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Abstract—This study improves the performance of neural
named entity recognition by a margin of up to 11% in F-
score on the example of a low-resource language like German,
thereby outperforming existing baselines and establishing a new
state-of-the-art on each single open-source dataset. Rather than
designing deeper and wider hybrid neural architectures, we
gather all available resources and perform a detailed optimization
and grammar-dependent morphological processing consisting of
lemmatization and part-of-speech tagging prior to exposing the
raw data to any training process. We test our approach in a
threefold monolingual experimental setup of a) single, b) joint,
and c) optimized training and shed light on the dependency of
downstream-tasks on the size of corpora used to compute word
embeddings.

Index Terms—named entity recognition, word embeddings,
lemmatization, part-of-speech, neural networks, nlp

I. INTRODUCTION

Named Entity Recognition (NER) is a crucial part of various

Natural Language Processing (NLP) tasks like entity linking,

relation extraction, machine reading and ultimately Question

Answering (QA). With the recent rise of neural networks,

much emphasis has been put on high-resource languages like

English or Chinese leading to fast advancements of many

foundational tasks, in particular NER which in many areas

reaches near-human performance for these languages [1], [2].

However, for other, less-resource languages like German, their

neural NER counterparts did not attract similar attention from

the deep learning community, leading to lower performance

by a margin of up to 11% F-score.

In this paper, we look for the reasons and take steps towards

solving them. By example of German we bridge the current

gap between the performance of neural NER for different

languages and bring the performance to a new state-of-the-

art. We report evidence that the inferior quality of German text

data and its small size are the major reasons for the observed

lack of progress.

To tackle this problem, we use a larger corpus for training

the foundational word embeddings, namely Leipzig40 [3]

(including the whole German Wikipedia till 2016) combined

with the WMT 2010 German monolingual training data [4],

and contrast its use with the COW corpus [5], the largest

collection of German texts extracted from web documents with

over 617 Mio. sentences. Besides, we bring all scattered (open-

source) resources of annotated NER datasets for German

together which are to date available, prepare and merge them

to increase the amount of the final training data. This includes

the major NER datasets of CoNLL-2003 [6] and GermEval-

2014 [7], and the smaller datasets of Europarl-2010 [8] and

of EuropeanaNewspapers-2016 [9]. To this collection, we add

the dataset of Tübingen Treebank (TüBa-D/Z) [10], which to

the knowledge of the authors is utilized the first time for the

task of neural NER.

It is an increasing scientific practice to make models open

source accessible. New models appear almost daily, for exam-

ple in the Deep Learning (DL) community. As a consequence,

changing existing models and trying out different hybrid setups

is getting a scientific practice involving more and more scien-

tists. This is advantageous, since attempts to improve existing

models can contribute to their validation. However, it is often

forgotten that data is the gold of scientist: it is the availability

of limited resources that leads to significant improvements

in various areas such as CoNLL, SNLI [11] and SQuAD

[12] for the tasks NER, natural language inference and QA

and stand behind the recent success of neural networks in

NLP. Therefore it is important to consider sufficient available

resources, to annotate them according to the task and to

optimize them if necessary. This task is often time-consuming

and costly. The present paper deals with assessing the impact

of resources to NER by example of a rather low-resource

language like German. We show the influence of different

training sets on the performance of neural NER, of different

combinations of these data sets and above all of different levels

of their preprocessing. We deal with the aspect of resource

optimization with regard to lemmatization and Part-of-Speech

(POS) tagging and analyze their influence besides the training

of word embeddings and task-specific neural networks. Our

main finding is: an increase of size and quality of the (task-

independent) word embedding corpus and of the (task-specific)

training dataset leads to a significant improvement of sequence

labeling tasks like NER, which can be larger than just an

amendment of the underlying neural architecture. For the

future of neural NER by example of less- or low-resource

languages this means: collecting unlabeled corpora for training

morphology-dependent, high quality embeddings is a good

alternative to increase the performance of downstream-tasks.

The remainder of the paper is organized as follows: Section

2 reviews related work, Section 3 presents a sketch of the un-
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derlying model, Section 4 describes our threefold experimental

setup of a) single, b) joint, and c) resource optimized training,

Section 5 reports and discusses our results, and, finally, Section

6 draws a conclusion.

II. RELATED WORK

Compared to high-resource languages, comparatively less

emphasis has been put on the task of neural NER by example

of German. Noteworthy work has been done so far only by

[13] on GermEval and by [1] on CoNLL; both will be used

as baselines here. Reimers et al. [13] were among the first to

apply neural networks to German NER. However, they did not

consider GermEval in combination with CoNLL. Apart from

them, the remaining studies (predominantly conducted by non-

native speakers) consider this task as a side product of dealing

with various other languages. In this way, the state-of-the-art

on German neural NER has been established by [1] in 2016.

Gillick et al. [14] consider German as a variant in a

multilingual training setup while additionally considering the

datasets of two Germanic languages (English and Dutch) and

one Romanic language (Spanish) from the CoNLL shared task;

as a result, they reach 76.22 % F-score. However, for the single

training on the German part of CoNLL they stay below [13].

From the point of view of resource optimization, the recent

work of [15] is worth mentioning. Klimek et al. also observe

the gap between the languages and therefore carry out a

detailed analysis of the difficulties for the German NER task

using the GermEval data set as an example. They come to

the conclusion that “the task of German NER could benefit

from integrating morphological processing” [15]. To this end,

we start our analysis and apply our designed morphological

processing approach to all text corpora and NER datasets.

III. MODEL

Our neural model consist of two separately trained compo-

nents: a) foundational word embeddings, modeling the general

knowledge from large unlabeled text corpora, and b) task-

specific neural networks, modeling the domain knowledge

from the labeled training data. In this section, both components

are presented briefly.

a) Word Embeddings: The language model of continuous

space word representations (word2vec) [16] and its variations

by [17], [18] are the foundations of most ongoing research in

NLP with neural networks. Based on the context, the model

embeds words, phrases or sentences into high dimensional

vector spaces. In such a space, the semantics of associations

of words and phrases are captured to such an extent that

algebraic operations lead to meaningful relationships (e.g.

vec(king)− vec(man)+ vec(woman) ≈ vec(queen) [16]). This

property is immensely useful for our application. We use the

model of word2vec and its extension wang2vec [19] which

explores syntactic data and, thus, better suites the task of NER.

b) Neural Model: We give a brief sketch of the neural

model LSTM-CRF which we use throughout this paper. The

model is similar to the one used in [1], which goes back to

the works of [20]–[22]. We use a neural model consisting of

stacked LSTM and CRF layers. The base layer is made of two

parts: (i) a preprocessing sublayer generating the character-

based embeddings with a cell of forward and backward

LSTMs (biLSTM) [23], and the word embeddings from the

input sentence, (ii) followed by an encoding sublayer again

with a cell of a biLSTM extracting features and generating

compressed hidden representations. The prediction layer is

made of CRFs and takes the previous hidden representations

to finally produce the Named Entity (NE) tag predictions.

Let (w1, . . . , wNs
) = [wi] be the list of words of a

sentence from the input corpus of texts. Furthermore, let

(ci,1, . . . , ci,Nwi
) = [ci,l] be the list of characters of the word

wi consisting of Nwi
characters with ci,l being its lth character.

For a given word wi and its NE-tag (gold label) ti ∈ {PER,

LOC, ORG, MISC, O} the data flow within the neural network

is as follow:

char2vec(ci,l) 7→ ~ci,l (1)

biLSTM([ ~ci,l]) 7→ ~hc
i (2)

word2vec(wi) 7→ ~wi (3)

biLSTM([( ~wi, ~h
c
i)]) 7→ [ ~hw

i ] (4)

CRF([ ~hw
i ]) 7→ [ti] (5)

where char2vec is a (randomly initialized) lookup table for

embedding all characters into a corresponding vector space,

and ( ~wi, ~h
c
i ) is the concatenation of the embedding vector of

word wi and its character-based hidden representation. The

model is trained to predict the NE-tag ti for each word after

seeing the whole input sentence at once.

IV. EXPERIMENTAL SETUP

A. Datasets

In order to evaluate our model of Section III for neural NER

on German data, we put emphasis on the major datasets of

CoNLL (German part) and GermEval. However, more German

resources are available that have so far gone unnoticed in the

DL community. In Table I, we gather all these NER datasets,

which are to date freely accessible, and list them along their

number of sentences. Additionally, for each dataset the total

number of NE tokens is provided along the four categories

from the standards defined in the CoNLL shared task 2003

(CoNLL format). Table I shows that the TüBa-D/Z dataset is

the largest of these, both in terms of the number of sentences

and of tokens, ideally fitting to the needs of deep neural

networks.

TABLE I
NER DATASETS

Corpus Sent. PER LOC ORG MISC

CoNLL-2003 018,024 08,309 07,864 07,621 04,748
Europarl-2010 004,395 00514 00724 00874 00966

GermEval-2014 031,300 16,204 16,675 12,885 9,254
Europ.Newsp.-2016 008,879 07,914 06,143 02,784 00003

TüBa-D/Z-2018 104,787 55,746 28,582 32,224 12,865



a) Preprocessing of Training Data: Apart from CoNLL,

most copora had to be further processed to fit the CoNLL

format. For GermEval, we consider only the top-level NE,

refraining from nested NE to stay in line with the remaining

datasets. As a tagging scheme, we preferred the BIO (IOB2)

scheme, as it has been shown to perform better [24]. All

datasets are given in the BIO scheme, except CoNLL (IOB1)

and Europarl (IOB1), which we converted into the target

scheme.

For EuropeanaNewspapers, we take the two datasets written

in standard German orthography, namely enp DE.lft.bio and

enp DE.sbb.bio based on historic newspapers from the Dr.

Friedrich Tessmann Library and the Berlin State Library,

respectively, and omit the Austrian historic newspapers which

use a different orthography, differing heavily from the former

samples. The original dataset is not provided in the 4-column

CoNLL format, which writes each word of a sentence horizon-

tally along its lemma, POS tag and NE-label, and separates

each sentence by an empty newline. Therefore, we convert

the data into our target format by using spaCy V2.01 which

by its recent release supports preprocessing German texts by

providing language models for sentence boundary detection,

lemmatization and POS tagging.

For TüBa-D/Z, we extracted the NE-tags from the tuebadz-

11.0-conll2010 version. In the case of nested NE, we use a

filtering heuristics to extract the longest spanning NE, which

allowed us to get more robust training data, not splitting well

known entities into parts (e.g. [Goethe Universität Frank-

furt] ORG vs. [Goethe] PER Universität [Frankfurt] LOC).

We converted the tagging scheme of TüBa-D/Z to our target

format. Lastly, to allow comparisons with other NER datasets,

we mapped the NE category Geo Political Entity (GPE) to

LOC.

b) Data Splitting & Merging: For CoNLL and GermEval

we use the splits as provided in the original datasets. Further,

we split TüBa-D/Z into train/dev/test sets according to the

common ratio of 80/10/10 percentages. Due to the smaller size

of the Europarl und the EuropeanaNewspapers datasets, we did

not consider them for the first experimental setup of single

training, rather we merged them with the training data for the

second experimental setup of joint training. For this setup,

we aligned all datasets by mapping the NE category OTH to

MISC to fit to the CoNLL format. In this way, we generated

the currently largest training dataset for German NER of a size

of 133, 258 sentences.2

B. Word Embeddings

German is a highly inflected language compared to English

or Chinese whose syntax is more analytic. For languages

like German, the embedding of a single word (e.g. klein) is

dispersed across its various morphological and spelling vari-

ants (stem: klein → kleiner, kleinste, kleine, kleines, kleinen,

kleinem, Klein etc.), therefore reducing the number of its

1http://spacy.io
2CoNLL (12,152) + GermEval (24,000) + Europarl (4,395) + Euro-

peanaNewspaper (8,879) + TüBa-D/Z (83,832)

samples and weakening its information value if not being

lemmatized appropriately. On the other hand, languages with

a rather analytical syntax show such morphological variants

to a lesser extent, if at all. We assume that this difference

is the reason why their embeddings are of higher quality and

therefore their performance in downstream tasks is many times

higher than in less analytical languages. In order to mitigate

TABLE II
TEXT CORPORA

Corpus Sentences

Leipzig40-2018 040.00 Mio.
WMT-2010-German 019.36 Mio.

COW-2016 617.28 Mio.

this factor for the German language in its negative effect, we

are therefore forced to use embeddings of higher quality. In

the experimental setup of single training, we tackle this by

using more text data. Table II lists the corpora we use for

training our word embeddings. Leipzig40-2018 contains the

largest possible extract from the so-called Leipzig Corpora

Collection in 2018, which was generated by its maintainers

on demand for our study, omitting any possible duplicate

sentences. To increase the corpus size we combine this extract

with WMT-2010-German forming our so-called LeipzigMT

corpus. Besides, we consider the COW-2016 corpus, arguably

the largest text collection for German. This corpus contains

not only a textbook-like language, as found for example in

Wikipedia. Therefore, we assume that it fits well with the

NER datasets used here, which in turn come from various

sources (news, web, wikis, etc.). Both corpora are already

preprocessed and split into sentences, containing words, num-

bers and punctuations. We do not remove punctuation marks,

but separate them from words and numbers by surrounding

them with spaces to avoid the introduction of variations with

punctuation marks. In addition, as a preprocessing step, we

write all words in lowercase to account for spelling and

morphological variations.

In a third variant of our experiment we deepen the optimiza-

tion of resources by taking into account lemmatization and

POS tagging in connection with writing words in lower case.

While lemmatization increases the observation frequency of

words, POS tagging allows a more correct specification of their

syntactic roles in sentences and consequently differentiates

individual observations that are included in the calculation of

embeddings. On the other hand, lower case writing of words

removes ambiguities, as they are induced in German especially

by capitalization at the beginning of sentences. Table III shows

the variations we use for this setup.

We apply lemmatization and POS tagging in combination

with writing words in lowercase to all resources before they are

used in training. These conversions are coupled with an exact

conversion of the NER data sets in the respective experiment to

avoid mismatches and to increase the overlap with the trained

embeddings. Again, we use spaCy for these tasks and use its



language models for lemmatization and POS tagging. Listing

1 shows an example of this approach.

Listing 1. Example for Lemma & POS
raw s e n t e n c e : K l e i n e Kinde r s i n d m u t i g e r .
lemma : K l e i n Kind s e i n mutig .
lemmapos : Klein ADJA Kind NN sein VAFIN mutig ADJD . $
lemmapos lower : klein ADJA kind NN sein VVFIN mutig ADJD . $

These conversions are intended to standardize any text input

and thus to solve the above-mentioned problems in connection

with morphological variations.

TABLE III
EMBEDDING VARIANTS PER EXPERIMENTAL SETUPS

Experimental Setup Variant Features

Single Training 1 lower
Joint Training 1 lower

2 lemma
Optimized 3 lemma lower
Training 4 lemmapos

5 lemmapos lower

C. Training Parameters

To remain comparable with the baseline models on CoNLL

[1] and GermEval [13], we train the word embeddings with

dimension 1003, window size of 8 and minimum word count

threshold of 4, consequently, setting the LSTM dimension to

100 as well4. We choose dimension 25 for character-based

embeddings and the final CRF-layer, and train the network in

100 epochs with a batch-size of 1 and dropout rate of 0.5.

As an optimization method, we use the stochastic gradient

descent with a learning rate of 0.005. Apart from fitting the

LSTM dimension to 300 while using the 300-dimensional

pretrained German fastText embeddings [25], the model is

fixed throughout our experiments to these settings. Any further

sophisticated hyperparameter tuning (e.g. Population Based

Training) is left for future work.

V. RESULTS

In this section, we present the results we obtained for our

three experimental settings. As described in [24], we perform

every experiment up to 6 times, starting from different random

seeds, in order to arrive at significant final values on the

respective test dataset. We evaluate the NER results by using

the official evaluation script from the shared task of CoNLL

2003. All our experiments were run on Nvidia’s GTX 1080 Ti

GPUs.

A. Single Training

We compare our results with the current top performing

models on CoNLL and GermEval. Table IV shows the highest

results we achieve on the single training setup (first experimen-

tal setting).

3Lample et al. [1] use dimension 100 for English, but 64 for German. We
increase this dimension to close the gap.

4For word2vec, we performed an extensive search on numerous embeddings
with dimension values (50, 100, 150, 200, 300) along with minimum word
count threshold and window size values in the range of [4, 200] and [5, 10],
respectively. However, no major differences were observed in the final results.

TABLE IV
SINGLE TRAINING

Data Embeddings Features F-score [%]

CoNLL pre-trained Leipzig wang2v 78.76 [1]
GermEval pre-trained UKP2014 word2v 75.90 [13]

CoNLL self-trained LeipzigMT wang2v 80.81
CoNLL self-trained COW wang2v 83.29

GermEval self-trained LeipzigMT wang2v 81.97
GermEval self-trained COW wang2v 83.14

TüBa-D/Z self-trained LeipzigMT wang2v 88.95
TüBa-D/Z self-trained COW wang2v 89.26

We achieve an improvement throughout the datasets, out-

performing all previous results on German neural NER, and

establishing a new state-of-the-art on each of them. Increasing

the corpus size by means of the LeipzigMT corpus displays a

side-by-side performance increase on the CoNLL baseline. In-

creasing the corpus size further through the COW corpus gives

us finally the best results on CoNLL. From this perspective,

looking at the three data points for CoNLL (or GermEval),

we observe a logarithmic growth of F-score as a function

of the size of the underlying embedding corpus. Even larger

corpora than the COW corpus are needed to further support

this observation.

On the side of training data, we observe a similar but more

powerful behavior. On LeipzigMT, the increase of training data

size from CoNLL to GermEval, and then to TüBa-D/Z leads

to an improvement of +1.16% and +6.98% in F-score. For

COW this behavior re-emerges for TüBa-D/Z, closing the gap

to high-resource languages like English, and almost crossing

the 90% barrier on TüBa-D/Z. Besides, we see that the larger

train dataset TüBa-D/Z does not heavily depend on the corpus

size implying that it is beneficial to invest in annotation efforts.

We also find that wang2vec generally performs better than

word2vec. This shows that a task-specific embedding algo-

rithm is important (in our case taking into account the syntax

for NER).

Last but not least, our experiments show that keeping infor-

mation about capitalization can even downgrade the quality

of word embeddings. Likewise, we observe that integrating

capitalization information as an additional input feature to our

neural network does not lead to better results. We assume

that this is due to the inflectional morphology of German,

according to which nouns are capitalized at the beginning,

in contrast to English, where mainly proper names (named

entities) are written in this way.

B. Joint Training

As a first step towards joint training, we report the best re-

sults for fastText embeddings and compare them to UKP2014

embeddings, only using the two datasets from the baseline

models. Next, we approach the full joint setup and perform

the training on all German NER datasets. Starting from the

results of the last section, we consider only COW for this

setup. Table V shows the top results for this setup.



For fastText, we get the best results among all settings

we examined (the results on single training were worse than

for this setup). However, they are still below the ones with

UKP2014, which themselves were trained with the original

word2vec model back in 2014. This shows, that the fastText

algorithm, being a promising extension of word2vec, does

not suit well to our NER task, even though using a more

informative vector space with 300 dimensions. Hence, we

discard it for further experiments.

For COW, the transfer learning on a single task works well

and the performance for CoNLL and GermEval are improved

further, lying slightly above the single training values. It can

be noted that the final performance is more directed towards

the low performing values. We assume that it depends more on

the datasets with the lower single training performance (who

make with ∼ 37% a large part of the joint training dataset),

as due to the data merging additional variety is introduced to

the final training dataset. This makes the tasks more difficult

and brings it closer to a real-world scenario. Still, the slightly

improved performance indicates that the neural network is

generalizing, and successfully performing task-related transfer

learning on datasets, i.e. the model is improving the same task

on a heterogeneous dataset, given that it performs well on a

single large homogeneous dataset.

Overall, the results are promising; they indicate that we have

a good candidate for applying a jointly trained tagger to large

resources where the availability of labeled data is scarce.

TABLE V
JOINT TRAINING

Data Embeddings Features F-score [%]

CoNLL+GermEval pre-trained UKP2014 word2v 78.06
CoNLL+GermEval pre-trained fastText 300dim 77.00

all self-trained COW wang2v 83.47

C. Resource Optimization via Lemmatization & POS tagging

In this final setup of resource optimization, we examine

various constellations. Table VI reports the corresponding list

of results.

Intuitively, using POS tagged sentences for training word

embeddings may appear to be unusual, however, the results

show a different picture. We get results very close to the

top performances of the previous sections. A common pat-

tern across all experiments can be detected. The variation

of lemmatization on COW constantly delivers top scores

for the three major datasets, and even produces the highest

value for CoNLL across all setups. Lemmatization performs

comparatively better than lemmatization combined with POS

tagging. This shows that dispersing the semantics of a given

word across various roles it can take does not improve the

quality of the final embeddings. Rather it is better to decrease

the (redundant) varieties in the vector space by assembling in

advance all morphological variants to a common base form,

which only then is mapped to a common semantic vector.

TABLE VI
OPTIMIZED TRAINING VIA LEMMA & POS

Data Embeddings Features F-score [%]

LeipzigMT lemma 82.57
LeipzigMT lemma lower 82.94
LeipzigMT lemmapos 81.22

CoNLL LeipzigMT lemmapos lower 81.20
COW lemma 83.64

COW lemma lower 83.14
COW lemmapos 82.38
COW lemmapos lower! 82.47

LeipzigMT lemma 82.53
LeipzigMT lemma lower 82.47
LeipzigMT lemmapos 81.46

GermEval LeipzigMT lemmapos lower 81.05
COW lemma 82.87

COW lemma lower 82.53
COW lemmapos 81.96
COW lemmapos lower! 81.38

LeipzigMT lemma 88.50
LeipzigMT lemma lower 88.27
LeipzigMT lemmapos 87.85

TüBa-D/Z LeipzigMT lemmapos lower! 87.83
COW lemma 89.08
COW lemma lower 89.24
COW lemmapos 88.43
COW lemmapos lower 88.02

After lemmatization is performed, we can see that lower casing

does not lead to a notable improvement. We assume that

lemmatization already performs a good filtering of the raw

text, making lower casing almost ineffective.

Regarding the size of the corpus used for generating the

word embeddings, we come to the conclusion, that lemmatiza-

tion and POS tagging reduce the performance differences from

previous sections which depended so far on the latter size.

This confirms our assumption that the word2vec algorithm

in its original form does not suit well to morphological rich

languages. The results of this setup show that the values for

LeipzigMT and COW now lie closer to each other, making the

performance to some extent independent from the size of the

embedding corpus. This is an important finding, giving rise

to promising opportunities and applications for low-resource

languages.

VI. CONCLUSION & FUTURE WORK

In this paper, we performed a far reaching study on neural

NER by example of a low-resource language like German.

The study focused on a monolingual experimental setup.

Nevertheless, the improved results pave the way for related

languages with similar characteristics as German.

There are various ways to improve existing neural models.

Instead of just designing deeper and wider hybrid models,

we showed the high importance of gathering and merging

resources and how their careful optimization can eliminate the

lack of progress. In particular, we found out that increasing the

size and improving the quality of raw corpora for word em-

beddings by applying morphological processing like lemma-

tization & POS tagging leads to meaningful improvements.

In addition, we demonstrated the effect of transfer learning



by merging data sets for a joint training setup, which also

produced good results and makes this approach a promising

candidate for NER applications in the area of scarce resources

of annotated data sets.

Overall, we conducted the first comprehensive research

for the German NER on all existing training data sets and

resources, including the study of common pre-trained embed-

dings such as fastText. In this context, we established a new

state-of-the-art using all open source data sets for the German

NER, which exceeds the 80% F-score limit for the German

NER and closes the gap to other high-resource languages such

as English.

For future work we plan to further refine the training process

of word embedding and in particular to investigate how the

performance of downstream tasks can become more indepen-

dent of the size of embedding corpora using linguistic methods

such as lemmatization and POS tagging. To this end, we

intent to examine the recently published ELMo embeddings

[26] for German. Finally, we will examine the role of the

multilingual COW corpus for word embedding by example of

other languages such as Dutch, French, Spanish and English.

ACKNOWLEDGMENT

This work was funded by the German Research Foundations

(DFG) as part of the BIOfid project (DFG-326061700). We

plan to upload our source code and the trained embeddings

on GitHub for the research community. Special thanks goes to

G. Lample for his directions on the procedure for training the

embeddings, and to Prof. G. Heyer and F. Helfer for providing

the extract of Leipzig40-2018 corpus.

REFERENCES

[1] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural Architectures for Named Entity Recognition,” in Proceedings

of the 2016 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies.
Association for Computational Linguistics, 2016, pp. 260–270.

[2] L. Ouyang, Y. Tian, H. Tang, and B. Zhang, “Chinese Named Entity
Recognition Based on B-LSTM Neural Network with Additional Fea-
tures,” in International Conference on Security, Privacy and Anonymity
in Computation, Communication and Storage. Springer, 2017, pp. 269–
279.

[3] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building Large Monolingual
Dictionaries at the Leipzig Corpora Collection: From 100 to 200
Languages,” in LREC, 2012.

[4] C. Callison-Burch, P. Koehn, C. Monz, K. Peterson, M. Przybocki,
and O. F. Zaidan, “Findings of the 2010 joint workshop on statistical
machine translation and metrics for machine translation,” in Proceedings

of the Joint Fifth Workshop on Statistical Machine Translation and

MetricsMATR. Association for Computational Linguistics, 2010, pp.
17–53.
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