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Abstract—Applying Machine Learning (ML) to business appli-
cations for automation usually faces difficulties when integrating
diverse ML dependencies and services, mainly because of the
lack of a common ML framework. In most cases, the ML
models are developed for applications which are targeted for
specific business domain use cases, leading to duplicated effort,
and making reuse impossible. This paper presents Acumos, an
open platform capable of packaging ML models into portable
containerized microservices which can be easily shared via the
platform’s catalog, and can be integrated into various business
applications. We present a case study of packaging sentiment
analysis and classification ML models via the Acumos platform,
permitting easy sharing with others. We demonstrate that the
Acumos platform reduces the technical burden on application
developers when applying machine learning models to their
business applications. Furthermore, the platform allows the
reuse of readily available ML microservices in various business
domains.

Index Terms—machine learning, platform, model sharing,
miscroservice, framework, sentiment analysis, image processing

I. INTRODUCTION

In recent years, there has been tremendous excitement
around and interest in the potential of ML technologies.
Machine learning has been shown effective in solving a variety
of practical problems such as disease detection [1], language
translation [2], autonomous self-driving cars [3] and customer
behavior prediction [4].

However, in practice, it is challenging to integrate ML
models into application development environments [5]. Typi-
cally, ML models involve multi-stage, complex pipelines with
procedures that are sequentially entangled and mixed together,
such as pre-processing, feature extraction, data transformation,
training, and validation. Improving an individual component
may actually make the model accuracy worse if the remaining
errors are more strongly correlated with the other components.
Therefore, building models becomes a trial-and-error-based
iterative process [6] which demands expert level knowledge
in ML concepts to create and tune the ML models.

This requirement of technical ML know-how creates a
heavy technical burden on traditional companies and small
businesses, which may only have little or no technical expertise
in machine learning [7]. In addition, training ML models can
require computational resources with impracticable costs, such
as GPUs or cluster computing environments. It is challenging

for an average application developer to access affordable ML
models to integrate into there applications.

To address that issue, we present a new ML packaging and
distribution platform: Acumos. Acumos [8] was created to
enable the packaging, cataloging, and sharing of ML models. It
creates a separation between ML models, which are designed
by machine learning experts and trained via a process of feed-
back from real-world results, and the surrounding infrastruc-
ture which deploys and runs the models. Acumos works like
an app store which allows data scientists or modelers to upload
their pre-trained models. Then Acumos packs the models and
their dependencies into lightweight services. End users can
download and deploy these services on the platform of their
choice, either locally or in the cloud. The development of
domain adaption [9], representation learning [10] and transfer
learning [11] demonstrates the effectiveness of transferring
pre-trained models to other similar datasets, whose distribution
may be slightly different. The advantages of Acumos can be
summarized as follows.

First, Acumos offers a one-stop convenient deployment
service. Data scientists and modelers are more comfortable
designing and testing the models locally. After they build and
train their model, Acumos can freeze the model parameters
and clone the whole running environment into a packed
runnable service. The modelers are given complete freedom
to build and train their models with their favorite tools and
languages. As long as the languages are supported by Acumos,
the modelers can on-board their models in our platform.

Second, Acumos offers model-level isolation. Real practices
need to train multiple models over a single dataset for various
tasks. For example, given a set of images, there may be
multiple tasks, such as face detection, landmark detection,and
mode detection. With Acumos, teams can work independently
on different problems. Model-level isolation also facilitates the
reuse and sharing of models with other similar applications
without breaching model privacy.

Third, Acumos can help to distribute the robust and runable
models from model experts to common end-users. In Acumos,
we can treat ML models as black boxes which take well-
defined inputs and generate output. End users do not require
special knowledge on machine learning.

The remaining sections of this paper are organized as
follows: Section II gives an overview of the background
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and related work on ML platforms; Section III explains the
Acumos design and work processes; Section IV describes the
ML architecture for Acumos as well as challenges and corre-
sponding solutions; Section V presents a case study in using
Acumos; Section VI discusses future work and limitation; and
finally Section VII concludes the paper.

II. RELATED WORK

There is a large number of packages and tools developed
for machine learning. Some prominent and popular ones
include scikit-learn [12], tensorflow [13], Spark MLlib [14],
and rapidminer [15]. This paper is focused on the integration
of ML models into application development and sharing
models, rather than model development or improving model
performance.

Compared to model development, integrating ML mod-
els into application development and sharing models have
received relatively little attention in previous studies.
Tensorflow-Serving [16] (TFS) encapsulates the production
infrastructure of Google and serves TensorFlow-based mod-
els in production. Clipper [17] was developed concurrently
with Tensorflow-Serving, and it shares similar goals and
components with Tensorflow-Serving. The major difference
is that Clipper was created and is maintained by research
communities, and it is more general, also applying to non-
Tensorflow models. But neither of the two platforms is able to
share models with other users. Those platforms were designed
only to deploy ML models in production environments.

Acumos integrates the functions of model packaging and
sharing together in a single platform. Another system that
allows the sharing of models is ModelDB [18], where models
can be archived and accessed via source code, specifically
those in the area of computational neuroscience. To some
extent, OpenML [19] is a social sharing cloud for ML experts
to share raw models. To actually use these raw models, ML
experts have to go through the tedious task of configuring the
model’s specific environment manually. Compared to Mod-
elDB and OpenML, Acumos offers easy-to-deliver end-to-
end runnable services by packaging the model into a Docker
image, which can be executed without any environment re-
strictions. Furthermore, Let us also note that Kubeflow1, an
ongoing project to deploy models into Kubernetes containers,
could be integrated into Acumos in order to complement the
containerization features of Acumos.

Major internet companies recently have begun offering
machine learning as a service on their platforms, including
Google’s Cloud ML Engine2 (previously called Prediction
API), Amazon’s AWS ML3, and Microsoft’s Azure ML4.
Those platforms provide APIs to upload data and train models.
Unfortunately, the designs and implementation specifications
of these products are not publicly available [7]. One common
limitation of these platforms is that they are restricted to

1https://www.kubeflow.org/
2https://cloud.google.com/ml-engine/
3https://aws.amazon.com/machine-learning/
4https://azure.microsoft.com/en-us/services/machine-learning-studio/

their own particular proprietary cloud service and specific ML
libraries, due to their commercial nature. For example, users
are required to use Google Cloud as well as Tensorflow for
Google Cloud ML Engine. Thus, they create a technical burden
for data scientists to transfer and share their models with
application developers, who may use other cloud providers or
their own hardware. Another problem with these platforms is
the challenge of protecting user privacy while running models
in the cloud. Therefore Acumos gives the option to deploy
the models either in the cloud or on the local hardware. To
summarize the differences and similarities between Acumos
and existing platforms, we present a comparison in Table I5.

TABLE I
COMPARISON BETWEEN DIFFERENT PLATFORMS

Acumos ModelDB OpenML TFS
CloudML
AWS ML
Azure ML

Easy cloud
deployment Yes No No Yes Yes

Easy local
deployment Yes No No Yes No

Open source Yes Yes Yes Yes No
Model
sharing Yes Yes Yes No No

Share model
source code Partial Yes No No No

Share
Docker image Yes No No No No

Share
pre-trained
model

Yes No No No No

Support
multi-libraries Yes Yes Yes No Partial

Support
multi-languages Yes Yes Yes Yes Yes

III. ACUMOS DESIGN AND PROCESS

The complete architectural design of Acumos is large and
includes many components [8], but the scope of this paper
deals with the ML-related pieces of that design, ignoring the
front-end elements such as user interface, platform manage-
ment, and design studio. This paper focuses specifically on
how ML models are on-boarded, packaged into microservices,
and shared with others.

Acumos aims to build an open ecosystem in which there
are three stakeholders. The main interaction flow between
these stakeholders is shown in Figure 1. A model contributor
contributes models via uploading (on-boarding) the models to
the platform. An end user downloads the models and uses them
in their own applications. The Acumos Platform maintains the
platform and enforces standards of sharing models. It is noted
that a contributor can also be an end user; the platform can
also be used to house models and microservices for your own
use, as well as to share them with others.

The main flow is divided into three stages:
• Uploading: This starts with a contributor (i.e., modeler,

data scientist) uploads a pre-trained local model onto

5limited to our best understanding of the platforms



Fig. 1. Stakeholders and their relationship in the Acumos ecosystem

Acumos. A contributor is able to use a variety of ex-
isting ML libraries to build and train his/her ML model.
Acumos provides Python, R and Java APIs that allow
contributors to upload their models. The flexibilty to
use the language and ML toolkit of choice is beneficial,
because data scientists are often reluctant to change their
preferred ML environment [16]. Thus a contributor can
use his/her prefered environment to create their models.

• Publishing: Once uploaded, the models are stored in a
private area, where only the contributor can access them.
Then the contributor can choose when and how to share
his/her model. Since the model is encapsulated and exists
as something of a ”black box”, the contributor is required
to describe the model’s metadata when publishing, such
as the function description, input and output format and
model category. Other users can search the models based
on the metadata and find the suitable ones.

• Predicting: The Acumos platform will pack the uploaded
model as a microservice in a Docker image, which is
ready to be deployed and perform its function (prediction,
classification, etc.). Docker6 provides container virtual-
ization and it has faster speed and better agility and
portability compared with virtual machines. The major
reason is hardware is being virtualized to run multiple
Operating Systems (OS) instances in virtual machines,
but Docker offers multiple workloads running on a single
instance [21]. Consumers can download and directly
deploy the Dockerized service to the cloud or to any local
hardware that supports Docker. Once deployed, users can
send input to this running microservice and receive the
its output via a RESTful API.

6https://www.docker.com/

IV. ACUMOS ML COMPONENT ARCHITECTURE

The section describes the architecture of Acumos ML
Onboarding component, which is shown in Figure 3 and is
developed in Java7. We focus on the challenges and core
components.

A. Model Interfaces Unification

A feature of Acumos is its drag-and-drop design studio. In
order to be able to safely reuse and compose models together,
we need to understand and describe the interfaces (i.e., input
and output) of models. Acumos uses Protocol Buffers8 to offer
cross-language and cross-platform support. Protocol Buffers
are used for serializing the training and test data for transfer
between local clients and services, and between services. Pro-
tocol Buffers supports multiple languages and they are cross-
platform. The largest advantage of protocol buffers is that it is
compact and efficient compared to XML-like schemes, with
the ability to process large volume of data.

B. Model Serialization

When uploading models, the Acumos API need to serialize
the model locally and then deserialize it within the Acumos
platform. The most challenging aspect of this is understanding
the model’s software dependencies. Acumos does not require
users to manually provide a dependency list; instead we
introspect models to infer these dependencies. In the Python
client library, we traverse the object during serialization and
then identify and record required libraries. Additionally, we
use static analysis techniques to inspect the source code and
find required modules.

C. Microservice Generation and Deployment

The Acumos platform packs the model into a Docker image
which can be deployed to an appropriate run-time environ-
ment. The Docker image is stored in the Acumos database.
An end user is then able to download the Docker image and
start the Dockerized model service. He/she can utilize that
microservice to predict on his own application data.

The final step is to deploy a working application into a run-
time system. Acumos packages solutions into Docker images
which can then be deployed into any Docker environment and
managed through a set of container management tools, such
as Kubernetes [22]. Such image files can be easily deployed to
Google Cloud, Azure, AWS, or other popular cloud services,
to any corporate data center or any real-time environment as
long as it supports Docker. Then the application developers
can connect to the Dockerized microservice via a REST API.

V. CASE STUDY

Sharing pre-trained models may cause problems if a mod-
eler and an end user have different data set sources. The goal
of case study A is to demonstrate Acumos works in the setting
of different data sources of training and test. Furthermore, the
study shows that Acumos saves lot of effort for end users

7source code: https://gerrit.acumos.org/r/gitweb?p=on-boarding.git
8https://github.com/google/protobuf



Fig. 2. An example of uploading a model to Acumos platform using Acumos’s Python API. This is a simple predictor for the Iris dataset [20]. The Iris
dataset contains 3 classes of 50 instances each, where each class refers to a type of iris plant. The features are the length and width of sepal and petal.

Fig. 3. The Acumos Onboarding System Architecture

to label the training data, expertise to train the model, and
provides training data privacy.

The case study B is to demonstrate the microservice gen-
erated by Acumos is interoperable with any other Acumos

microservice, regardless of whether it was built with any other
supported toolkit. Acumos provides model-level isolation and
facilitates the collaboration of different engineering teams.

A. Sentiment Analysis

Sentiment analysis is the task of identifying positive and
negative opinions and emotions in texts. Here we assume there
is an end user who wants to apply sentiment analysis onto
her Amazon movie review dataset [23]. But she has limited
knowledge on ML concepts. We will evaluate the approaches
with and without Acumos. With Acumos, an end user utilizes
an existing pre-trained model on Acumos. Without Acumos,
she would have to train the model by herself. Below are the
settings to simulate those two approaches.

With-Acumos approach: We train the model with the 50,000
IMDB reviews and test on the Amazon reviews. The test data
is 500 random reviews from Amazon reviews [23]. This ex-
periment setting is used to simulate the model-sharing process
from a modeler to an end user via the Acumos platform.

Without-Acumos approach: We train the model and test the
model both based on Amazon reviews. We assume that IMDB
dataset is not accessible for the end user.



The training process often requires heavy computational
resources which an end user typically does not possess. In
addition, it may require a lot of human effort to label the data,
which is also expensive. Therefore in the Without Acumos
case, we gradually increase the size of training samples of
Amazon reviews.

It is noted that the test data are the same for both ap-
proaches, i.e., 500 random records from Amazon reviews
and we use the same model for two approaches. Inspired
by previous work on sentiment analysis [24], [25], we build
a simple recurrent covoluntional neural network using Keras
with Tensorflow as a backend. The input to the model is a
list of movie reviews, and the output is the probability of the
input expressing positive emotion. Our model details are open
sourced in Github9. The only difference of two appraoches is
in the training data sets: the first approach utilizes the 50,000
IMDB reviews for training and the second approach trains the
model with gradually increasing Amazon reviews.

Fig. 4. Performance of Sentiment Analysis

The two approaches can be compared using the Area Under
Curve (AUC) score. The AUC score is a common evaluation
metric for binary classification problems, measuring the area
under a receiver operating characteristic (ROC) curve. The
higher the AUC score is, the better performance the model has.
The result is show in Figure 4. The AUC score for Acumos
approach is 0.9376, which beats the without-Acumos approach
when fewer than about 10,000 training samples are used. This
means that an end user would need to train on at least Amazon
10,000 reviews in order to achieve the performance level of
the prepackaged model he or she could simply download from
Acumos.

“With Acumos”, modelers can easily pack their trained
model into a microservice and share to end users who have
a similar need. It relieves the user of the burdensome task of
training, which involves many trial-and-error iterations, and
requires expertise in ML that he or she may not have. It saves
lots of effort to label the data as well. Through this experiment,
we show that an end user can utilize the pre-trained models

9https://github.com/cheershuaizhao/acumos ml

directly and with good performance, even though there is
inconsistency in training data sources. In addition, Acumos
helps protect data privacy, since the modeler may not wish to
share the private source data (i.e., IMDB reviews here) used
for training with end users.

B. Image Recognition and Object Detection

A hot research area in ML is object detection in images [26],
such as traffic light detection, face detection, gender detection,
and landmark detection [27]. An image contains rich infor-
mation, and thus there are numerous detection tasks we could
potentially apply to it. However, the training of ML on images
is expensive and time-consuming. It involves a large amount
of human effort in labelling, and requires high-performance
computing resources for training models. Existing techniques
of Multiple-Task Learning try to learn multiple tasks together,
but they requires the tasks to have some similarities as well
as careful parameter tuning by modelers [11].

Fig. 5. The Combination of Acumos Model Services

As shown in Figure 5, an application developer can easily
combine different object detection microservices and she can
append additional actions after the model services, such as
adding a rule-based recommendation function. These mi-
croservices can be consumed by simply making calls to
the API functions similar to any other REST services. The
appended recommendation system could also be another mi-
croservice, which takes the output of object detection mi-
croservices as its own input and generates the recommended
item.

The model services are pre-trained by model experts on
high-quality data, which guarantees their good performance.
This mechanism of model-level isolation facilitates reuse when
coupled with the ability to compose existing models into com-
plex composite solutions. Models can be easily composed in
parallel or sequentially. In addition, modelers are not restricted
to use the same set of toolkits to develop their models. They
can pick their favorite suitable tools for each object detection
task.



VI. LIMITATION

Most of these limitations follow directly from the design
of Acumos which treats ML models as black boxes and
focuses on the sharing process. Thus Acumos does not op-
timize the execution of models within their respective ML
frameworks. It is the modelers’ responsibility to achieve good
model performance. The black-box approach also incurs some
communication overhead and duplication of function over
a single-model pipelined approach. Finally, Acumos in its
current state lacks facilities to validate and test models on
the platform itself.

VII. CONCLUSION

This paper introduced Acumos Platform, a system for
packaging and sharing ML models. Acumos makes ML mod-
els accessible to a wide audience by creating an extensible
marketplace for models. Using Acumos, data scientists can
use their familiar ML toolkits and libraries to create models,
and then share them with ordinary developers who are not ML
experts.

We addressed the challenges of integrating ML models
into application development and model sharing. The pro-
posed architecture supports the sharing of pretrained models
across different ML libraries and run-time environments. As
illustrated by the case studies, Acumos ML provides model-
level isolation and focuses on model reusability, rather than
the model development process. Acumos offers an open
marketplace where the accessing ML models is secure and
convenient. Currently the marketplace is designed for model
sharing and distribution free but it retains the potential of
pricing and gaining revenue especially for models with high
quality.

In the future, we hope to create standards or guidelines for
model input/output format definition as well as data mapping
rules. Also, we propose to add model validation procedures
when modelers upload models.
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