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Abstract

Individuals with cochlear implants (CIs) experience more difficulty understanding speech in 

reverberant environ-ments than normal hearing listeners. As a result, recent research has targeted 

mitigating the effects of late reverberant signal reflections in CIs by using a machine learning 

approach to detect and delete affected segments in the CI stimulus pattern. Previous work has 

trained electrode-specific classification models to mitigate late reverberant signal reflections based 

on features extracted from only the acoustic activity within the electrode of interest. Since adjacent 

CI electrodes tend to be activated concurrently during speech, we hypothesized that incorporating 

additional information from the other electrode channels, termed cross-channel information, as 

features could improve classification performance. Cross-channel information extracted in real-

world conditions will likely contain errors that will impact classification performance. To simulate 

extracting cross-channel information in realistic conditions, we developed a graphical model based 

on the Ising model to systematically introduce errors to specific types of cross-channel 

information. The Ising-like model allows us to add errors while maintaining the important 

geometric information contained in cross-channel information, which is due to the spectro-

temporal structure of speech. Results suggest the potential utility of leveraging cross-channel 

information to improve the performance of the reverberation mitigation algorithm from the 

baseline channel-based features, even when the cross-channel information contains errors.
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I. INTRODUCTION

Cochlear implants (CIs) enable individuals with severe deafness to regain functional levels 

of sound perception and speech intelligibility. In traditional signal processing algorithms for 

CIs, an acoustic signal is quantized into frequency bands that are mapped to electrode 

locations in the implant. The frequency-banded signals are converted to a temporal pattern 

for stimulating the electrodes implanted in the cochlea [1]. While individuals with CIs can 

generally understand speech well in quiet, their speech comprehension is degraded in 
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challenging listening environments due to the limited temporal and spectral information 

available to the CI user. This limited spectro-temporal resolution is due to the fixed number 

of electrodes in the implant and the limited temporal resolution achieved with implant 

stimulation.

Reverberant environments are one type of challenging listening environment in which CI 

users experience degraded listening performance. Reverberation is the reflection of acoustic 

waves in an enclosed environment. Reverberant signal reflections degrade the temporal 

structure of speech by altering the amplitude modulations of the signal, and thus altering the 

fundamental frequency, an important cue for speech comprehension [2]. For example, the 

structure of the speech waveform shown in Figure 1(a) is greatly distorted with the addition 

of reverberation, as shown in Figure 1(b). Reverberation also degrades the spectral structure 

of speech, mainly by distorting spectral cues used to distinguish speech phonemes and 

phoneme transitions. For example, in Figure 2, the unvoiced consonant t at 730 ms has been 

obscured by additional reverberant energy from the previous phoneme.

Due to the already limited resolution in time and frequency available to CI users, speech 

intelligibility is greatly reduced for CI users in reverberant conditions when compared to 

individuals with normal hearing [3]. To mitigate the effects of reverberation in CI users, the 

typical approach is to remove portions of the CI stimulus pattern that are estimated to be 

dominated by reverberation [4], [5]. This type of speech enhancement algorithm is 

implemented by performing an element-wise multiplication of the CI stimulus pattern with a 

binary mask. Let BM (f, t) denote a binary mask element for the time-frequency (TF) unit 

for frequency channel f at time index t. Features are extracted from the acoustic signal at 

each TF unit and thresholded to retain (BM(f, t) = 1) or discard (BM(f, t) = 0) TF units 

based on a criterion that quantifies the amount of reverberation in a given unit.

One promising reverberation mitigation strategy developed by Desmond [6] uses a machine 

learning approach to generate binary masks. The binary mask distinguishes between two 

types of active TF units based on the effects of early and late reverberant signal reflections. 

The first type of TF unit, self-masking, is characterized by early reverberant signal 

reflections that interact with a speech phoneme. The second type, overlap-masking, is 

characterized by late signal reflections that are sustained after termination of a phoneme, 

which leads to echoes of a preceding phoneme overlapping with that of the subsequent 

phoneme. Inactive TF units, referred to as quiet units, have zero amplitude, and so their 

mask values are neglible. Figure 2 shows labeled self-masking and overlap-masking TF 

units of a reverberant signal after CI signal processing. Electrode-specific classifier models 

are trained on causal features to distinguish between self- and overlap-TF units at each 

electrode, and units classified as overlap-masking are deleted from the CI stimulus pulse 

train [7].

Desmond’s approach to mitigating reverberation in CIs relies on extracting channel-based 
features for classification using information capturing the activity only within the TF units in 

the electrode channel of interest. Since the TF units of adjacent electrode channels tend to be 

activated at the same time, they are more likely to enter the self- or overlap-masking state 

concurrently. Figure 2 shows the concurrent activation of self- and overlap-masking states 
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across electrode channels in a reverberant cochlear implant stimulus pattern. Hence, we 

hypothesize that information about the state of TF units at the other electrode locations at a 

given time point, termed cross-channel information, might be useful for classification when 

determining the state of a given electrode TF unit. The TF units across all electrodes in the 

CI stimulus pattern of a reverberant signal can be considered as a reverberant mask where 

each TF unit can exist in one of three states: the two states describing the effect of 

reverberation, self- and overlap-masking, and one state for quiet. In this work, we explore 

the utility of cross-channel features extracted from the reverberant mask to improve 

classification performance in the reverberation mitigation algorithm. Also, since reverberant 

masks estimated in a real-world scenario will likely contain errors, we analyze the classifier 

robustness using cross-channel features extracted from reverberant masks with errors. These 

errors should be clustered in time and frequency, since errors observed when estimating 

reverberant masks using Desmond’s channel-based algorithm typically co-occur in spectro-

temporal space.

Due to the spectro-temporal structure of speech, a suitable framework is needed to enforce 

structured errors in reveberant masks. This framework should model the probabilistic 

dependence of each TF unit and incorporate the geometric configuration of reverberant 

masking states that occur in speech. The Ising model is a two-state graphical model that is 

well suited for modelling pairwise interactions of nearest neighbors between variables that 

have a specific geometric relationship. Variants of the Ising model have been used in a 

variety of applications, such as image denoising [8], modeling cancer cell growth [9], and 

quantifying pairwise interaction strengths in neural populations [10]. Previous work by 

Kressner et al., 2015 utilized an Ising model to systematically add structured error to binary 

masks to investigate the robustness of a CI speech enhancement algorithm in a noisy 

acoustic environment [11]. We extend the Ising model framework to develop a three-state 

model to systematically add errors to reverberant masks.

This paper is organized as follows. Section II outlines our graphical model for introducing 

structured errors in CI reverberant masks and describes the feature sets used to analyze the 

utility of cross-channel information. We present results in Section III that demonstrate the 

utility of cross-channel features from the reverberant masks to the reverberant speech 

enhancement algorithm, with reverberant mask errors introduced using our graphical model 

to assess algorithm robustness. Section IV outlines conclusions and suggestions for future 

work.

II. METHODS

A. Graphical Model for Adding Structured Errors to Rever-berant Masks

Given a map of the true reverberant state labels, referred to as the ideal reverberant mask, we 

would like to generate a non-ideal reverberant mask containing a desired amount of self-

masking and overlap-masking errors. For our application, we want to add overlap-masking 

error to self-masking states and self-masking error to overlap-masking states, since the 

mitigation strategy distinguishes between only these two states. Also, we want to avoid 

adding quiet errors to reverberant states or errors to quiet states, as it is easy to differentiate 

between quiet states (inactive TF units) and self- or overlap-masking states (active TF units). 
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Although we are not adding error to quiet states, quiet states must be included in the masks 

to maintain the spectro-temporal structure of self-masking and overlap-masking TF units 

within a speech utterance. To enforce these structured errors in a reverberant mask, we use a 

variant of the Ising model as it captures information about the relative state of each TF unit 

and the influence of nearest neighbors.

1) Model Description: The model used in this work is illustrated graphically in Figure 

3, which shows the relationship between the ideal reverberant mask and the non-ideal 

reverberant mask. Each node in the graphical model represents a TF unit in the cochlear 

implant stimulus pattern of an individual utterance or speech token. Each node can either be 

in the overlap-masking, self-masking, or quiet state, indicated by the state values 1, 2, or 3, 

respectively. Nodes in the ideal reverberant mask are represented by y = y1, …, yN , while 

nodes in the non-ideal reverberant mask are represented by x = x1, …, xN , where xi and yi 

are nodes in ideal and non-ideal reververant mask, respectively, and N is the total number of 

nodes in a reverberant mask. Edges between nodes illustrate pairwise interactions between 

nearest neighbors in x (xi and xj, where i ≠ j) and between corresponding nodes in x and y 
(xi and yi).

A set of parameters, h1, h2, h3 and η}, are used to control how the non-ideal reverberant mask 

is generated from the ideal reverberant mask. State transition probabilities, p xi yi , are 

determined by the parameters h1, h2, and h3, which control the addition of error to a node in 

the non-ideal reverberant mask, xi, when the corresponding node in the ideal reverberant 

mask, yi, is in the overlap-masking, self-masking, or quiet state, respectively. The state 
transition constants, hk, where k denotes one of the three states, can take on any real value. 

For example, if the h1 = h2 = h3 = 1, then all nodes in y will exert equal influence on the 

nodes in x and thus the non-ideal reverberant mask is likely to be identical to the ideal 

reverberant mask. Within the non-ideal reverberant mask, the influence of the state of 

neighboring nodes on the state of the current node is controlled by the coupling constant, η, 

which can take any positive value or zero. For example, if η = 0, then neighboring nodes 

have no impact on the state of the current node and uniform errors (in amounts dictated by 

h1, h2, and h3) result. If η > 0, a greater weight is placed on edges between nodes in the same 

state, encouraging clusters of similar states to appear in the non-ideal reverberant mask.

This model can be described as a Markov Random Field with the following joint distribution 

over a pair of ideal and non-ideal reverberant masks:

p(x, y) = 1
Z i, j

ψ i j(xi, x j)
i, i

ψ ii(xi, y j)
i

ψ i(xi) (1)

where i, j  indicates all edges in the graph; ψ i is a node potential, which dictates the relative 

probability of a node taking on each state; ψ i j is an edge potential, which dictates the relative 

probability for each type of state transition; and Z is the partition function which normalizes 

the distribution. For this application, the node and edge potentials are specified as follows:
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ψ i xi yi = 1 = e
h1 1 1

ψ i xi yi = 2 = 1 e
h2 1

ψ i xi yi = 3 = 1 1 e
h3

(2)

ψ i j(xi, x j) = ψ ii(xi, yi) =
eη 1 − eη 0
1 − eη eη 0
0 0 1

(3)

Each node potential vector in 2 specifies the potentials for nodes whose ideal counterparts 

are in the overlap-masking (yi = 1), self-masking (yi = 2), or quiet state (yi = 3). Using three 

node potential functions allows us to vary the influence of a node in the ideal mask on the 

corresponding node in the non-ideal mask depending on the state of the node in the ideal 

mask. Each row in the edge potential matrix in 3 specifies the relative probability assigned to 

each state (given by the columns) depending on the state of the neighboring node (given by 

the rows). The form of the edge potential used in this work allows transitions to and from the 

self- and overlap-masking states while disallowing nodes in the quiet state from transitioning 

to other states (zero entries in the matrix). This enables the model to only add self- and 

overlap-masking errors while maintaining the TF structure provided by quiet nodes.

To generate a non-ideal reverberant mask containing the desired amounts of self- and 

overlap-masking errors, a sam-ple is drawn based on the joint distribution 1. Due to the 

intractablility of computing the joint probability over a large number of nodes (since the 

number of possible state config-urations described in the partition function grows with 3N ), 

an approximate sampling algorithm, such as a Markov Chain Monte Carlo (MCMC) 

sampling technique, is used. We use the toolbox developed by Schmidt [12] to implement 

and sample from our graphical model. The desired error amounts for each state transition are 

obtained by altering the value of the respective leading state transition constant of each 

summation in the energy function (either h1, h2, or h3). Given an ideal reverberant mask, the 

joint distribution is sampled accordingly based on a specific set of model parameters to 

generate non-ideal reverberant masks. Since the state transition constants, hk, can take any 

real value, a look-up table is necessary to map from desired error amounts to the appropriate 

state transition constants.

2) Model Validation: To determine the desired state transi-tion constants to use when 

sampling the joint distribution, the constant controlling the coupling of non-ideal mask 

neighbors (η) is fixed and the state transition constants (hk) are varied. Preliminary analysis 

revealed that a coupling constant of 1 gave the smoothest error addition function when state 

transi-tion constants were varied. As an illustration, Figure 4 shows self- and overlap-

masking error rates in a single reverberant mask over a range of hk values using a coupling 

constant of −1, 1, or 2. The functional form of the self- and overlap-masking error rates 

when using an η of 1 suggests a simple sigmoidal functional mapping between desired error 

rates and hk values.
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To create a look-up table to implement the desired error amounts in self-masking and 

overlap-masking units, the state transition constants h1 and h2 were varied in the 

simulations, and the amounts of error added were computed by comparing the ideal mask to 

the non-ideal mask. The value of h3 had a neglible effect on self- and overlap-masking error 

amounts due to the form of the edge potential used in this work to avoid the addition of quiet 

errors to self- and overlap-masking states. For computational reasons, look-up table values 

were obtained from observing error addition in a 5% subset of all reverberant masks created 

from individual speech tokens from a given speech database.

To ensure that our model adds the desired error amounts to the ideal reverberant mask given 

the values determined for the look-up table, we simulated error addition in reverberant 

masks over a range of state transition constants and determined the actual error added to 

reverberant masks. Ideal reverberant masks were obtained from all speech tokens in two 

separate speech corpuses, the TIMIT speech corpus [13] and the HINT speech corpus [14]. 

Each speech corpus uses different speakers and sentence material, and thus will contain 

different structure of self- and overlap-masking TF units. Since the effect of the state 

transition constants depends on the structure of self- and overlap-masking units present in 

each reverberant mask, we analyzed the two speech corpuses separately.

Figure 5(a) and (b) shows a comparison of predicted and actual error rates of reverberant 

masks obtained from both speech databases. Averaged over all masks, the model behaves as 

desired, with the average actual error similar to the predicted error, although there is some 

bias and deviations in the amount of error added at higher overlap-masking error rates.

B. Features for Analysis

The approach taken by Desmond [6] for mitigating rever-beration in CIs used features that 

captured trends in signal energy and degradation in a single electrode channel. For each 

electrode channel, causal pulse-based features are extracted from the CI stimulus pattern. 

The channel-based feature vector contains features describing pulse amplitude, pulse 

amplitude difference, window energy, window energy difference, and variance of pulse 

amplitudes within a window. The windowed features were calculated from 30 ms windows 

of the CI stimulus pattern.

We extended the work by Desmond [6] for mitigating reverberation in cochlear implants by 

incorporating information from the reverberant mask into the electrode-specific models used 

for classification. Let x f, t represent a vector of the channel-based features developed by 

Desmond for frequency channel f at time t. We augmented the channel-based features with 

information about the state of other channels at a given time step accordingly:

c f , t = x f , t, lt\l f , t (4)

where c f, t is the new composite feature vector; and lt\l f , t represents an ordered list of 

reverberant state labels from the reverberant mask for all other frequency channels at time t, 
excluding the state label for channel f. The reverberant state labels are either extracted from 

ideal reverberant masks, and so reflect the true reverberant state labels of all frequency 

channels at that time step, or are extracted from non-ideal reverberant masks created using 
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the model described in the previous section, and so contain errors with spectro-temporal 

structure.

Either the channel-based feature vectors or the composite feature vectors are scored with an 

electrode-specific classifier. Relevance vector machine (RVM) classification models with 

radial basis function kernels are used as our electrode-specific classifiers. A binary mask is 

implemented by comparing the resulting classifier scores to channel-specific thresholds 

accordingly:

BM( f , t) =
1, if s( f , t) < τ f

0, if s( f , t) ≥ τ f
(5)

where BM (f, t) is the binary mask decision for an electrode channel f at time index t; s(f, t) 
is the channel-specific classifier score; and τ f  is the channel-specific classifier thresh-old 

value associated with a specified probability of detecting overlap-masking units in a given 

channel. The classifier thresh-old value, τ f , is chosen to maximize the removal of overlap-

masking TF units while minimizing deletions of self-masking TF units.

III. RESULTS

We tested the performance of each electrode-specific clas-sification model when given 

channel-based features only and composite features with information obtained either from 

an ideal reverberant mask or a non-ideal reverberant mask created using the model described 

in the previous section. Simulated reverberation was added to speech tokens [15] and 

channel-based features and ideal reverbant masks were extracted from the reverberant 

speech tokens. Then, errors were added to the ideal reverberant masks using the graphical 

model described in Section II-A, to generate non-ideal reverberant masks. Classification 

models were trained on 2000 feature vectors obtained from a random subset of the TIMIT 

speech corpus [13] and tested on 1000 feature vectors obtained from a random subset of the 

HINT speech corpus [14]. To evaluate the robustness of classifier performance to errors in 

cross-channel information, errors in increasing amounts were added to self- and overlap-

masking units in each reverberant mask. Classifier performance was evaluated using the area 

under the receiver operating characteristic curve, AUC. The AUC metric allows us to 

compare classifier performance regardless of the classifier operating point τ f  chosen to 

create the binary mask.

Figure 6 shows classifier performance with channel-based features only, composite features 

with ideal reverberant state labels, and composite features with non-ideal reverberant state 

labels with varying combinations of self- and overlap-masking errors added to reverberant 

masks. Features with ideal reverberant state labels significantly improved classifier 

performance across all electrodes compared to channel-based features. There was a 

significant effect of feature set employed in each classification algorithm, as determined by a 

one-way repeated measures analysis of variance (p < 0:005). Perfor-mance improvements 

were also observed with features with non-ideal state labels across most of the electrode 

locations. Based on similarity in performance trends, the electrodes can be grouped by 
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frequency ranges: electrodes 1–7, 8–16, and 17–22, for high-, mid-, and low-frequency 

channels, respectively. When non-ideal reverberant state labels were used, classifier 

performance improvements were observed in the high- and low-frequency channels, while 

minimal changes in perfor-mance were observed in the mid-frequency channels.

Figure 7 shows classifier performance for different combina-tions of self- and overlap-

masking error rates at representative electrodes locations that summarize performance trends 

in the each of three frequency ranges. Classifier performance is given as the difference 

between the AUC resulting from only channel-based features and the AUC resulting from 

addi-tional reverberant mask features containing errors. Figure 7(a) shows results in the mid-

frequency channels, with minimal changes in classifier performance observed as the state 

error combination rates varied. These results further support the previous finding that 

information of the state of other channels provides minimal benefit to overlap-masking 

classification in the mid-frequency channels. Figure 7(b) and 7(c) show results in the low- 

and high-frequency channels, respectively. Initially, with increasing amounts of self- and 

overlap-masking errors, a decrease in classifier performance can be observed. As the amount 

of added error further increased, an improvement in classifier performance is observed. 

While it might be counter-intuitive that higher amounts of errors in the reverberant masks 

confers information beneficial for overlap-masking clas-sification, this reversal in 

perfomance trends is due to the spectro-temporal structure of reverberant speech. When high 

amounts of error are added to the reverberant mask, errors in the overlap-masking units 

become saturated, creating dense regions of self-masking units resembling the spectro-

temporal structure normally observed in reverberant speech. The errors in the self-masking 

units do not attain this same level of saturation, due to the model’s limited range of error 

addi-tion demonstrated in Figure 4. The sparsely distributed self-masking errors and the 

dense overlap-masking errors create an effective error rate much lower than the implemented 

error rate, yielding improved classifier performance at high error rates. Overall, the low-

frequency channels are more robust to errors than the high-frequency channels, evident by 

the slower change in gradient in the AUC performance map in Figure 7(b) when compared 

to Figure 7(c), respectively.

IV. CONCLUSIONS AND FUTURE WORK

We investigated the utility of cross-channel state information extracted from reverberant 

masks to improve the performance of a CI reverberant mitigation algorithm. To generate 

realistic mask estimation errors based on speech structure, we adapted the Ising model to 

systematically add structured errors to reverberant masks and validated our new graphical 

model framework using data for commonly used speech databases in the literature. Results 

show that features with additional cross-channel state information, even when containing 

errors, have the potential to improve the performance of the reverberation mitigation 

algorithm over the baseline of channel-based fea-tures. A sensitivity analysis of the 

robustness of the algorithm to reverberant mask errors revealed that the benefits conferred 

with additional cross-channel state information are frequency-and state-dependent. Future 

work includes conducting speech recognition studies to investigate the most effective 

strategy for incorporating cross-channel information to the CI rever-beration mitigation 

algorithm to yield improvements in speech intelligibility.
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Fig. 1: 
The acoustic waveform for the utterance sunset in (a) anechoic and (b) reverberant 

conditions (with a reverberation time of 1.5 seconds).
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Fig. 2: 
The cochlear implant stimulus pattern for the utterance sunset in reverberant conditions.
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Fig. 3: 
Graphical model representing the relationship between an ideal reverberant mask (top 

unconnected layer) and the corresponding non-ideal reverberant mask (bottom connected 

layer). A node represents the state of a TF unit in a cochlear implant stimulus pattern, where 

a unit can exist in a quiet state, or one of two reverberant states, self- or overlap-masking. 

State-specific error probabilities are controlled by state transi-tion parameter constants, h1, 
h2, and h3, for overlap-masking, self-masking, and quiet states, respectively. The clustering 

of labels across neighboring states is controlled by the coupling constant η.
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Fig. 4: 
The amount of state-specific errors added to the non-ideal reverberant mask of a single 

speech token over a range of state transition constants, hk, using (a)η = − 1, (b)η = 1, and (c)

η = 2. Setting η to a single value facilitates a direct mapping from desired error amount to hk.
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Fig. 5: 
Plots of actual added versus (a) overlap- and (b) self-masking errors in non-ideal reverberant 

masks created from all speech tokens in two speech databases (the TIMIT speech corpus 

[13] and HINT speech corpus [14]). Each line represents a single state transition constant, h1 

or h2, used to determine self-masking (SM) of overlap-masking (OM) error added to 

reverberant masks, respectively. The ideal mapping of predicted to actual error is given by 

the dashed red line.
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Fig. 6: 
Performance of channel-specific classification models when given ideal or non-ideal 

reverberant state labels as addi-tional features. Classification performance given only 

channel-based (ChB) features is provided as a baseline.

Shahidi et al. Page 15

Proc Int Conf Mach Learn Appl. Author manuscript; available in PMC 2020 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7: 
Classifier performance measured as the difference between the area under the ROC curve 

(AUC) when classi-fiers were given channel-based features only and when given a range of 

self-masking and overlap-masking errors added to reverberant masks in addition to channel-

based features. Classifier performance for frequency-time units in frequency channel 13, 22, 

and 5, are given in the left, middle, and right plots respectively, as a representation of results 

from mid-, low- and high-frequency channels.
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