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Abstract—An appearance-based robot self-localization prob-
lem is considered in the machine learning framework. The
appearance space is composed of all possible images, which can be
captured by a robot’s visual system under all robot localizations.
Using recent manifold learning and deep learning techniques,
we propose a new geometrically motivated solution based on
training data consisting of a finite set of images captured in
known locations of the robot. The solution includes estimation
of the robot localization mapping from the appearance space to
the robot localization space, as well as estimation of the inverse
mapping for modeling visual image features. The latter allows
solving the robot localization problem as the Kalman filtering
problem.

Index Terms—machine learning; mobile robot self-localization;
appearance-based learning; deep learning; manifold learning

I. INTRODUCTION

Machine learning is an essential and ubiquitous framework
for solving a wide range of tasks in different application areas.
One of these tasks is the problem of estimating position (local-
ization) of a mobile robot moving in an uncertain environment,
which is necessary for understanding the environment to
make navigational decisions. Usually to solve self-localization
problem for navigation of autonomous robots a built in visual
sensor system (camera) is utilized.

The most common and basic method for performing lo-
calization is through dead-reckoning using data received from
odometer sensors. This technique integrates a history of sensor
readings and executed actions (e.g., velocity history) of the
robot over time to determine changes in positions from its
starting location [1], [2], [3]. It is common to combine the
additional localization technique based on visual data such as
images or range profiles (see review [4]) with dead reckoning
applying the extended Kalman filter to probabilistically update
the robot position [5], [6]. In passive vision-based localization,
position of an autonomous mobile robot equipped by a visual
system (e.g., omnidirectional imaging system [7], [8], [9] or
camera with steerable orientation [10]) can be estimated from
images captured by the visual system. Continuous set of possi-
ble images, which can be captured by the visual system under
all possible image formation parameters (relative position and
orientation of the robot moving in a certain workspace, as
well as camera intrinsic parameters and illumination function)
is called Appearance Space (AS).

In this paper, we consider the most popular case when the
AS is parameterized by robot localization consisting only of its
position and orientation. Assuming that captured images allow
distinguishing and recognizing localizations from which they
have been taken, the solution to the considered appearance-
based (passive vision-based) robot localization problem is a
mapping from the AS to the Localization Space (LS), formed
by all possible robot localizations.

We consider the appearance-based localization problem in
the machine learning framework: the appearance-based model,
which describes the relation between observed images and
robot locations, is constructed using a finite set of captured
images taken in known positions. This model allows estimating
an unknown robot localization from a newly acquired image.
Such appearance-based learning framework has become very
popular in the field of robot learning [11].

Various appearance-based models (aka maps), describing
the underlying low-dimensional structure in the AS, are usu-
ally constructed from training positions-images data using
supervised learning techniques. Such models provide internal
representation of the high-dimensional AS by certain visual
features (or landmarks) extracted from images, see a short
review in [12].

In many appearance-based methods input images from the
AS are considered holistically, in relation to other images,
and natural visual features are computed by projecting images
onto low-dimensional subspaces [9, 13, 14] usually via the
Principal Component Analysis (PCA). Various types of re-
gression between images or their low-dimensional features and
robot coordinates are constructed including Gaussian process
regression, random forest, etc. [15], [16], [17], [18], [19], [20],
[21], [22].

This paper proposes new geometrically motivated machine
learning approach to the appearance-based robot localization
problem by combining a few advanced techniques.

At first a deep learning model extracts visual features,
representing a learned mapping from the AS to an image
Visual Feature Space (VFS) (image of the AS under this map-
ping). The VFS is a low-dimensional manifold (surface) in the
ambient high dimensional space with intrinsic dimensionality
equal to the dimensionality of the LS, which in turn is equal
to three. Thus, the solution of the Robot localization problem
reduces to the regression problem with manifold valued inputs,
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“living” in the VFS, and outputs, belonging to the LS.
Next the manifold learning procedure from [23] is used to

construct regression with high-dimensional manifold valued
inputs.

After that inverse mapping from the LS to the VFS is
constructed via special nonlinear dimensionality reduction
procedure [24], [25], [26]. This mapping allows predicting
visual features of an image that will be captured at the
predicted localization of the mobile robot based on chosen
navigational decisions. The latter allows solving the robot
localization problem as the Kalman filtering problem.

The paper is organized as follows. Section II contains
rigorous statement of the appearance-based robot localization
problem. Proposed approach is described in Section III. Sec-
tion IV provides details of this solution. Section V describes
results of numerical experiments. Conclusions are given in
section VI.

II. ROBOT LOCALIZATION: RIGOROUS PROBLEM
STATEMENT

Let a mobile robot, equipped with a visual system (for
example, an omnidirectional imaging system), moves on a 2D-
workspace. Its localization θ = (θRC ,θRO) ∈ R3 is a three-
dimensional vector consisting of Robot Position θRP ∈ R2

(robot coordinates in a 2D-workspace) and Robot Orientation
(an angle) θRO ∈ R1 relative to the coordinate system in the
workspace. Let us denote by Θ ⊂ R3 a subset consisting of all
possible robot localization parameters and called Localization
space.

Let an image, captured by the robot imaging system, con-
sists of p pixels and, thereby, is represented by an image-vector
X ∈ Rp. We denote by X = ϕ(θ) ∈ Rp an image, captured
by the robot with the localization parameter θ, which is
described by the Image modeling function ϕ with the domain
of definition Θ. Let us denote by

X = ϕ(Θ) = {X = ϕ(θ), θ ∈ Θ ⊂ R3} ⊂ Rp (1)

the Appearance space consisting of all possible images, which
can be captured by the mobile robot and parameterized by the
robot localization parameter θ ∈ R3.

Assuming that images, captured by the robot in different
localizations, are different, the Image modeling function ϕ :
Θ → X is a one-to-one mapping from the LS to the AS.
Thus, the AS X is a three-dimensional manifold without self-
intersections (Appearance manifold, AM), parameterized by
the chart ϕ and embedded in the ambient p-dimensional space.
Therefore, there exists an inverse mapping

ψ = ϕ−1 : X ∈ X→ Θ = ψ(X) ∈ Θ, (2)

called Localization function from the AM X to the LS Θ.
The functions ϕ and ψ, as well the AM X, are unknown,

and the Robot localization problem consists in constructing the
robot localization θ = ψ(X) from the image X = ϕ(θ) ∈ X.
We consider this problem in the machine learning framework.
Let us denote by

SX,θ = {(Xi,θi), i = 1, 2, . . . , n} (3)

a training dataset consisting of images {Xi = ϕ(θi)}, captured
by the robot visual system in known localizations {θi ∈ Θ}
when robot moves in the workspace randomly or on a regular
grid. For example, the mobile robot, described in [7], captures
omnidirectional images every 25 centimeters along robot ran-
dom paths; reference positions are located on a regular grid
with cells of size either 25cm in a 2.7m×5.4m workspace [8]
or 1m in a 20m×20m workspace [9], respectively.

We consider the robot localization problem as Localization
function estimation problem: to recover an unknown Local-
ization function θ = ψ(X) at an arbitrary out-of-sample point
X ∈ X, from its known values {θi = ψ(Xi)} at known points
{Xi}.

This problem is a regression one with high-dimensional
manifold valued inputs. For example, input dimensionality
p equals 16384, 10240, and 3925 in case of panoramic
images considered in [7], [8], [9], respectively; p = 6912 and
p = 4096 for two examples considered in [10].

III. ROBOT LOCALIZATION: PROPOSED APPROACH

Proposed approach consists of four successively executed
steps:
• pre-process captured images to get image visual features;
• estimate robot localization from visual features of cap-

tured images;
• predict visual features of an image that will be captured

at a new given robot localization;
• solve the robot localization problem via the Kalman

filtering technique.
Details are given below.

A. Preprocessing Captured Images

Image data requires subject-matter expertise to extract key
features. Deep convolutional neural networks (DCNNs) extract
features automatically from domain-specific images, without
any feature engineering techniques. This process makes DC-
NNs suitable for extraction of visual features:
• DCNN with many layers is trained using some extensive

image database,
• Usually initial layers learn low-order features (e.g. color,

edges, etc.),
• Final layers learn higher order representations (specific

to input image) that are subsequently used for image
classification and transfer learning, see [27].

The constructed mapping, realized by final layers of DCNN,
determines Visual Feature Space (VFS)

W = ω(X) = {w = ω(X), X ∈ X} ⊂ Rm, (4)

consisting of visual features for all images from the AS.
As well the AS X, the VFS W = ω(ϕ(Θ)) is a three-

dimensional manifold parameterized by the chart w = Φ(θ) ≡
ω(ϕ(θ)) and embedded in an ambient m-dimensional space.
The mapping Φ(θ), called Feature modeling function, predicts
features w = ω(X) of an image X = ϕ(θ) that is captured at
an arbitrary robot localization θ ∈ Θ.



B. Nonlinear Regression on High-dimensional Inputs: Local-
ization Function Estimation

Using the constructed mapping ω, initial Localization func-
tion estimation problem is reduced to the regression problem
on the VFS W: using dataset

SW,θ = {(wi,θi), i = 1, 2, . . . , n} (5)

with known robot localizations {θi = V (wi)} and computed
features {wi = ω(Xi)} from images {Xi}, captured in these
localizations, we estimate an unknown robot position θ =
V (w) from visual features ω(X) of an image X = ϕ(θ),
captured at some new robot localization θ. The solution V (w)
determines the sought-for mapping ψ(X) = V (ω(X))).

Initial and reduced regression problems deal with high
dimensional inputs, and standard regression methods per-
form poorly due the statistical and computational ‘curse of
dimensionality’ phenomenon. However, by construction the
input spaces in both problems are three-dimensional manifolds
parameterized by the charts ϕ and ω(ϕ) and embedded in
the ambient high-dimensional spaces X and W, respectively.
Taking into account this fact, in order to avoid the curse of
dimensionality phenomena most of approaches use various
dimensionality reduction techniques (usually, PCA) for con-
structing low-dimensional visual features by projecting cap-
tured images onto low-dimensional linear subspaces. The robot
localization function is estimated from such visual features
[11], [13], [14]. However, constructed low-dimensional linear
subspaces may have a larger dimension than the real intrinsic
dimension, which is equal to three.

Our approach uses new solution to nonlinear multi-output
regression problem with input belonging to unknown manifold
[23]. The core of the solution is based on a special nonlinear
dimensionality reduction method called Grassmann & Stiefel
Eigenmaps [24], [25]; this method has already been success-
fully used to solve certain statistical learning problem [26].

The solution [23] results in
• embedding mapping y = h(w) from the VFS W to

the three-dimensional Representation Space (RS) Y =
h(W) consisting of representations y = h(w) ∈ R3 for
computed features w ∈W;

• recovered mapping θ = gΘ(y), which maps the low-
dimensional representation y = h(w) of visual features
w = Φ(θ) to the robot localization θ.

Therefore, the mapping V (w) is estimated by the statistic
V ∗(w) = gΘ(h(w)) and sought-for Localization function is
estimated by

θ = ψ∗(X) = V ∗(ω(X)) = gΘ(h(ω(X))). (6)

C. Nonlinear Regression with High-dimensional Inputs: Fea-
ture modeling function estimation

Consider the problem of Feature modeling function Φ(θ)
estimation from the dataset SW,θ (5). This regression problem
can be described as follows: estimate an unknown mapping
Φ(θ) from the LS Θ to the VFS W using known visual

features {Φ(Xi) = wi = ω(Xi)} of images {Xi = ϕ(θi)}
captured at known points {θi}. Here we have a regression
problem with high-dimensional manifold valued outputs be-
longing to the 3-dimensional manifold W (4).

The solution [23] also realizes recovery mapping w =
gW (y) from the low-dimensional representation y = h(w) ∈
Y to its preimage (visual features w ∈ W). This mapping
is ‘approximately inverse’ to the embedding mapping h and
provides proximity

gW (h(w)) ≈ w for all w ∈W. (7)

This quantity allows estimating the Feature modeling func-
tion by the formula

w = Φ∗(θ) = gW (h(Φ(θ))). (8)

D. Kalman Filtering in Robot Localization Problem

The constructed estimator Φ∗(θ) (8), which predicts visual
features w = ω(X) of an image X = ϕ(θ), captured at
the localization θ ∈ Θ, can be used in a Kalman filtering
procedure [5] for robot localization.

Robot navigation consists in choosing the control U(t) at
given time moments t = 0, 1, 2, . . . . Let θ(t) be a current
robot position at time t, then, under some chosen control U(t),
the robot must move to the expected position

θ(t+ 1) = F (θ(t), U(t)) ≡ Ft(θ(t)), (9)

where F (θ, U) is a known function defined by a solution of
a navigation motion control problem.

In practice, the estimated position θt(t) of the robot at time
t is only known, which differs from the exact position θ(t);
the exact position θ(t + 1) at time (t + 1) also differs from
the expected position θt(t+ 1) = Ft(θt(t)).

Let a robot visual sensing system provides a captured image
X(t + 1) = ϕ(θ(t + 1)) at the moment (t + 1). We want to
solve a filtering problem to improve the predicted localization
θt(t+ 1) from the captured image X(t+ 1).

The constructed estimator Φ∗(θ) (8) allows predicting
w∗(t + 1) = Φ∗(θt(t + 1)) for visual features w(t + 1) =
ω(X(t + 1)) of the captured image X(t + 1), and the stan-
dard Kalman filter [5] constructs the improved localization
θt+1(t+ 1) as

θt+1(t+ 1) = θt(t+ 1) +B(t+ 1)× (w(t+ 1)−w∗(t+ 1)),

where B(t+ 1) is a Kalman gain.
Using the estimator ψ∗(X) (6) for the Localization function

ψ(X) (2), we can use a quantity ψ∗(X(t+ 1)), representing
visual features, as an estimator of the robot pose in which the
image X(t + 1) has been taken, and construct the estimator
θt+1(t+ 1) as

θt+1(t+ 1) = θt(t+ 1) + b(t+ 1)×
×(ψ∗(X(t+ 1))− ψ∗(X∗(t+ 1))),

where b(t+ 1) is another gain function.



As measurements, used in filtering procedures, it is possible
to use low-dimensional representations y = h(w) of visual
features w = ω(X), obtained as a solution of nonlinear multi-
output regression on unknown input manifold problem [23].
Such estimator has the form

θt+1(t+ 1) = θt(t+ 1) + b(t+ 1)×
×(h(ω(X(t+ 1)))− h(w∗(t+ 1))),

where b(t+ 1) is some gain function.
For choosing the optimal gain functions in above Kalman

filtering procedures, it is necessary to know covariance ma-
trices for deviations between observations and their expected
values, as well as between the expected robot localizations
θt(t + 1) = Ft(θt(t)) (9) and its real pose θ(t + 1). Corre-
sponding covariance matrices can be estimated from samples
SX,θ (3) and SW,θ (5) in which robot localizations are known
with high accuracy.

IV. ROBOT LOCALIZATION: SOLUTION

Preprocessing step is a standard one and usage of Kalman
filtering procedures in robot localization problem were de-
scribed in Sections III-A and III-B, respectively. In this section
we describe shortly the estimating procedures for Robot local-
ization and Feature modeling functions based on the solution
of nonlinear regression problem with high-dimensional mani-
fold valued inputs.

A. Robot Localization Manifold Estimation Problem

Consider an unknown smooth manifold called Regression
manifold (RM)

M = {Z = F (θ), θ ∈ Θ ⊂ R3} ⊂ Rm+3 (10)

with the intrinsic dimension q = 3, which is embedded
in an ambient (m + 3)-dimensional Euclidean space and
parameterized by an unknown chart

F : θ ∈ Θ ⊂ R3 → Z = F (θ) =

(
Φ(θ)
θ

)
∈M, (11)

defined on the Localization space Θ. The RM M can be
considered as a direct product of the VFS W = Φ(Θ) and
the LS Θ.

Let
JF (θ) = ∇θF (θ) =

(
JΦ(θ)

I3

)
, (12)

be (m+ 3)× 3 Jacobian matrix of the mapping F (11) which
is split into m × 3 Jacobian matrix JΦ(θ) of the mapping
Φ(θ) = ω(ϕ(θ)) and I3 being a 3 × 3 unit matrix. The
Jacobian JF (θ) (12) determines a three-dimensional linear
space L(Z) = Span(JF (θ)) in Rm+3 which is a tangent
space to the RM M at the point Z = F (θ) ∈M; hereinafter,
Span(H) is a linear space spanned by columns of an arbitrary
matrix H .

The set TB(M) = {(Z,L(Z)) : Z ∈M} consists of points
Z of the RM M, equipped by tangent spaces LF (X) at these
points, is known in the Manifold theory [28] as the Tangent
Bundle of the RM M.

The dataset SW,θ (5), written in the form

SW,θ =

{
Zi =

(
Xi = Φ(θi)

θi

)
, i = 1, 2, . . . , n

}
={

Zi =

(
wi

θi = V (wi)

)
, i = 1, 2, . . . , n

}
(13)

can be considered as a sample from the unknown RM M (4).
Let us consider certain dimensionality reduction problem

called Tangent bundle manifold learning problem [29] for the
RM M: estimate the Tangent Bundle TB(M) given the sample
SW,θ (13) from the unknown RM M.

B. Robot Localization Manifold Estimation: GSE Solution

Using Grassmann & Stiefel Eigenmaps (GSE) method [24],
[25], applied to the sample SW,θ (13), we construct the
solution to the Tangent bundle manifold learning problem,
resulting in the following quantities:
• sample-based area M∗ ⊂ Rm+3 which is close to the

unknown RM M,
• embedding mapping hGSE(Z) from the area M∗ to the

Representation Space (RS) YGSE = hGSE(M∗) ⊂ R3,
• recovery mapping gGSE(y) from the RS YGSE to Rm+3,
• (m+3)×3 matrix GGSE,g(y) defined on the RS YGSE ,

which together provides both
• proximity

ZGSE(Z) ≡ gGSE(hGSE(Z)) ≈ Z for all Z ∈M∗,
(14)

between initial and recovered points Z and ZGSE(Z).
Thanks to (14) we get small Hausdorff distance
dH(M,MGSE) between the RM M and the three-
dimensional recovered regression manifold (RRM)

MGSE = {gGSE,g(y) ∈ Rm+3 : y ∈ YGSE ⊂ R3},
(15)

embedded in the ambient (m+3)-dimensional Euclidean
space;

• proximity

GGSE,g(y) ≈ JGSE,g(y) for all y ∈ YGSE , (16)

in which JGSE,g(y) is a Jacobian matrix of the mapping
gGSE(y). Thanks to (16) we get proximity between the
tangent space L(Z) to the RM M at the point Z and the
tangent space LGSE(Z) = Span(GGSE,g(hGSE(Z)))
to the RRM MGSE (15) at the nearby recovered point
ZGSE(Z). The proximity between these tangent spaces,
considered as elements of the Grassmann manifold, is
defined using chosen metric on the Grassmann manifold.

Therefore, the tangent bundle

TB(MGSE) = {(ZGSE(Z), LGSE(Z)) : Z ∈MGSE}

of the RRM MGSE accurately approximates the tangent
bundle TB(M).

Note also that the original GSE algorithm [24], [25] has
computational complexity O(n3) for a sample of size n; the



incremental version of the GSE [30] has significantly smaller
running time O(n(q+4)/(q+2)).

A splitting of an arbitrary vector Z =

(
Zu

Zv

)
∈ Rm+3

into two vectors Zu ∈ Rm and Zv ∈ R3 implies the
corresponding partitions

gGSE(y) =

(
gGSE,u(y)
gGSE,v(y)

)
, (17)

GGSE,g(y) =

(
GGSE,g,u(y)
GGSE,g,v(y)

)
(18)

of the mapping gGSE(y) and the matrix GGSE,g(y).
Using the representation Z = F (θ) (11), the embedding

mapping y = hGSE(Z), defined on the RM M, can be written
as a function

y = RGSE(θ) ≡ hGSE(F (θ)), (19)

defined on the LS Θ.
Using the mapping θ = V (w), the RM M and the

embedding mapping y = hGSE(Z) can be written as

M = {Z = f(w), w ∈W} ⊂ Rm+3

and
y = rGSE(X) = hGSE(f(w)) (20)

respectively, where the functions

f(w) =

(
w

V (w)

)
and rGSE(w) (20) are defined on the VFS W.

The 3 × m and 3 × 3 Jacobian matrices JGSE,r(w) (the
covariant differentiation is used here) and JGSE,R(θ) of the
mappings rGSE(w) and RGSE(θ) can be estimated [20] by
the matrices

GGSE,r(w) = G−GSE,g,u(rGSE(w))× πGSE,X(w), (21)

GGSE,R(θ) = G−1
GSE,g,v(RGSE(θ)), (22)

respectively. Here H− = (HT×H)−1×HT denotes a pseudo-
inverse Moore-Penrose matrix [31] of an arbitrary matrix H
and πGSE,X(w) is a certain estimator [23] of an m × m
projection matrix onto the tangent space of the VFS W at
the point w ∈W.

Using representations (19) and (20), the proximity (14)
implies approximate equalities

VGSE(w) ≡ gGSE,v(rGSE(w)) ≈ V (w), (23)
ΦGSE(θ) ≡ gGSE,u(RGSE(θ)) ≈ Φ(θ). (24)

Although the GSE-based functions VGSE(w) (23) and
ΦGSE(θ) (24) accurately approximate the sought-for functions
ψ(w) and Φ(θ), respectively, they cannot be considered as
the solution to the Robot Localization problem because the
mappings gGSE,u(y) and gGSE,v(y) (17), (18) depend on the
argument

y = rGSE(w) = RGSE(θ), (25)

whose values are known only at sample points:

yi = hGSE(Zi) = rGSE(wi) = RGSE(θi), i = 1, 2, . . . , n.
(26)

Based on known values (26) of the functions rGSE(w) (20)
and RGSE(θ) (19) at sample points, as well as on the known
values of their Jacobian matrices (21), (22) at these points,
the estimators r∗(w) and R∗(θ) of these functions at arbitrary
points w ∈W and θ ∈ Θ, respectively, are constructed using
the Jacobian Regression method, proposed in [32].

GSE solution applied to the RM M includes construction
of the kernels KW(w,w′) and KΘ(θ,θ′) on the VFS W
and the LS Θ, respectively. These kernels reflect not only
geometrical closeness between points Z = F (θ) = f(X) and
Z ′ = F (θ′) = f(X ′) but also closeness between the tangent
spaces L(Z) and L(Z ′) to the RM M.

Using these kernels, the Jacobian Regression method gives
the estimators r∗(w) and R∗(θ) in an explicit form defined
by formulas

1

KW(w)

n∑
i=1

KW(w,wi)× {yi +GGSE,r(wi)× (w − wi)}

and

1

KΘ(θ)

n∑
i=1

KΘ(θ,θi)× {yi +GGSE,R(θi)× (θ − θi)}

respectively, where KW(w) =
∑n

i=1KW(w,wi) and
KΘ(θ) =

∑n
i=1KΘ(θ,θi).

C. Robot Localization: Final Formulas

Let us denote gΘ(y) = gGSE,v(y) and gW(y) =
gGSE,u(y). Substitution of estimators r∗(w) and R∗(θ) in
formulas (23) and (24) instead of rGSE(w) and RGSE(θ),
provides the final estimator

ψ∗(X) = gΘ(r∗(ω(X)))

for the Localization function ψ(X) = V (ω(X)), and the final
estimator

Φ∗(θ) ≡ gW(R∗(θ))

for the Feature modeling function w = Φ(θ).
Note that most of known appearance-based learning meth-

ods solve only the Localization function estimation problem.

V. NUMERICAL EXPERIMENTS

We used vehicle moving in a city “Multi-FoV” synthetic
dataset [33] and considered it as a testing problem for robot
localization methods. The data set consists of n = 2500 color
images of size 480 × 640 and information about the vehicle
position for each of them. Measurements from three different
optical vision systems (perspective, fisheye and catadioptric)
are presented in the dataset.

Firstly, we estimated the intrinsic dimensionality of the
data using three different popular approaches [34]: global
via IsoMap [36], local via correlation dimension [37] and
pointwise via maximum likelihood method from [35]. The



(a) (b) (c)

Fig. 1: Examples of images from dataset: perspective (a),
fisheye (b) and catadioptric (c)

results of estimation are presented in Table I. The true
dataset intrinsic dimension is equal to one by design as a
dimensionality of a well-sampled continuous trajectory of
the vehicle. The overestimated dimensionality by local and
pointwise approaches could be caused by extremely large data
dimensionality (p ∼ 106).

TABLE I: Dataset dimensionality estimation

vision system\method global local pointwise
perspective 1 11 3

fisheye 1 7 3
catadioptric 1 11 3

We also applied GSE-approach for localization vs kernel
nonparametric regression (KNR). Random subsample with
70% of data points was used as a training set, and the rest
of data points was used as a testing set. Orientation was not
considered. The optimal kernel bandwidth for the KNR was
estimated globally and the same for all coordinates (color
channels of pixels) using leave-one-out cross-validation. The
relative root means square error (RRMSE) was used as an
error measure. Results are presented in Table II. One can see
that GSE provides better results. One of explanations is that
GSE uses adaptive kernel bandwidth in the original space and
takes into account first order effects.

TABLE II: RRMSE for localization problem

vision system\method GSE KNR
perspective 0.045 0.063
fisheye 0.037 0.059
catadioptric 0.039 0.058

(a) (b) (c)

Fig. 2: Examples of reduction-reconstruction mappings for
out-of-sample image: perspective (a), fisheye (b) and catadiop-
tric (c)

(a) (b) (c)

Fig. 3: Examples of tangent to out-of-sample image: perspec-
tive (a), fisheye (b) and catadioptric (c)

The GSE-algorithm not only reduces dimensionality but also
constructs reconstruction mapping (Figure 2) and estimates
differential structure such as tangent spaces (Figure 3) which
could be useful for velocity estimation. One can see that
reduced-reconstructed images are almost the same as original
ones but a bit blurred (the norm of difference ∼ 0.01 of
the original image Frobenius norm) and the tangent space
represents borders of moving objects.

VI. CONCLUSIONS

We consider an appearance-based robot self-localization
problem. Using recent manifold learning and deep learning
techniques, we propose a new geometrically motivated so-
lution based on training data consisting of a finite set of
images captured in known locations of the robot. Numerical
experiments demonstrated efficiency of the proposed approach.
Further full-scale experiments under different external condi-
tions are underway.

Acknowledgments.
E. Burnaev was supported by the RFBR grants 16-01-00576

A and 16-29-09649 ofi m. A. Bernstein and Y. Yanovich were
supported by the Russian Science Foundation grant (project
14-50-00150).

REFERENCES

[1] Talluri, R., Aggarwal, J.K.: Position estimation techniques for an
autonomous mobile robot — A review. In: Handbook of Pattern
Recognition and Computer Vision, Chen, C.H., Pau, L.F., Wang,
P.S.P.(Eds.), Ch. 4.4, pp. 769–801. Singapore: World Scientific (1993)

[2] Borenstein, J.H., Everett, R., Feng, L., Wehe, D.: Mobile robot posi-
tioning: Sensors and techniques. J. Robot. Syst. 14, 231–249 (1997)

[3] J. Simanek: Data fusion for localization using state estimation and
machine learning. PhD thesis, Czech Technical University, Prague
(2015)

[4] Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile
robots: A survey. Journal of Intelligent and Robotic Systems 53(3),
263296 (2008)

[5] Candy, J.V.: Model-based signal processing. John Wiley & Sons, Inc.
(2006)

[6] Olson, C.F.: Probabilistic self-localization for mobile robots. IEEE
Transactions on Robotics and Automation 16(1), 55–66 (2000)

[7] Krse, B.J.A., Vlassis, N., Bunschoten, R.: Omnidirectional Vision for
Appearance-Based Robot Localization. Lecture Notes in Computer
Science, v. 2238 “Sensor Based Intelligent Robots”, Springer, Berlin
Heidelberg, 39–50 (2002)

[8] Saito, M., Kitaguchi, K.: Appearance based robot localization using
regression models. In: Proceedings of 4th IFAC-Symposium on Mecha-
tronic Systems, v. 2, pp. 584–589 (2006)



[9] Hamm, J., Lin, Y., Lee, D.D.: Learning nonlinear appearance manifolds
for robot localization. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2005), pp. 1239–
1244 (2005)

[10] Crowley, J.L., Pourraz, F.: Continuity Properties of the Appearance
Manifold for Mobile Robot Position Estimation. Image and Vision
Computing 19(11), 741-752 (2001)

[11] Pauli, J.: Learning-Based Robot Vision. Lecture Notes in Computer
Science, vol. 2048 “Principles and Applications”, Springer, Heidelberg,
292 pp. (2001)

[12] A.P. Kuleshov, A.V. Bernstein, E.V. Burnaev. Mobile Robot Localiza-
tion via Machine Learning. Lecture Notes in Artificial Intelligence, vol.
10358 Machine Learning and Data Mining in Pattern Recognition, 15
pp., Springer International Publishing AG, Verlag, (2017)

[13] Vlassis, N., Krose, B.J.A.: Robot environment modeling via principal
component regression. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS’99), pp. 677–682
(1999)

[14] Se, S., Lowe, D., Little, J.: Local and global localization for mobile
robots using visual landmarks. In: Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS 2001),
pp. 414–420 (2001)

[15] Wang, K., Wang, W., Zhuang, Y.: Appearance-Based Map Learning
for Mobile Robot by Using Generalized Regression Neural Network.
Lecture Notes in Computer Science, vol. 4491 “Advances in Neural
Networks”, Springer-Verlag, Berlin, Heidelberg, 834–842 (2007)

[16] Crowley, J.L., Wallner, F., Schiele, B.: Position estimation using
principal components of range data. In: Proceedings of the 1998 IEEE
International Conference on Robotics and Automation, vol. 4, pp.
3121–3128 (1998)

[17] Do, H.N., Choi, J., Lim, C.Y., Maiti, T.: Appearance-based localiza-
tion using Group LASSO regression with an indoor experiment. In:
Proceedings of the 2015 IEEE International Conference on Advanced
Intelligent Mechatronics (AIM 2015), pp. 984–989 (2015)

[18] Do, H.N., Choi, J.: Appearance-based outdoor localization using group
lasso regression. In: Proceedings of the ASME Dynamic Systems and
Control Conference (DSCC 2015), vol. 3, 8 pp. (2015)

[19] Tibshirani, R.: Regression shrinkage and selection via the lasso:
a retrospective. Journal of the Royal Statistical Society. Series B
(Methodological), 73(3), 273–282 (2011)

[20] Burnaev, E., Belyaev, M., Kapushev, E.: Computationally efficient
algorithm for Gaussian Processes based regression in case of structured
samples. Computational Mathematics and Mathematical Physics. 56(4),
499–513 (2016)

[21] Burnaev, E., Panov, M., Zaytsev, A.: Regression on the Basis of Non-
stationary Gaussian Processes with Bayesian Regularization. Journal of
Communications Technology and Electronics. 61(6), 661–671 (2016)

[22] Burnaev, E., Zaytsev, A. Surrogate modeling of mutlifidelity data for
large samples. Journal of Communications Technology and Electronics.
60(12), 1348–1355 (2016)

[23] Kuleshov, A.P., Bernstein, A.V.: Nonlinear multi-output regression
on unknown input manifold. Annals of Mathematics and Artificial
Intelligence, 32 pp (2017)

[24] Bernstein, A.V., Kuleshov, A.P.: Manifold Learning: generalizing abil-
ity and tangent proximity. Int. J. Softw. Inf. 7(3), 359–390 (2013)

[25] Bernstein, A.V., Kuleshov, A.P.: Dimensionality Reduction in Statistical
Learning, IEEE Conference Proceedings of the 13th International
Conference on Machine Learning and Applications (ICMLA-2014),
IEEE Computer Society, pp. 330335 (2014)

[26] Kuleshov, A.P., Bernstein, A.V., Yanovich, Y.A.: Statistical Learning
via Manifold Learning. Proceedings of the 14th International IEEE
Conference on Machine Learning and Applications (ICMLA-2015),
IEEE Computer Society, Conference Publishing Services, Los Alami-
tos, CA, USA, pp. 64-69 (2015)

[27] Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are
features in deep neural networks?. Advances in Neural Information
Processing Systems 27, 3320–3328 (2014)

[28] Lee, John M.: Introduction to Smooth Manifolds. New York: Springer-
Verlag (2003)

[29] Bernstein, A.V., Kuleshov, A.P.: Tangent Bundle Manifold Learning
via Grassmann & Stiefel Eigenmaps, arXiv:1212.6031v1[cs.LG], pp.
125 (2012)

[30] Kuleshov, A.P., Bernstein, A.V.: Incremental Construction of Low-
dimensional Data Representations. Lecture Notes in Artificial Intelli-

gence, vol. 9896 “Artificial Neural Networks for Pattern Recognition,”
pp. 55–67. Springer Heidelberg (2016)

[31] Golub, G.H., Van Loan, C.F.: Matrix Computation, 3rd edn. Johns
Hopkins University Press, Baltimore, MD (1996)

[32] Kuleshov, A.P., Bernstein, A.V.: Regression on High-dimensional In-
puts. In: Workshops Proceedings volume of the IEEE International
Conference on Data Mining (ICDM 2016), pp. 732–739. USA, IEEE
Computer Society (2016)

[33] Zhang, Z., Rebecq, H., Forster, C., Scaramuzza, D.: Benefit of Large
Field-of-View Cameras for Visual Odometry. IEEE International Con-
ference on Robotics and Automation (ICRA). 1–8 (2016)

[34] Camastra, F., Staiano, A.: Intrinsic Dimension Estimation: Advances
and Open Problems. Information Sciences. 328. 26-41 (2016)

[35] Levina, E., Bickel, P.J.: Maximum Likelihood Estimation of Intrinsic
Dimension. Advances in Neural Information Processing Systems. 777–
784 (2005)

[36] Tenenbaum, J. B., de Silva, V.,Langford, JC.: A Global Geometric
Framework for Nonlinear Dimensionality Reduction. Science 5500
(290), 2319–2323 (2000)

[37] Granata, D., Carnevale, V.: Accurate Estimation of the Intrinsic Dimen-
sion Using Graph Distances: Unraveling the Geometric Complexity of
Datasets. Sci Rep 31377 (6), 1–12 (2016)

http://arxiv.org/abs/1212.6031

	I Introduction
	II Robot Localization: Rigorous Problem Statement
	III Robot Localization: Proposed Approach
	III-A Preprocessing Captured Images
	III-B Nonlinear Regression on High-dimensional Inputs: Localization Function Estimation
	III-C Nonlinear Regression with High-dimensional Inputs: Feature modeling function estimation
	III-D Kalman Filtering in Robot Localization Problem

	IV Robot Localization: Solution
	IV-A Robot Localization Manifold Estimation Problem
	IV-B Robot Localization Manifold Estimation: GSE Solution
	IV-C Robot Localization: Final Formulas

	V Numerical experiments
	VI Conclusions
	References

