
Deep Bayesian Active Semi-Supervised Learning

Matthias Rottmann∗, Karsten Kahl∗ and Hanno Gottschalk∗

Abstract
In many applications the process of generating la-

bel information is expensive and time consuming.
We present a new method that combines active and
semi-supervised deep learning to achieve high gen-
eralization performance from a deep convolutional
neural network with as few known labels as possi-
ble. In a setting where a small amount of labeled
data as well as a large amount of unlabeled data is
available, our method first learns the labeled data
set. This initialization is followed by an expectation
maximization algorithm, where further training re-
duces classification entropy on the unlabeled data
by targeting a low entropy fit which is consistent
with the labeled data. In addition the algorithm
asks at a specified frequency an oracle for labels of
data with entropy above a certain entropy quantile.
Using this active learning component we obtain an
agile labeling process that achieves high accuracy,
but requires only a small amount of known labels.
For the MNIST dataset we report an error rate of
2.06% using only 300 labels and 1.06% for 1,000 la-
bels. These results are obtained without employing
any special network architecture or data augmen-
tation.

1 Introduction
In recent years deep learning has shown great po-
tential in solving classification and regression tasks
of increasing complexity and difficulty. For aca-
demic purposes, several labeled data sets with as-
sociated tasks are available to support and facilitate
research on machine learning. Though in many
practical applications (e.g. in industry, medicine
and microbiology) where raw data is available in
abundance, labeled information is not readily avail-
able and the process of generating labels can be
time consuming and expensive. Therefore, the de-
velopment of methods that provide strong predic-
tive models from as few labels as possible is a field
of high interest.

The fields of active learning and semi-supervised
learning address this issue and provide two ap-

∗Bergische Universiatät Wuppertal, Fac-
ulty of Mathematics and Natural Sciences,
{rottmann,kkahl}@math.uni-wuppertal.de,
hanno.gottschalk@uni-wuppertal.de

proaches to obtain strong predictive models using
only few labels, see Gal et al. 2016; Hu et al. 2017;
Kingma et al. 2014a; Lee 2013; Pitelis et al. 2014;
Rasmus et al. 2015; Rifai et al. 2011; Weston et
al. 2012. They both assume a situation where the
complete set of data is large, but labels are known
only for a small fraction of it.

The field of semi-supervised learning has a long
history. Already in Suddarth et al. 1990 unlabeled
data had been injected into the training of neural
networks in order to improve generalization perfor-
mance. Most approaches rely on the Expectation
Maximization (cf. Dempster et al. 1977, EM) tech-
nique which is a clustering algorithm. In the semi-
supervised context, EM is used to assign unlabeled
data to a finite number of clusters which are ini-
tially defined by the small set of labeled samples.
That is, an initial model is trained and then, using
the resulting model, labels are assigned to unla-
beled data, which in turn are used to further train
the model. The pseudo-label approach, introduced
in Lee 2013, is such an EM technique. It uses the la-
bels predicted by the neural network itself and can
be viewed as well as an auxiliary loss in the training
phase which is inserted to reduce classification en-
tropy on the unlabeled data. It is well known that
the EM strategy works well in presence of low den-
sity class separation. Thus it is unclear if and how
this approach is able to adequately classify sam-
ples with high classification uncertainty. In case
a quantitative measure of classification uncertainty
can be defined, unlabeled data should only be used
for training if their uncertainty is small. However,
some samples typically retain high uncertainty in
the semi-supervised training cycle. This is where
active learning comes into play, in that it is most
valuable to acquire ground truth labels for samples
with high classification uncertainty and add those
to training. In this way active and semi-supervised
learning complement each other naturally.

Both learning approaches benefit from good un-
certainty quantification mechanisms. With the ad-
vent of Monte-Carlo (MC) dropout Gal et al. 2016,
we have an instrument at hand that makes it fea-
sible to construct sensitive metrics to monitor clas-
sification uncertainty. Bayesian inference has been
used in an active deep learning approach introduced

1

ar
X

iv
:1

80
3.

01
21

6v
1

 [
cs

.L
G

]
 3

 M
ar

 2
01

8

in Gal et al. 2017.

In recent years, there were also efforts on design-
ing specialized network architectures that incorpo-
rate components like denoising auto-encoders, see
Rasmus et al. 2015. Also deep generative models
were used for semi-supervised learning, see Kingma
et al. 2014b.

Combining the active learning and the semi-
supervised learning track, a method for synthetic
aperture radar image recognition has been pub-
lished in Gao et al. 2017.

In this paper, we present a deep Bayesian Active
Semi-Supervised learning (deepBASS) approach
that is based on an EM deep learning approach
for classification tasks paired with an active learn-
ing component and approximate Bayesian uncer-
tainty. We first train a Convolutional Neural Net-
work (CNN) on a small sample of labeled training
data. Afterwards we employ the EM technique,
i.e., we iteratively predict classes and assign these
as pseudo-labels to the unlabeled data set. Then,
we train one epoch on the pseudo-labeled data and
the ground-truth-labeled data. While doing so,
we make sure that the prediction accuracy on the
ground truth remains high. During this process,
the algorithm asks an oracle for additional label
information where the neural network shows in-
creased classification uncertainty, e.g., high classifi-
cation entropy. For all predictions and uncertainty
estimations we incorporate MC dropout inference.

The remainder of this work is structured as fol-
lows: In section 2 we classify our method with re-
spect to existing approaches in the literature. Then
we introduce our method in detail in section 3 in-
cluding all necessary notations. Using a simple toy
example in section 4 we motivate the combination
of active and semi-supervised learning. Using the
MNIST dataset, we compare two settings in sec-
tion 5 where on one hand all unlabeled data is
present in training from the beginning and where
on the other hand unlabeled data is added only in-
crementally. Both settings are combined with two
different label acquisition policies. Concluding the
experiments we compare our method with other
semi-supervised and active learning approaches.

2 Related Work

Our aim is to provide concepts of how to train mod-
els with high predictive power with as small label-

ing effort as possible. In this we combine compo-
nents from active learning, semi-supervised learn-
ing and approximate Bayesian uncertainty quantifi-
cation and construct a robust method that achieves
high accuracy.

A related semi-supervised deep learning method
including MC dropout inference has been published
in Hyams et al. 2017 which incrementally assigns la-
bels to data with highest predicted class probability
above a chosen threshold and adds the respective
data to the training data, but does not facilitate an
active learning components.

On the other hand, an active deep learning ap-
proach making use of Bayesian uncertainty has
been introduced in Gal et al. 2017. This work
stresses the importance of approximate Bayesian
model uncertainty in active learning and shows
comparisons with semi-supervised methods. How-
ever, this approach does not make use of semi-
supervised learning.

In Rasmus et al. 2015, a so-called ladder net-
work with denoising components has been intro-
duced, which achieved outstanding results for the
MNIST dataset. This specialized network ar-
chitecture, however, is not trivially generalizable
to more complex tasks, like e.g. object classifica-
tion/detection and semantic segmentation, where
state-of-the-art networks are huge. Deep generative
models have been employed successfully in semi-
supervised learning, but suffer from scalability is-
sues as well, see Kingma et al. 2014b. The aim of
the presented approach is to show that a combi-
nation of active and semi-supervised learning tech-
niques is able to achieve similar performance with
a much simpler and scalable network architecture.

The active semi-supervised learning approach in-
troduced in Gao et al. 2017, a method for synthetic
aperture radar image recognition, accepts in ev-
ery iteration a chosen number of pseudo-labels with
highest confidence and asks an oracle for a chosen
number of samples with lowest confidence. Con-
fidence is measured in terms of highest classifica-
tion probability, approximate Bayesian uncertainty
is not employed in this approach. We observe in our
tests that compared to the average classification en-
tropy of the available initial ground-truth-labeled
data, plenty of unlabeled data have classification
entropy below this threshold. Therefore, in the
beginning, many thousands of unlabeled samples
can be automatically labeled and added to train-

2

ing while producing only a tiny fraction of false
positives, i.e., incorrect labels. Furthermore, we
also address the question whether it is necessary to
pseudo-label and add unlabeled data incrementally
or at once.

3 DeepBASS Learning
In order to introduce the deep Bayesian active semi-
supervised learning approach we first review its ba-
sic components.

3.1 Expectation Maximization
The Expectation Maximization (Dempster et al.
1977, EM) algorithm is a widely used clustering
approach. In the original unsupervised context this
clustering algorithm is initialized on a model with
a predefined number of classes and random param-
eters. When doing semi-supervised learning, this
random initial model is replaced by a model that is
trained on the scarce ground truth labels. The sec-
ond phase is always unsupervised and applies the
model to all unlabeled (later pseudo-labeled) data
in order to cluster it. Here, the clustering metric is
provided by the neural network itself via classifica-
tion entropy. This in turn can be viewed as adding
an additional term to the loss function. Afterwards
the neural network is trained in a self-affirmation
manner towards its own predictions, where ground
truth labels, unlike for the original EM, are never
reassigned by model predictions.

Let us introduce some notation. Let

(X,G) := {(xj , gj) : j = 1, . . . , N} ⊆ Rn ×G (1)

denote the collection of input samples, where X
denotes the data and G the set of all associated
labels from a finite label space G containing C
classes, which in the following are identified with
numbers, i.e., G := {1, . . . , C}. We denote the
deterministic probability distribution on G by δg,
i.e., δg(g) = 1 and δg(c) = 0, g 6= c. Further, let
X ′ = {x′j : j = 1, . . . , N ′} with N ′ � N denote
input samples where no labels are available, and let
f : Rn × Rp → Y denote the neural network func-
tion where p is the number of learnable parameters
and Y = {y ∈ [0, 1]C ⊆ RC :

∑C
c=1 yc = 1} the

space of classification distributions. For an input
x ∈ Rn and weights w ∈ Rp we denote the softmax
output of the neural network by ŷ = f(x,w).

The loss function in our approach is the negative

maximum likelihood of the softmax classification
rule

L1(g, ŷ) = −
C∑
c=1

δg(c) log(ŷc) = − log(ŷg) . (2)

Similarly, the normalized classification entropy H
is defined by

H(ŷ) = − 1

log(C)

C∑
c=1

ŷc log(ŷc) ∈ [0, 1] . (3)

An auxiliary loss for the unlabeled data can be de-
fined as follows. Let pseudo-labels be defined by

ψ(ŷ) := arg max
c
{ŷc : c = 1, . . . , C} , (4)

i.e., the index with highest classification probabil-
ity. Then the auxiliary loss can be expressed using
the loss function L1 from eq. (2) via

L1(ψ(ŷ), ŷ) = −
C∑
c=1

δψ(ŷ)(c) log(ŷc) . (5)

This term reaches its minimum if ŷ = δψ(ŷ), and
indeed we have L1(ψ(ŷ), ŷ) = H(δψ(ŷ)) = 0. Thus,
minimizing eq. (3) is conceptually close to mini-
mizing eq. (5). We can now define a combined loss
by

L(g, ŷ) =

{
L1(g, ŷ) for x ∈ X
µL1(ψ(ŷ), ŷ) for x ∈ X ′ .

(6)

We do not consider the entropy based equivalent
of eq. (6), as the loss function L yields additional
freedom in the definition of pseudo-labels ψ(ŷ)
(cf. eq. (4)). The choice of the regularization pa-
rameter µ and other practical implementation de-
tails are discussed in sections 4 and 5. Having in-
gredients for the prescription of the EM algorithm
with pseudo-labels, we can state a generic version
of it in algorithm 3.1, which we specify further in
the next paragraph.

3.2 Monte-Carlo Dropout Inference
Disregarding the nature of the given data and the
prediction task, the practical performance of algo-
rithm 3.1 strongly depends on three factors, the
initial accuracy achieved in line 2, the pseudo-
label quality which depends on lines 5 and 6,

3

Algorithm 3.1: Active EM with pseudo-labels

Data: (X,G) labeled data from eq. (1),
X ′ unlabeled data

Result: weights w
1 let (D,L) := (X,G), initialize weights w
2 train w on (D,L) minimizing L
3 repeat
4 forall x′ ∈ X ′ do
5 infer y′ using f, w and x′

6 if y′ close enough to δψ(y′) then
7 (D,L)← (D,L) ∪ {(x′, ψ(y′))}

8 for a chosen number of x′ ∈ X ′ with y′ far
away from δψ(y′)

9 ask the oracle for the ground truth g′

10 (X,G)← (X,G) ∪ {(x′, g′)}
11 x′ ← X ′ ∪ {x′}
12 train w one epoch on (D,L) minimizing L
13 until satisfied

cf. e.g. Hyams et al. 2017; Lee 2013, and the ac-
quisition policy in line 8 for demanding additional
ground truth, see Gal et al. 2017. In this para-
graph we focus on the latter two aspects. It has
been proposed in Hyams et al. 2017 to use MC
dropout inference for generating pseudo-labels in a
semi-supervised setting. In the active learning set-
ting, MC dropout has been used in Gal et al. 2017
to evaluate the uncertainty of a prediction f(x,w)
and thus decide which samples to label next by help
of an oracle. We combine both approaches as fol-
lows.

In line 5 we simply infer using MC dropout with
a chosen number T ′ of forward passes to obtain the
average probability outputs

ỹ = f̃T ′(x,w) :=
1

T ′

T ′∑
t=1

f (t)(x,w) for all x ∈ X ′ ,

(7)
where f (t) denotes f with dropout. Note, that f (t)

is not deterministic when including dropout, i.e.,
f (t) is not uniquely defined for a chosen t.

In order to perform line 6 we define a metric
that tells us how close ỹ is to δψ(ỹ). Clearly, many
different metrics could be considered. Our met-
ric of choice is the classification entropy H(ỹ) from
eq. (3). For the threshold estimation, we apply MC
dropout inference with a chosen number of forward

passes T to all available ground truth labeled data
X (including data where ground truth is obtained
from the oracle during training) and calculate the
average classification entropy

θ :=
1

|X|
∑
x∈X
H(f̃T (x,w)) . (8)

We choose a threshold θ and add in every itera-
tion of algorithm 3.1 all samples with entropy below
threshold, i.e., H(f̃T ′(x′, w)) < θ. That is,

(D,L)← (D,L)∪{(x′, ψ(f̃T ′(x′, w)))} for x′ ∈ X ′ .
(9)

For the active learning part in line 8 we use the
entropy of averaged classification results under MC
dropout, i.e., H(f̃T ′(x′, w)) for all x′ ∈ X ′. For
a chosen number of samples x′ ∈ X ′ with highest
entropy we ask the oracle for the ground truth g′

and add the labeled data (x′, g′) to (X,G) while
removing x′ from X ′. Other approaches for acquir-
ing labels are proposed in Gal et al. 2017, where it
has been shown that the classification entropy un-
der MC dropout is one of the best choices among
the considered acquisition functions.

Parameter values for T and T ′ are stated in the
experiments in section 5.

4 An Illustrative Example

In this section we show some experiments with algo-
rithm 3.1 for illustration and motivation. Our sim-
ple problem consists of 2 non-convex distributions,
from which we draw 500 samples each. The distri-
butions are generated as follows: Let N (m,σ2) be
a Gaussian normal distribution with mean m and
variance σ2. We draw radius and angle from

r ∼ N (1, (1/4)2) and φ ∼ N (1/2, (1/3)2) .
(10)

Samples from the red distribution are constructed
as

red = (1/3,−1/10) + r · (cos(φ), sin(φ)) (11)

and samples from the blue one are constructed as

blue = (−1/3, 1/10) + r · (cos(φ),− sin(φ)) , (12)

together they form a Yin-and-Yang type of picture,
see figs. 1 and 2.

4

Figure 1: Experiments for algorithm 3.1: (left): training with 8 labels, 4 per class, (middle left): 8 labels
+ pseudo-labels for the rest, (middle right): active learning with initial 8 labels + 72 over time, (right):
active semi-supervised learning with initial 8 labels, pseudo-labels for the rest and 72 labels over time.

Figure 2: Experiments for algorithm 3.1: same tests as in fig. 1, but a different choice of initial labels.

Network Architecture and Parameters There
are two competing objectives at work when con-
sidering a suitable network architecture for deep-
BASS. On one hand, we have to employ strong reg-
ularization in order to avoid overfitting when learn-
ing the small set of initially labeled samples. On
the other hand, the initial model has to re-adjust to
new ground truth obtained from the oracle during
the EM iteration, which requires flexibility.

Thus in addition to strong regularization our
model needs to be equipped with enough learnable
parameters. Hence, for all tests shown in this sec-
tion we use a fully connected neural network with
2 input neurons, 3 hidden layers with 50 neurons
each and 2 output neurons. After each hidden layer
we use the LeakyReLU activation function, i.e.,

LeakyReLU (x) =

{
x for x > 0

0.1x else,
(13)

followed by dropout Srivastava et al. 2014 with 33%
dropout rate. All models are trained and evaluated
using Keras Chollet et al. 2015 with the Tensorflow
backend Abadi et al. 2015. All layers are L2 regu-
larized with regularization parameter λ = 10−3. To
fit the weights we use Adam Kingma et al. 2014a
with default parameters. The mini-batch size is
256.

For MC dropout inference on unlabeled and
pseudo-labeled data X ′ we use T ′ = 10 forward
passes with dropout, and on the dataX with known
ground truth we perform T = 100 forward passes.
In every iteration of algorithm 3.1 unlabeled data
from X ′ that is not in D, yet, is added if its classifi-
cation entropy is below the threshold θ, cf. eq. (8).

Intentional Overfitting of Ground Truth The
choice of the regularization parameter µ in the loss
function in eq. (6) plays an important role. Cho-
sen too small, the use of unlabeled data will barely
have any effect, chosen too large, the classification
accuracy (rate of correctly predicted classes) on the
ground truth labeled data will decrease while the it-
eration in algorithm 3.1 proceeds. Thus we choose
to rather overfit the scarce ground truth data in
order to allow algorithm 3.1 to find a clustering of
the unlabeled data X ′ consistent with the labeled
data X.

In our Keras implementation, we implemented
this balance by “upsampling” X in D, i.e., a sample
from X, with known ground truth, is contained 20
times inD while a sample fromX ′ will be contained
(at most) once in D. E.g. for 8 labeled samples and
992 unlabeled ones, we can expect about 14% of
the data in a mini-batch to be labeled with ground
truth. In our tests we observe that this leads to

5

overfitting the ground truth, however it prevents
the neural network from forgetting the crucial in-
formation.

Experiments. In all four panels in figs. 1 and 2
we start with 4 labels per class, the depicted data
points represent all data available for training, i.e.,
X ∪X ′, the data points in X, where ground truth
is available, are crossed out. The background color
gradients depict where the neural network predicts
the red or the blue class, respectively. The classifi-
cation boundary is white and represents the region
where the classification uncertainty is high. Fig-
ures 1 and 2 only differ in the choice of the 8 la-
bels. While the choice in fig. 1 is easy to handle, the
choice in fig. 2 represents a rather ill-posed case.

For the left panel in figs. 1 and 2 we train only on
the available ground truth until the classification
accuracy on the training set stagnates. For each
figure, all other panels share the left panel as initial
model.

In the middle left panel we continue with semi-
supervised training, not adding any further ground
truth labels. The resulting model in both cases is
more sure about its decision, this is indicated by
background colors that are more saturated. How-
ever in fig. 2 the classification boundary got worse
compared to the left panel. Both figures also show
that it can happen that semi-supervised learning
does not perform well, especially when a low den-
sity distribution at the class boundaries is not
present.

In the center right panel we use active learn-
ing. Every second iteration, we demand two ground
truth labels. We keep iterating until 80 samples are
labeled, i.e., 72 iterations. In the right hand panel
we use both, active and semi-supervised learning.
While in fig. 1 active learning performs just as well
as active semi-supervised learning, the latter clearly

Method panel in figs. 1 and 2 val. acc.

initial model (left) 83.27%
semi-supervised (middle left) 84.33%
active (middle right) 90.19%
active semi-supervised (right) 90.33%
80 labels 88.65%
1,000 labels 91.37%

Table 1: Average classification accuracies for the
tests performed in figs. 1 and 2.

is superior in fig. 2. The interpretation of these re-
sults is that the semi-supervised learning compo-
nent has a regularizing effect on active learning.

Summarizing these tests, we state classification
accuracies averaged over 10 runs for all four tests
in table 1 and complement these with results for
purely supervised learning using 80 and 1,000 la-
bels, respectively. The corresponding models are
trained until validation accuracy stagnates.

5 Experiments with MNIST
For our experiments, we use the MNIST dataset Le-
Cun et al. 1998 of handwritten digits, given as tiny
28×28 gray scale images with the pre-defined data
split of 60,000 training and validation 10,000 im-
ages. Again, all models are trained and evaluated
using Keras with Tensorflow backend. For the CNN
architecture we use a generic building block con-
taining the following components:

• convolutional layer with 16 filters of size 3× 3,

• LeakyReLU activation function, eq. (13),

• dropout with 33% dropout rate.

We stack four of these building blocks, after the
second and the fourth layer we apply 2×2 max pool-
ing. This results in a 7× 7× 16 tensor, followed by
a dense layer with 10 outputs and a final softmax
activation. The resulting network is equipped with
14,970 learnable parameters. All convolutional lay-
ers are trained with L2 regularization and a regular-
ization parameter λ = 10−3. We again use Adam
with default parameters for training.

Parameters. Throughout our experiments we use
the following parameters. For MC dropout infer-
ence on unlabeled and pseudo-labeled data X ′ we
use T ′ = 10 forward passes of dropout, and on data
X with known ground truth we perform T = 100
forward passes. In each test we perform 200 iter-
ations of algorithm 3.1 and we perform each test
10 times while re-sampling the initial 100 samples.
The presented results are averages of these 10 runs,
the ground truth up-sampling factor is 20.

The initial neural network is trained on a bal-
anced data set containing the same number of sam-
ples for each class. By default we start with 100 la-
beled samples, i.e., 10 per class. By presenting the
ground truth labeled data 2,000 times we obtain
a training accuracy of roughly a 99–100%. During

6

the 200 iterations in algorithm 3.1 we track the per-
formance by monitoring validation accuracy. When
we perform active learning, we acquire 10 labels
once every 10 iterations. Note, that the added la-
bels are not necessarily class-balanced.

Experiments with Entropy Thresholding
and Label Acquisition Policy. Figure 3 shows
the behavior of algorithm 3.1 over the course of 200
iterations, averaged over 10 runs. In the left panel
we study the influence of the threshold θ, i.e., we
compare the case where all unlabeled data is used in
training right from the start (θ = 1, short hand: all
data) with the strategy where pseudo-labeled data
is added step-wise according to the threshold θ from
eq. (8) (short hand: step-wise). This comparison
is made while using two different label acquisition
policies. On one hand we ask for labels of unlabeled
samples x′ ∈ X ′ with maximum entropy as ex-
plained in section 3.2 (short hand: max. entropy),
on the other hand we try a slightly more careful
policy where we only demand labels for samples
x′ ∈ X ′ randomly drawn from all data in X ′ with
entropy above average (short hand: above avg.),
i.e.,

H(f̃T ′(x′, w)) >
1

|X|+ |X ′|
∑

x∈X∪X′

H(f̃T ′(x,w)) .

(14)
The latter strategy is motivated by the fact that it
might happen that exclusively acquiring data with
high classification entropy could result in overfit-
ting (wiggly decision boundaries) of data from non-
separable distributions, consequently slowing down
the convergence of algorithm 3.1.

In our tests with 100 initial ground truth labels,
all four approaches share the same initial models in
each run, the average validation accuracy is 82.05%
after training with 100 labeled samples evenly dis-
tributed over all classes. The left panel of fig. 3
shows that the all data + max. entropy approach
is slightly superior to the same acquisition policy
where unlabeled data is added step-wise. We be-
lieve that the reason for this is in part the well-
behaved nature of the MNIST dataset. The above
avg. acquisition policy is slightly inferior, but works
better when all available unlabeled data is used
from the beginning. Summarizing, all data com-
bined with max. entropy acquisition policy reaches
97.92% accuracy on average. This result is the av-
erage of all 10 runs stopping after 200 iterations and

Threshold policy ground truth val. acc.(stddev.) %

– – 100 82.03(±1.95)
– – 300 91.91(±0.75)
– – 600 94.92(±0.32)
– – 1,000 96.24(±0.39)
– – 3,000 97.89(±0.25)
step-wise max. entropy 300 97.67(±0.34)
step-wise above average 300 97.43(±0.19)
all data max. entropy 300 97.92(±0.19)
all data above average 300 97.65(±0.26)
all data – 100 96.08(±1.49)
all data – 300 97.10(±0.40)
all data – 600 97.39(±0.35)
all data – 1,000 97.64(±0.23)
all data – 3,000 98.14(±0.26)
– – 60,000 99.09(±0.07)

Table 2: Summary of average classification accura-
cies for the tests performed in fig. 3. For all tests
with label acquisition policy, 100 ground truth la-
bels are used initially, 200 are added over time.

measuring the accuracy of the model after the last
iteration. The best result in a single run is 98.33%.
In contrast to this, the most careful approach, step-
wise + above avg., ends up with 97.43% which is
still good.

In order to understand how much we ben-
efit from combining active learning and semi-
supervised learning, we compare the best approach
from the left panel of fig. 3 with algorithm 3.1,
but without the active learning component. That
is, we use 100 and 300 labels from the begin-
ning and perform semi-supervised learning without
adding any further ground truth labels. The re-
sults are depicted in the right hand panel of fig. 3
and they show that active learning is indeed bene-
ficial when using algorithm 3.1 for semi-supervised
learning. The pure semi-supervised approach with
300 labels ends up with an average accuracy of
97.10% which is 0.82% less than for active semi-
supervised learning. Note, that we achieve 96.08%
with semi-supervised learning and 100 labels. All
results from this section are summarized in table 2,
complemented with result for supervised and semi-
supervised learning with different numbers of la-
bels. Compared to the all data + max. entropy
approach, pure supervised learning with a random
sample of labeled data requires about 10 times as
many labels. The samples standard deviation re-
veals that our approach is robust under data re-
sampling.

7

0 50 100 150 200
0.8

0.85

0.9

0.95

1

iterations

va
li
d
at
io
n
a
cc
u
ra
cy

100 labels + 200 labels over time

all data + max. entropy
all data + above avg.

step-wise + max. entropy
step-wise + above avg.

0 50 100 150 200
0.8

0.85

0.9

0.95

1

iterations

va
li
d
at
io
n
a
cc
u
ra
cy

over time vs. at once

all + max. entropy
all data + 300 labels
all data + 100 labels

Figure 3: Experiments for algorithm 3.1 with two different thresholds for adding data, each with two
different label acquisition policies.

Data Augmentation. Except for this paragraph,
all tests in this work are performed without data
augmentation. However in a practical setting it
might make sense to use data augmentation as well.
For the MNIST dataset, when using data augmen-
tation on the ground truth labeled data with slight
rotations of less than 10 degrees and slight image
scaling of up to 5% in height and width, we observe
that 50 labels are enough to achieve competitive
initial validation accuracies of around 85%.

Comparison with Other Methods. In this sec-
tion, we provide an overview of methods for semi-
supervised deep learning and active deep learning
where tests with the MNIST dataset have been
performed. Most of the referred works provide
numbers for 1,000 labels, results for 300 labels
are scarce. We compare these results with the all
data + max. entropy Deep Bayesian Active Semi-
Supervised learning approach. For comparison we
run our method 10 times until 1,000 samples are
ground truth labeled and average over all validation
accuracies, achieving 98.94% validation accuracy.
A comprehensive comparison is stated in table 3.
Clearly our approach, using 1,000 labeled samples
is competitive at the upper end of the spectrum of
reported results. Though one of the main advan-
tages of it, as reported in the previous sections, is
its ability to yield high accuracies even with as few
as only 300 labeled samples. Note, that the full
ladder net model from Rasmus et al. 2015 is a very
sophisticated model incorporating denoising auto-
encoder structures which might lack scalability and

portability.
The semi-supervised part of our method with

only 100 labels reaches a validation accuracy of
96.08%, a similar approach without MC dropout,
see Lee 2013, only achieved 89.51%. We observed
similar results in our tests without MC dropout in-
ference which reveals its impact.

Method test error

Semi-Supervised:
Weston et al. 2012: Semi-Supervised Embedding 5.73%
Weston et al. 2012: Transductive SVM 5.38%
Pitelis et al. 2014: AtlasRBF 3.68%
Rifai et al. 2011: Manifold Tangent Classifier 3.64%
Lee 2013: Pseudo-label 3.46%
Hyams et al. 2017: Self training + Dyn. conf. 3.42%
Kingma et al. 2014b: Deep Generative Models 2.40%
Rasmus et al. 2015: Ladder, Γ-model 1.53%
Hu et al. 2017: Virtual Adversarial 1.32%
Rasmus et al. 2015: Ladder, full 0.84%
Active:
Gal et al. 2017: Bald 1.80%
Gal et al. 2017: Max Entropy 1.74%
Gal et al. 2017: Var Ratios 1.64%
Active + Semi-Supervised:
DeepBASS (all data + max. entropy): 1.06%

Table 3: Comparison with other approaches for a
1,000 labels. We term our method

6 Conclusion & Outlook
We have introduced a general active semi-
supervised deep learning method with a wide field
of possible applications that shows great perfor-
mance in first results for the MNIST dataset. While

8

we use only simple classification entropy based un-
certainty quantification, the presence of approxi-
mate Bayesian inference as well as the combination
of semi-supervised learning and active learning con-
stitute to the strength of our method as it outper-
forms state-of-the-art general approaches which do
not use advanced network architectures.

If validation data is available, our approach can
be further tuned with respect to thresholding and
acquisition policy. This fact implies, that addi-
tional meta-learning extensions could be developed.
A minor concern might be, that data which is added
in the active part of the approach is prone to over-
fitting. A clean restart with the final data splitting
and further tuning could additionally improve the
performance of our method.

We plan to produce results for this ap-
proach in different applications and pro-
vide our source code on GitHub, cf.
https://github.com/mrottmann/DeepBASS.

Acknowledgements. We would like to thank
Fabian Hüger and Peter Schlicht from Volkswagen
Group Research for discussion and remarks on this
work.

References
Abadi, M., A. Agarwal, P. Barham, et al. (2015).

TensorFlow: large-scale machine learning on het-
erogeneous systems. Software available from ten-
sorflow.org.

Chollet, F. et al. (2015). Keras. https://github.
com/fchollet/keras.

Dempster, A. P., N. M. Laird, and D. B. Rubin
(1977). “Maximum likelihood from incomplete
data via the em algorithm”. Journal of the royal
statistical society, series b 39.1, pp. 1–38.

Gal, Y. and Z. Ghahramani (2016). “Dropout as
a bayesian approximation: representing model
uncertainty in deep learning ”. Proceedings of
the 33rd International Conference on Interna-
tional Conference on Machine Learning - Volume
48. ICML’16. New York, NY, USA: JMLR.org,
pp. 1050–1059.

Gal, Y., R. Islam, and Z. Ghahramani (2017).
“Deep bayesian active learning with image data”.
Corr abs/1703.02910.

Gao, F. et al. (2017). “A novel active semisuper-
vised convolutional neural network algorithm for

SAR image recognition”. Comp. int. and neu-
rosc. 2017, 3105053:1–3105053:8.

Hu, W. et al. (2017). “Learning discrete representa-
tions via information maximizing self-augmented
training ”. ICML. Vol. 70. Proceedings of Ma-
chine Learning Research. PMLR, pp. 1558–1567.

Hyams, G., D. Greenfeld, and D. Bank (2017).
“Improved training for self-training”. Corr
abs/1710.00209.

Kingma, D. P. and J. Ba (2014a). “Adam:
A method for stochastic optimization”. Corr
abs/1412.6980.

Kingma, D. P. et al. (2014b). “Semi-supervised
learning with deep generative models”. Corr
abs/1406.5298.

LeCun, Y. et al. (1998). “Gradient-based learning
applied to document recognition”. Proceedings of
the ieee 86.11, pp. 2278–2324.

Lee, D.-h. (2013). Pseudo-label: the simple and ef-
ficient semi-supervised learning method for deep
neural networks.

Pitelis, N., C. Russell, and L. Agapito (2014).
“Semi-supervised learning using an unsupervised
atlas ”. Machine Learning and Knowledge Dis-
covery in Databases. Ed. by T. Calders et al.
Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 565–580.

Rasmus, A. et al. (2015). “Semi-supervised learning
with ladder network”. Corr abs/1507.02672.

Rifai, S. et al. (2011). “The manifold tangent clas-
sifier ”. In: Advances in Neural Information Pro-
cessing Systems 24. Ed. by J. Shawe-Taylor et al.
Curran Associates, Inc., pp. 2294–2302.

Srivastava, N. et al. (2014). “Dropout: a simple
way to prevent neural networks from overfit-
ting”. Journal of machine learning research 15,
pp. 1929–1958.

Suddarth, S. C. and Y. L. Kergosien (1990). “Rule-
injection hints as a means of improving network
performance and learning time ”. Neural Net-
works. Ed. by L. B. Almeida and C. J. Wellekens.
Berlin, Heidelberg: Springer Berlin Heidelberg,
pp. 120–129.

Weston, J. et al. (2012). “Deep learning via semi-
supervised embedding ”. In: Neural Networks:
Tricks of the Trade: Second Edition. Ed. by G.
Montavon, G. B. Orr, and K.-R. Müller. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 639–
655.

9

https://github.com/mrottmann/DeepBASS
https://github.com/fchollet/keras
https://github.com/fchollet/keras

	1 Introduction
	2 Related Work
	3 DeepBASS Learning
	3.1 Expectation Maximization
	3.2 Monte-Carlo Dropout Inference

	4 An Illustrative Example
	5 Experiments with MNIST
	6 Conclusion & Outlook

