted from
activities which happen before the production of the private
key are identified as Pre-Encryption Features, and all features
after the application of the private key are considered as En-
cryption Features. These Pre-Encryption Features are essential
to analyze and detect the early behaviors of the WannaCry
malware.

B. Cuckoo Output Categories

The JSON Cuckoo analysis report generated is saved into
seven main categories, and they are:

1) signatures: users are allowed to predefined patterns of
known malware. If the analyzed malware matches the
patterns, a new entry can be found in the “signatures”
category. The value of “signatures” remains empty if the
analyzed malware are unknown.

2) virustotal: Cuckoo searches on VirusTotal.com for an-
tivirus signatures of the analyzed file. 63 engines, such
as McAfee and Kaspersky, are scanned for identifying
the malware.

3) static: the static analysis module analyzes PE32 files and
provides version information, sections, resources and
libraries imported by the analyzed file.

4) dropped: this category presents information of files that
are dropped by the analyzed file and dumped by Cuckoo,

including temporary files which are eventually deleted
by the malware.

5) network: Cuckoo also monitors and records real-time
network traffic into PCAP files during the analysis.
Network information such as source and destination IP
addresses and port numbers, DNS traffic, hosts, HTTP
requests, IRC, SMTP traffic are extracted and saved into
the JSON report file.

6) behavior: the raw behavioral logs for each process
running by the analyzed files are transformed and in-
terpreted. This category includes logs of the complete
processes tracing, a behavioral summary and a process
tree. The anomaly class under the behavior module
detects activities such as removing Cuckoo’s hooks, and
mark the unhook activities as anomalies. The enhanced
class generates a more extensive high-level summary
of the processes and their activities. Instead of reading
from raw behavioral logs, the enhanced class helps to
interpret and summarize essential activities performed
by the analyzed files. Information generated by the
enhanced class includes activities such as read, write and
delete registry keys, files and directories; load Windows
libraries; and execute files. In our experiment, we extract
features from the logs generated and interpreted by the
enhanced class. We check the raw behavioral logs only
if the extracted enhanced features are not sufficient to
identify the patterns of the malware.

7) volatility: this category shows the memory dump analy-
sis results.
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