A Monte Carlo

tree search approach to learning

decision trees

Cecilia Nunes
Universitat Pompeu Fabra,
Barcelona, Spain
Philips Research Medisys
Paris, France
cecilia.nunes @upf.edu

Oscar Camara
Universitat Pompeu Fabra,
Barcelona, Spain

Abstract—Decision trees (DTs) are a widely used prediction
tool, owing to their interpretability. Standard learning methods
follow a locally-optimal approach that trades off prediction
performance for computational efficiency. Such methods can
however be far from optimal, and it may pay off to spend
more computational resources to increase performance. Monte
Carlo tree search (MCTS) is an approach to approximate optimal
choices in exponentially large search spaces. Since exploring
the space of all possible DTs is computationally intractable, we
propose a DT learning approach based on MCTS. To bound the
branching factor of MCTS, we limit the number of decisions
at each level of the search tree, and introduce mechanisms
to balance exploration, DT size and the statistical significance
of the predictions. To mitigate the computational cost of our
method, we employ a move pruning strategy that discards some
branches of the search tree, leading to improved performance.
The experiments show that our approach outperformed locally-
optimal search in 20 out of 31 datasets, with a reduction in DT
size in most of the cases.

Index Terms—Decision trees, Monte Carlo tree search, Inter-
pretability

I. INTRODUCTION

Decision trees (DTs) are one of the most widely used tools
in data mining, specially in critical domains such as medicine
where predictions need to be understood. Although recent
methods offer higher accuracy and stability, their output is
often a black box prediction [1]. Interpretability is all the more
necessary, as European regulation has been recently enacted
to secure the right to an explanation of algorithmically-made
decisions [2].

An optimal DT minimizes the number of decisions, while
maximizing prediction accuracy. Learning an optimal DT is
NP-complete, owing to the discrete and sequential nature of
the splits [3]. Standard learning approaches, such as C4.5 [4]

© 2018 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Mathieu De Craene
Philips Research Medisys
Paris, France

Hélene Langet
Philips Research Medisys
Paris, France

Anders Jonsson
Universitat Pompeu Fabra,
Barcelona, Spain

and CART [5], learn a DT by following a top-down locally-
optimal strategy. They are extensively used in practice as
they offer a good trade-off of interpretability, computational
complexity, and prediction performance. They are not however
guaranteed to yield an optimal DT. Global DT optimization
methods have been proposed, but they either use multivariate
test functions, which limits interpretability [6], or they impose
a DT structure a priori [7]. Evolutionary DT learning showed
performance improvements in several datasets, suggesting the
potential to improve on locally-optimal search [8].

Monte Carlo tree search (MCTS) is an algorithm that learns
the next best action for domains modeled as Markov decision
processes (MDPs), by taking samples of the decision space [9].
An MDP is a Markovian process of state variables, where the
probability distribution is conditioned on actions. The method
builds a search tree, where each node represents a state of the
MDP, and each branch represents an action. MCTS works by
estimating the value of the state at each node, which denotes
the expected long-term utility of being in that state. The value
estimates are then used to guide the exploration of the search
space. The MCTS algorithm has had success in problems
with high branching factor, and its benefit is best realized
when adapted to suit the domain at hand [10]. This includes
playing Atari games such as Ms Pac-Man [11], and Total War:
Rome II [12], and computer Go [13].

We propose a non-greedy DT learning approach, that uses
MCTS to perform a guided exploration of the space of DTs.
The method outputs the entire search tree, from which a
DT can be chosen to suit the constraints of the domain.
We focus on the performance of a single DT, as opposed
to an ensemble of trees, targeting applications in which
interpretability is crucial. Our method achieves improvement
in prediction performance compared to C4.5, for 20 of the
31 evaluated datasets. The results indicate that the benefit of
action pruning, and the cases where it is beneficial, needs
further investigation.

II. PROPOSED APPROACH

Consider the input variable X with dimensions X;, j =
1,..., M, and the categorical output Y. Each DT node displays
a test function ¥(x) that partitions the input domain. We
consider univariate test functions to ensure interpretability of
the output DTs. For example, if a test function ¢ (x) at a node
concerns a numeric attribute X;, we have :

t(x) = 1z; <7), (1)

where the 0/1-outcome direct the instances x to the left or
right child node. Each DT leaf contains a prediction about Y.

The learning problem is to build a DT from the training
dataset @ that predicts Y for a sample x ¢ . Locally-optimal
methods build a DT top-down by selecting the test function
{(x) that maximizes an objective for the training subset at
each DT node [14]. The instances are divided between the
resulting nodes, which are then evaluated with respect to a stop
criterion. If the stop criterion is not fulfilled, learning proceeds
recursively on those nodes. C4.5 uses the information gain as
a split criterion [4].

1) Decision tree learning as a Markov decision process:
We start by modeling DT learning as the MDP where each
state s represents a DT, and an action a = (€,4(x)) is
the univariate test +(x) applied at DT leaf ¢, that partitions
samples between two new leaves. The reward r(s) is 0 for
all states, except when the state s is terminal. In this case, the
state s is a finalized DT and r(s) is a measure of its prediction
performance.

2) Characterizing the search tree: Using this MDP, MCTS
builds a search tree where each node n contains:

s(n): a state or a DT

e a(n): the incoming action that generated n from its parent

e U(n): the set of actions that have not yet been applied
to s(n). A new action is popped from U(n) every time
n is expanded.

e N(n): the number of simulations started in n or one of
its descendants.

e Q(n): the cumulative reward of simulations started in n

or its descendants.

These components are illustrated in Fig. 1. Note that search
tree is not to be confused with the decision tree, present at
each search tree node.

At each MCTS iteration, the search tree is traversed accord-
ing to a tree policy, composed by the selection and expansion
phases. A child selection policy is applied starting at the
MCTS root node, in order to choose the most promising child.
The selected MCTS node is returned if it represents a terminal
state. If the node is not terminal and not fully expanded,
then one action is applied to its state, returning a new node.
A simulation or rollout is then run from the returned node
following a rollout policy, obtaining an estimate of its reward.
The reward is backpropagated to update the value estimates
of the ancestors.

The remainder of Section II describes how MCTS is used to
learn DTs, as summarized in Fig. 2. The method takes as input

a(n')
14 n, \\
S (n/) v \J
/.\/
¢r, €Rr

Fig. 1. Illustration of the nodes of the search tree, n and n’, and their
states, s(n) and s(n’). We remark that the search tree is not to be confused
with the decision tree associated to each search tree node. Executing the
incoming action a(n’) on state s(n) adds a split to leaf ¢, resulting in two
new leaves ¢, and €. The depth of a search tree node corresponds to the
number of upstream actions that led to it, and is equal to the number of splits
of its DT. E.g. node n’ has search depth equal to 3, and its state s(n’) has
3 internal nodes and 4 leaves.

a training dataset, split into an induction set and a validation
set. The former is used in the expansion phase, while the latter
is used to compute the rewards in the simulation phase. The
constructed DTs are evaluated on an independent fest set, after
the search is finished.

A. Tree policy

The tree policy contains all the definitions for iteratively
exploring and expanding the state space, and is often used with
domain-specific enhancements. During selection, the value
estimates are used to select the most promising MCTS node.
During expansion, a new nodes are added to the search tree.

1) Selection: The selection policy defines how to choose
the search tree nodes to be explored. In MCTS, node selection
is treated as a multi-armed bandit problem where the rewards
are the value estimates of each node [15].

The multi-armed bandit problem consists in choosing the
best action out of a set of actions with unknown reward
distributions. The player has to follow a behavior or policy
that balances out the exploration of new actions with the
exploitation of previous actions with known reward. In such
problems, the regret is the loss caused by the policy not
always choosing the best action. For a given policy, we are
interested in finding an Upper Confidence Bound (UCB) on
the probability that its regret will be lower than a given
value. The UCB1 selection policy solves the exploration-

Start
MCTS —

iteration Search

tree

/ >
AN
v
n :=root node

> Seleclztion
(UCT)

n

KN

Is terminal?

|
No.

|
Yes. —— Is fully-expanded?

[
No.

Expafasion

(create new node n'
generate test functions
with induction set)

\d

/.\n

AN

Backpropagation

Reward estimate for s(n)
(performance on validation set)

A
1
Yes. i
1
Simulation

(Complete the

DT with C4.5)
I
1
i
1
po .
1
L 5 A/% :
|
|
. |
n:i=n |

n

Fig. 2. Illustration of one iteration of the proposed MCTS approach.

exploitation dilemma by selecting the arm that maximizes the
aforementioned upper bound [16].

MCTS employs UCBI as a selection policy. This algorithm
is known as Upper Confidence Bound for Trees (UCT) [15],
and consists in choosing the child of n which maximizes:

arg max Q')
n’€c(n) N(TL/)
where c(n) is the set of children of n and C), is a constant.
The first term JQ\?,((Z/,; estimates the value of s(n’), promoting
the exploitation of high rewards. The second term accounts

log N(n)
N) "’

+20,

for the uncertainty about less visited states, promoting their
exploration. When no simulation has been started from n
or one of its descendants, there are not enough statistics to
employ UCBI. In this case, we move on to expand n.

2) Expansion: During expansion, new nodes are added to
the search tree. As illustrated in Fig. 1, a selected MCTS node
n is expanded by performing an action a € U(n), creating a
new node n’. When applying a, two new leaves €7, and €g are
added to s(n). If ¢, and € are not terminal, candidate split
functions are generated for each of them. We choose the top K
functions that maximize the information gain at each leaves’

training subset. Combining each new leaf with its candidate
functions yields the new set of actions, U(n’). K test functions
are generated for each new leaf.

We impose restrictions on DT size, required to define
terminal leaves and states. A DT leaf ¢ is terminal if either the
number of samples in & (¢) is smaller or equal to 7;nstances» OF
the DT branch of ¢ is deeper than the maximum depth 7gep¢h.
A state is terminal if all leaves of the its DT are terminal.

B. Simulation and backpropagation

The simulation policy, also called rollout policy, consists in
estimating the predictive performance of the DT at the search
node that is returned by the tree policy. This performance is
estimated on the validation set, unseen during expansion. Since
there is no random component in this policy, no more than one
rollout is done for each visited MCTS node.

After the simulation, N (n) is incremented by 1 and the re-
ward estimate is added to Q(n). The Q(.) and N(.) quantities
are equally updated in the ancestors of n, in what is called the
backpropagation phase.

C. Decision-tree statistical pruning

DT pruning acts as a DT regularizer. Using MCTS, we ap-
proximate the pruning method used in C4.5 with the following
strategy. Each time a rollout is done, we complete the DT of
the search node n returned by the tree policy, and check if
the incoming action a(n) still exists in the completed DT, or
if it was removed by pruning. If it was removed, node n is
eliminated from the search tree.

D. Search-tree move pruning

Move pruning is a technique that tackles this exponential
growth of the search tree by removing suboptimal nodes,
allowing more time to be employed on better choices [10].
We employ an optional move pruning approach based on
the average value estimates at each node, 1%((2)) Every n,
iterations, of all the search branches with depth greater than d,
only the path with highest average reward is kept.

E. Output

MCTS is often applied in games to find the next best move
for a player, after which the search tree is discarded. In DT
learning, however, there is a single start state, which is the root
DT node containing the complete training set. The proposed
approach runs MCTS once, and outputs the entire search tree.
The performance of the DTs present at each MCTS node are
then computed on the test dataset. The target application is to
then choose the DT that best fits the constraints of application.

III. EXPERIMENTS

We perform experiments comparing the performance of
(1) the DT learned using C4.5 with its locally-optimal ap-
proach, (2) the DT built using the evolutionary approach by
Kretowski and Grzes [8], (3) the best DT learned using the
proposed MCTS approach, and (4) the best DT learned using
the proposed MCTS approach with the move pruning method
described in Section II-D. Improving performance consists in

achieving better predictions on unseen data, while minimizing
DT complexity, assessed by its number of leaves.

The approaches were evaluated on 23 publicly-available and
8 synthetic datasets. Sources include the UCI repository [17],
KEEL repository [18], and the MIMIC-II database [19]. The
synthetic datasets were generated using an adaptation of the
method by Guyon [20]. Each dataset was split into a training
set (70%) and a test (30%) set. For MCTS, the training dataset
was further divided into two induction (70%) and validation
(30%) sets. Since MCTS generates multiple DTs, the greedy
and evolutionary DTs are compared with the DT obtained by
MCTS with highest F'1 on the validation set. The performance
is computed on the test set.

A grid-search was done on each training set to tune the
C4.5 DT pruning confidence factor through cross-validation
(CV), kept constant in all experiments. We also tuned the value
of the o parameter of the evolutionary approach [8], which
controls the size of the output DT. The MCTS parameters are
set as C, = 1, K = 3, and Ninstances = 4. The maximum
DT depth ngepen is set to the maximum depth achieved by
C4.5 through CV, with the selected confidence factor. When
employed, move pruning is performed every 3e3 iterations at
depth d,, = 5. Each experiment had a budget of 2e5 iterations.

IV. RESULTS AND DISCUSSION

The results are displayed in Table I, and complemented by
Figs. 4 and 3. In Table I, we first observe that the evolutionary
approach resulted in larger DTs compared to C4.5 for most
of the datasets. The method led to an increased F'1 in 12
datasets, most of which had a rise in DT size. E.g. in the Car
Evaluation and Solar flare datasets, the number of leaves grew
from 32 to 218 and from 59 to 121, respectively. Depending
on the application, such DT sizes can hinder interpretability.
We remark that most of the 12 cases that benefited from the
evolutionary search were among the largest of the datasets,
indicating that a more exhausting search may be appropriate,
and the splits found for larger DTs are likely to be more
statistically significant.

The F'1 performance of the best DT learned by MCTS
without move pruning was superior that of C4.5 in 11/31
datasets, as depicted by the blue dots of Fig. 3(a). The method
resulted in smaller DTs in the majority of the cases, as shown
in Table I. When examining the 20 datasets where MCTS
did worse than C4.5, we see that in many cases the maximum
search depth reached by MCTS was considerably smaller than
number of leaves of the C4.5 solution. Fig. 1 clarifies the
relation between the search depth and the number of DT
leaves. E.g. the BHP dataset had a greedy DT with 27 leaves,
which would correspond to 26-level deep search tree. In this
case, the MCTS tree only reached 9 levels, and the best MCTS
solution had only 9 leaves. Similarly, C4.5 built a 33-leaf DT
for the Tic-tac-toe dataset, while the corresponding MCTS tree
was only 14 levels deep. This suggests that the search tree did
not reach the necessary depth to find a good solution, assuming
that the number of leaves of a good solution, or its search

TABLE I
RESULTS OF THE (1) C.5, (2) EVOLUTIONARY, (3) MCTS, AND (4) MCTS WITH MOVE PRUNING (MCTSP) APPROACHES FOR LEARNING DTS.
PERFORMANCE METRICS ARE ACCURACY (ACC), F1 SCORE AVERAGED OVER ALL CLASSES (F1), AND NUMBER OF DT LEAVES (L). THE RESULT WITH
HIGHEST F'1 1S HIGHLIGHTED IN BOLD FONT. THE RESULT WITH THE SMALLEST NUMBER OF LEAVES IS UNDERLINED. WE ALSO DISPLAY THE
MAXIMUM DEPTH OF THE SEARCH TREE WHEN USING MCTS (D), AND THE TOTAL MCTS RUNTIME (T) IN HH:MM. RUNTIME FOR C4.5 AND THE
EVOLUTIONARY APPROACH IS NOT GIVEN BECAUSE THE METHODS ARE FAST I.E RUN IN LESS THAN A MINUTE. A DT WITH L LEAVES CORRESPONDS TO
A SEARCH DEPTH OF L — 1.

Dataset (1) C4.5 DT (2) Evol. DT (3) Best MCTS DT (4) Best MCTSp DT
Acc F1 L Acc F1 L Acc F1 L D T Acc F1 L D T

Balance Scale 81.6 81.1 30 85.6 85.6 35 87.4 87.4 12 13 5:29 84.5 84.4 7 35 2:02
Banknote auth. 97.6 97.6 14 93.0 92.8 29 98.1 98.0 8 11 24:17 98.1 98.0 8 17 14:21
BHP 94.1 93.8 27 74.2 73.5 3 86.3 85.8 9 9 29:39 97.1 96.9 28 30 13:37
Biodegradation 81.4 77.6 13 78.5 74.0 21 82.7 79.9 9 11 56:53 81.7 78.5 14 19 46:52
Breast cancer 91.9 91.1 5 90.7 89.7 3 92.4 91.9 3 5 0:04 92.4 91.9 3 5 0:05
Car evaluation 89.4 73.8 32 93.8 83.8 218 82.9 71.0 12 14 17:48 88.3 78.1 19 42 5:00
Contraceptive 48.3 45.8 43 55.1 49.5 57 52.4 51.6 8 10 30:22 56.7 534 28 53 36:56
Credit approval 85.5 85.1 6 87.0 86.9 17 80.7 80.6 9 12 25:46 81.6 81.3 10 18 24:23
Solar flare 71.5 58.9 59 72.4 63.0 121 70.7 58.8 11 13 21:00 74.2 62.3 40 55 34:26
German credit 75.4 65.7 20 72.7 61.8 81 69.9 63.4 12 13 27:58 73.4 63.9 22 31 15:00
Indian liver 71.0 62.7 24 64.2 57.2 321 68.8 60.9 8 10 17:58 61.4 58.5 21 40 11:47
Arterial catheter 87.8 87.7 6 88.0 87.9 26 86.9 86.8 7 12 29:08 87.1 87.0 5 13 13:59
Language 78.3 60.7 8 79.1 57.8 9 75.1 61.8 2 7 2:04 75.1 61.8 2 7 3:19
Localization 96.3 96.3 23 96.5 96.5 13 96.8 96.8 9 12 17:50 96.5 96.5 17 29 30:44
Mammographic 82.0 82.0 11 78.5 78.5 22 80.0 80.0 10 12 3:20 80.3 80.3 9 12 2:11
Diabetic 66.5 66.2 11 67.6 67.6 7 65.9 65.9 10 12 86:16 66.8 66.6 18 24 56:01
Phishing 86.3 83.4 34 89.9 89.7 96 84.3 76.2 12 12 15:30 86.1 81.3 21 32 14:35
Pima indians 74.0 70.7 24 74.5 68.9 3 71.5 74.0 8 11 17:35 80.1 774 17 28 14:36
Student 75.0 74.6 12 75.0 73.5 9 74.0 72.5 9 12 18:37 69.4 68.9 15 26 26:33
Synthetic 1 70.8 70.9 24 60.7 59.8 29 67.3 67.2 9 10 64:25 73.5 73.7 20 29 85:27
Synthetic 2 70.1 70.0 27 62.6 61.8 43 63.0 62.7 10 10 59:09 63.0 62.7 10 10 60:33
Synthetic 3 81.1 80.3 21 77.6 76.6 13 74.5 74.0 8 9 38:22 81.6 80.9 26 28 31:08
Synthetic 4 79.6 72.8 3 74.0 60.5 9 77.4 73.1 5 7 0:05 77.4 73.1 5 7 0:10
Synthetic 5 48.4 48.3 78 46.9 46.9 15 473 44.1 8 10 78:53 55.1 55.3 50 85 105:13
Synthetic 6 51.2 49.8 22 50.2 49.8 17 52.1 50.5 8 11 72:48 51.2 51.1 26 37 87:37
Synthetic 7 57.1 56.4 43 64.8 58.6 23 55.6 52.1 10 11 70:54 55.6 52.1 10 11 57:22
Synthetic 8 61.9 55.6 29 59.1 52.2 95 66.3 53.9 10 12 23:36 63.0 55.1 32 38 6:47
Tic-tac-toe 91.7 90.3 33 78.1 74.8 193 82.6 77.5 13 14 20:25 93.8 92.9 30 49 11:44
Titanic 78.7 70.0 8 78.1 71.9 3 75.6 71.3 8 9 0:15 75.6 71.3 5 9 0:17
Wine quality 70.5 70.5 107 71.5 71.3 117 70.5 69.6 9 9 42:10 70.5 69.6 9 9 46:06
Yeast 67.5 66.4 9 66.0 65.8 23 65.3 65.2 8 12 17:27 68.3 68.2 9 20 14:47

complexity, is expected to be in the same order of magnitude
as the number of leaves of locally-optimal solution.

A deeper search was achieved by running MCTS with move
pruning, as depicted in Fig. 4(b). This approach boosted the
F'1 performance of MCTS for 18 of the datasets, as shown
in Fig. 3(c). In total, MCTS with move pruning outperformed
C4.5 in 20 of the datasets. In most of those cases, the output
DT was actually smaller compared to C4.5. E.g. the Synthetic 5
dataset had a greedy solution with 78 leaves, while the MCTS
solution had 50 leaves. This indicates that increasing the search
depth by move pruning effectively was able to remove sub-
optimal states, allowed more resources to be spent on the
exploration of good states.

In the datasets where MCTS with move pruning outper-
formed C4.5 in terms of F'1 with an increase in DT size
were the BHP, Diabetic, Synthetic 3, Synthetic 4, Synthetic
6 and Yeast datasets. However, the increases in number
of leaves were moderate, leading to DTs that can still be
interpretable. This is contrary to the evolutionary approach,
where the performance improvements were mostly achieved

by significantly increasing DT size. For example, MCTS was
able to outperform C4.5 in the Solar flare dataset with 40
leaves, while the evolutionary DT has 121 leaves.

V. CONCLUSIONS

This manuscript describes a novel approach for learning
DTs using MCTS. We evaluated the hypothesis that better
prediction performance can be achieved compared to locally-
optimal search, by performing a MCTS in the space of DTs.
Our hypothesis was validated by achieving DTs with higher
F'1in 20 out of 31 datasets, the majority of which had reduced
DT size. We also evaluated an evolutionary DT learning
approach which outperformed locally-optimal search in 12 of
the datasets, but at the expense of building larger DTs.

Datasets of complex decision problems, for which finding
the optimal DT is likely to require a more complex search,
may require a greater MCTS depth. The characterization of
such datasets is a topic to be extended in further research.
For those cases, move pruning may be necessary to for
MCTS to outperform greedy search. Move pruning is however

(a)

&
w10
5 ® °
| o ©®
Y §’ ot 4
- TS
3 '
= —10
0 25 50 75 100

Equivalent search depth of the C4.5 DT

(b)

MCTSp F1 — C4.5 F1
o
.
.
.
.

0 25 50 75 100
Equivalent search depth of the C4.5 DT

—10

MCTSp F1 — MCTS F1
o
'S
N
{]

0 25 50 75 100
Equivalent search depth of the C4.5 DT

Fig. 3. Difference in average F'1 between (a) C4.5 and MCTS, (b) C4.5 and
MCTS with move pruning (MCTSp), and (c) MCTS and MCTSp. Each point
represents a dataset. Blue dots are the cases where MCTS did better than
C4.5. Yellow triangles are the datasets where MCTS did not improve C4.5,
but MCTSp did. Rose diamonds correspond to the datasets where neither
MCTS or MCTSp outperformed C4.5.

recommended for any dataset, as it allows deeper states to be
reached faster. The search can thus be quickened by using a
smaller number of iterations.

Future work directions include a comprehensive analysis of
the parameters of the algorithm. In particular, the employment
of better move pruning strategies would allow a reduction in
the algorithm runtime, as there is a high degree of redundancy
in the output DTs. It would also facilitate scaling up to
larger datasets and more complex domains. The proposed

(a)
=
< 40
é 20
= shw s o, .
B) %
S 25 50 75 100
Equivalent search depth of the C4.5 DT
B (b)
2 .
5
< 40 ®
g .:' °
Z2 o8
% %0y °, ° °
h7 ®
o 0
M 0 25 50 75 100

Equivalent search depth of the C4.5 DT

Fig. 4. Search-tree depth of the node with the best DT build by (a) MCTS
and (b) MCTS with move pruning (MCTSp). Each point represents a dataset.

approach is general and can be employed with other functions
to generate actions, or other estimators of DT value. The
maximum depth reached for a given number of iterations
depends on the rewards seen by the selection algorithm. Using
other simulation policies may therefore improve the prediction
of how good a DT split is considering potential interactions
with other variables, a central problem in DT learning.
Finally, the method needs to be used with a post-processing
methodology to select the DT that best meets the constraints of
the domain, including missing data and varying feature costs.

ACKNOWLEDGMENTS

This work was supported by the European Union Horizon
2020 research and innovation programme (grant 642676 -
Cardiofunxion), and by the Spanish Ministry of Economy and
Competitiveness (grant TIN2014-52923-R; Maria de Maeztu
Units of Excellence Programme - MDM-2015-0502). Ac-
knowledgments to Dr. Bart Bijnens for the discussions that
motivated and improved the study.

REFERENCES

[11 S. E. Weng, J. Reps, J. Kai, J. M. Garibaldi, and N. Qureshi, “Can
machine-learning improve cardiovascular risk prediction?” PLOS ONE,
vol. 12, no. 4, 2017.

[2] “Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016, repealing Directive 95/46/EC,” 2016 O.J.
L 119, 4.5.:1-88.

[3]

[4]
[5]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

L. Hyafil and R. L. Rivest, “Constructing optimal binary decision trees is
NP-complete,” Information Processing Letters, vol. 5, no. 1, pp. 15-17,
1976.

R. Quinlan, C4.5: Programs for Machine Learning. CA: Morgan
Kaufmann, 1993.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification
and Regression Trees. Belmont, CA: Wadsworth International Group,
1984.

M. Norouzi, M. D. Collins, M. Johnson, D. J. Fleet, and P. Kohli,
“Efficient non-greedy optimization of decision trees,” Nips, pp. 1-9,
2015.

K. Bennett, “Global tree optimization: A non-greedy decision tree
algorithm,” in Computing Science and Statistics, 1994, pp. 156-160.
M. Kretowski and M. Grzes, “Global learning of decision trees by an
evolutionary algorithm,” Information Processing and Security Systems,
pp. 401410, 2005.

G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search:
A new framework for game ai.” in AIIDE, 2008.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and Al in games, vol. 4, no. 1, pp. 1-43,
2012.

X. Gan, Y. Bao, and Z. Han, “Real-time search method in nondetermin-
istic game—ms. pac-man,” ICGA Journal, vol. 34, no. 4, pp. 209-222,
2011.

A. J. Champandard, “Monte-carlo tree search in total war: Rome
ii’s campaign ai,” AlGameDev.com, 2014. [Online]. Available:
http://aigamedev. com/open/coverage/mcts-rome-ii

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

L. Rokach and O. Maimon, “Top-down induction of decision trees
classifiers - A survey,” IEEE Transactions on Systems and Cybernetics
Part C: Applications and Reviews, vol. 35, no. 4, pp. 476-487, 2005.
L. Kocsis and C. Szepesvdri, “Bandit based monte-carlo planning,” in
ECML, vol. 6. Springer, 2006, pp. 282-293.

P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235-256, 2002.

M. Lichman, “UCI Machine Learning Repository,” 2013. [Online].
Available: http://archive.ics.uci.edu/ml

J. Alcala-Fdez, A. Fernidndez, J. Luengo, J. Derrac, S. Garcia,
L. Sanchez, and F. Herrera, “KEEL data-mining software tool: Data set
repository, integration of algorithms and experimental analysis frame-
work,” Journal of Multiple-Valued Logic and Soft Computing, vol. 17,
no. 2-3, pp. 255-287, 2011.

J. Lee, D. J. Scott, M. Villarroel, G. D. Clifford, M. Saeed, and R. G.
Mark, “Open-access mimic-ii database for intensive care research,” in
Engineering in Medicine and Biology Society, EMBC, 2011 Annual
International Conference of the IEEE. 1EEE, 2011, pp. 8315-8318.
I. Guyon, “Design of experiments for the nips 2003
variable selection benchmark,” 2003. [Online]. Available:
clopinet.com/isabelle/Projects/NIPS2003

