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Abstract—Recent studies incorporate Nesterov’s accelerated
gradient method for the acceleration of gradient based training.
The Nesterov’s Accelerated Quasi-Newton (NAQ) method has
shown to drastically improve the convergence speed compared to
the conventional quasi-Newton method. This paper implements
NAQ for non-convex optimization on Tensorflow. Two modifica-
tions have been proposed to the original NAQ algorithm to ensure
global convergence and eliminate linesearch. The performance
of the proposed algorithm - mNAQ is evaluated on standard
non-convex function approximation benchmark problems and
microwave circuit modelling problems. The results show that
the improved algorithm converges better and faster compared to
first order optimizers such as AdaGrad, RMSProp, Adam, and
the second order methods such as the quasi-Newton method.

Index Terms—Neural networks, training algorithm, quasi-
Newton method, Nesterov’s accelerated gradient, Global conver-
gence, Tensorflow, highly-nonlinear function modeling.

I. INTRODUCTION

Neural networks have been effective in solving high non-
linear problems and thus find many applications in solving
real-world problems such as microwave modelling [1][2]. The
neural networks can be trained from Electromagnetic (EM)
data over a range of geometrical parameters which can be used
as models for providing fast solutions of the EM behavior.
Such modelling is especially very useful where formulas
are not available or original model is computationally too
expensive [2-4].

Training is the most important step in developing a neural
network model. Gradient based algorithms are popularly used
in training and can be divided into two categories - first order
methods and second or approximated second order methods
[1]. There have been several recent advancements in first
order optimization methods such as AdaGrad [7], RMSProp
[8], Adam [9], etc. These methods are based on stochastic
(minibatch) strategies. Stochastic strategies are not suitable for
the training of high non-linear functions due to its complex
characteristics [10]. Applications such as EM simulation have

strong non-linearity and require low training errors. Therefore
second-order training methods are more suitable than first-
order algorithms. Second order methods though faster in con-
vergence compared to first-order methods, are computationally
expensive due to the calculation of the Hessian matrix. In
quasi-Newton (QN) methods, the Hessian matrix is computed
by iterative approximations. The BFGS algorithm is one of the
most popular quasi-Newton methods. Several improvements
have been proposed to quasi-Newton methods that result in
faster and better convergence [3][5]. These methods obtain
stronger local convergence than QN over a long simulation
time. Although they improved asymptotic convergence rates,
the methods are still often slow in practice.

There have been several attempts in applying second order
quasi-Newton methods for neural network optimization in
the famous deep learning framework Tensorflow. TensorFlow
enables developers to experiment with novel optimizations and
training algorithms. Recently [15] proposed the Nesterov’s
Accelerated quasi-Newton (NAQ) method which guarantees
faster convergence compared to first-order methods and the
classical quasi-Newton method. However, on implementing
the BFGS quasi-Newton method and NAQ on Tensorflow,
we observed frequent terminations caused by failure to de-
termine the stepsize. BFGS and NAQ implement linesearch
satisfying conditions such as Wolfe and Armijo respectively
for determining the stepsize. Recent studies [11]-[13] show
that linesearch methods do not necessarily tend to global
convergence. In this paper, we propose two modifications to
the original NAQ algorithm that ensures global convergence
and eliminate linesearch.

This paper attempts to study the performance of the pro-
posed algorithm in optimizing neural networks in Tensorflow.
We evaluate the performance of the algorithms on function
approximation problems and microwave circuit problems.
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II. FORMULATION OF TRAINING AND GRADIENT BASED
TRAINING METHODS

A. Formulation of Training

Let dp, op and w ∈ RD be the p-th desired ouput, obtained
output and weight vectors respectively. The error function
E(w) is defined as

E(w) =
1

|Tr|
∑
p∈Tr

Ep(w), Ep(w) =
1

2
‖dp − op‖2, (1)

where T r denotes a training data set {xp,dp}, p ∈ Tr and
|Tr| is the number of training samples. In gradient-based
algorithms, the error function is minimized by the following
iterative formula:

wk+1 = wk + vk+1, (2)

where k is the iteration count and vk+1 is the update vector,
which is defined for each gradient algorithm. The update
vector of the simple steepest gradient algorithm so-called
Back-propagation method (BP) [1] is given as

vk+1 = −αk∇E(wk). (3)

where αk is the stepsize and ∇E(wk) is the gradient at wk.

B. Gradient Based Training

1) Classical Momentum: The classical momentum method
(CM) accelerates BP by accumulating previous vector updates
in direction of persistent reduction [6]. The update vector of
CM is given by:

vk+1 = µvk − αk∇E(wk). (4)

where µ ∈ (0, 1) denotes the momentum term.

2) Nesterov’s Accelerated Gradient (NAG): Nesterov’s Ac-
celerated Gradient (NAG) method is a simple modification of
CM in which the gradient is computed at wk + µvk instead
of wk [6]. Thus, the update vector is given by:

vk+1 = µkvk − αk∇E(wk + µvk). (5)

where ∇E(wk + µvk) is the gradient at wk + µvk and is
referred to as Nesterov’s accelerated gradient vector.

3) Adaptive Gradient (AdaGrad): Adagrad [7] is an algo-
rithm for gradient-based optimization that adapts the learning
rate to the parameters, thus performing smaller updates. The
update vector is given as

vk+1,i = − α√∑k
s=1(∇E(ws)i)2

∇E(wk)i. (6)

where vk+1,i and ∇E(wk)i are the i-th elements of vk+1

and ∇E(wk), respectively. α is a global stepsize shared by
all dimensions. The default value of α is α = 0.01 [7].

4) Root Mean Square propagation (RMSprop): The RM-
Sprop optimizer [8] utilizes the magnitude of recent gradients
to normalize the gradients. Similar to AdaGrad, the learning
rate is adapted for each of the parameters. It computes a mov-
ing average over the root mean squared of recent gradients,
by which the current gradient is divided. The update vector is
given by

vk+1,i = − α√
θk,i + λ

∇E(wk)i, (7)

where

θk,i = γθk−1,i + (1− γ)(∇E(wk)i)
2. (8)

where λ = 10−8 and θk,i is the parameter of k-th iteration
and i-th element. The decay term γ and learning rate α are
set to 0.9 and 0.001 [8].

5) Adam: Adam is one of the most popular and effective
first order methods. It uses exponentially decaying average of
past squared gradients and exponentially decaying average of
past gradients [9]. The update vector is given as

vk+1,i = −α m̂k,i

(
√
θ̂i,k + ε)

, (9)

where

m̂k,i =
mi,k

(1− βk
1 )
, (10)

θ̂k,i =
θk,i

(1− βk
2 )
, (11)

here, mk,i and θk,i given by:

mk,i = β1mk−1,i + (1− β1)∇E(wk)i, (12)

θk,i = β2θk−1,i + (1− β2))∇E(wk)i)
2. (13)

where ε = 10−8 and βk
1 and βk

2 denote the k-th power
of β1 and β2, respectively. The default value of the global
stepsize α is 0.001 [13]. mk,i and θk,i are i-th elements of
the gradient and the squared gradient, respectively. The hyper-
parameters 0 ≤ β1, β2 < 1 control the exponential decay rates
of these running averages. The running average themselves are
estimates of the first (the mean) moment and the second raw
(the uncentered variance) moment of the gradient. β1 and β2
are chosen to be 0.9 and 0.999, respectively [9]. All operations
on vectors are element-wise.

AdaGrad, RMSprop, Adam are based on stochastic
strategies and hence not suitable for highly non-linear
problems [4][10]. Therefore, we focus on the methods using
the curvature information and the full batch strategy in this
paper.



6) Modified quasi-Newton Method: quasi-Newton meth-
ods utilize the gradient of the objective function to result
in superlinear quadratic convergence. The Broyden-Fletcher-
Goldfarb-Shanon (BFGS) algorithm is one of the most popular
quasi-Newton methods for unconstrained optimization [10]-
[15]. The update vector of the quasi-Newton (QN) method is
given as

vk+1 = αkgk, (14)

gk = −Hk∇E(wk). (15)

The hessian matrix Hk is symmetric positive definite and is
iteratively approximated by the following BFGS formula [13].

Hk+1 = (I− ρkskyT
k )Hk(I− ρkyks

T
k ) + ρksks

T
k , (16)

where I denotes identity matrix and,

sk = wk+1 −wk, (17)

yk = ∇E(wk+1)−∇E(wk), (18)

ρk =
1

yT
k sk

. (19)

The above BFGS method is implemented in scipy and used
in Tensorflow through the ScipyOptimizerInterface class. On
simulation, we observed that the BFGS implementation did not
terminate on convergence but terminated with precision loss
error. The error traces back to not being able to determine a
suitable stepsize. Hence this implementation is not stable and
cannot be used to obtain convergence for all problems.

Many studies have been proposed on the global convergence
of quasi-Newton methods. Li and Fukushima [12] suggested
a modified BFGS (mBFGS) method by incorporating an
additional term ξksk in calculating vector yk. This modifi-
cation confirms global and superlinear convergence without
the convexity assumption on function f. The vector yk in the
modified method is given as

yk = ∇E(wk+1)−∇E(wk) + ξksk = εk + ξksk, (20)

and ξk is defined as

ξk = ω ‖ ∇E(wk) ‖ +max{−εTk sk/‖ sk ‖2, 0}, (21){
ω = 2 if ‖ ∇E(wk) ‖2> 10−2,

ω = 100 if ‖ ∇E(wk) ‖2< 10−2.
(22)

Further, [14] suggest a method to eliminate line search and
determine the stepsize αk using an explicit formula given by:

αk = −δ∇E(wk)Tgk

||gk||2Qk

, (23)

where
||gk||2Qk

=
√

gT
kQkgk. (24)

Qk is determined by Qk = LI where L is the Lipschtz constant
of the gradient. L is chosen to be L = 100||yk||/||sk||.

The modified quasi-Newton (mBFGS) algorithm is shown
in Algorithm 1. We implemented this algorithm in Tensorflow
and the simulation results show convergence.

Algorithm 1: modified quasi-Newton Method (mBFGS)
1. k = 1;

2. Initialize w1 = rand[−0.5, 0.5](uniform random numbers) and
H1to identity matrix ;
3. Calculate ∇E(w1);
4. While (||E(wk|| > ε and k < kmax)

(a) Calculate gk = −Hk∇E(wk);
(b) if E(wk + gk) ≤ E(wk) + σαk∇E(wk)

Tgk,
then αk = 1, else αk is computed by (23);

(c) Update wk+1 = wk + αkgk;
(d) Calculate ∇E(wk+1);
(e) Update Hk+1 using (16);
(f) k = k + 1;

5. return wk;

III. PROPOSED ALGORITHM - MODIFIED NESTEROV’S
ACCELERATED QUASI-NEWTON METHOD

A. Nesterov’s Accelerated quasi-Newton (NAQ) method

Several modifications have been proposed to quasi-Newton
to obtain stronger convergence. The Nesterov’s Accelerated
quasi-Newton method [15] gives faster convergence compared
to the standard quasi-Newton methods. NAQ obtains faster
convergence by quadratic approximation at wk + µvk and by
incorporating the Nesterov’s accelerated gradient ∇E(wk +
µvk) The derivation of NAQ is briefly introduced as follows:

Let ∆w be the vector ∆w = w − (wk + µkvk), the
quadratic approximation of (1) around wk + µkvk is derived
as,

E (w) ' E (wk + µkvk) +∇E (wk + µkvk)
T

∆w

+
1

2
∆wT∇2E (wk + µkvk) ∆w.

(25)

The minimizer of this quadratic function is explicitly given by
∆w = −∇2E (wk + µkvk)

−1∇E (wk + µkvk). Therefore
the new iterate is defined as

wk+1 = (wk + µkvk)

−∇2E (wk + µkvk)
−1∇E (wk + µkvk) .

(26)

This iteration is considered as Newton method with the mo-
mentum term µvk. The inverse of Hessian ∇2E(wk +µkvk)
is approximated by the matrix Hk+1 using the update equation

Ĥk+1 = (I− ρ̂kpkq
T
k )Ĥk(I− ρ̂kqkp

T
k ) + ρ̂kpkp

T
k , (27)

where
pk = wk+1 − (wk + µkvk), (28)

qk = ∇E(wk+1)−∇E(wk + µkvk), (29)

ρ̂k =
1

qT
k pk

. (30)

Equation (27) is derived from the secant condition given below

qk = (Hk+1)−1pk. (31)



and the rank-2 updating formula [15]. Note that it is proved
that the matrix Hk+1 updated by (27) is a positive definite
symmetric matrix given as Hk is one. Therefore, the update
vector of NAQ can be written as:

vk+1 = µkvk − αkĝk, (32)

ĝk = −Ĥk∇E(wk + µkvk). (33)

We first implemented the NAQ algorithm on Tensorflow
using the scipy-BFGS as base class. Similar to BFGS it was
noticed that the algorithm implemented on Tensorflow often
terminated with precision loss error which again traced back
to failure to determine a suitable stepsize. To stabilize the
NAQ implementation, we propose two modifications to the
original NAQ algorithm. First incorporating the ξksk term and
second eliminating line search to ensure global convergence
and subsequently reduce the number of function evaluations.

B. Global Convergence

The line search methods satisfying Armijo’s condition or
Wolfe conditions does not necessarily ensure global con-
vergence[13]. In the proposed algorithm, we incorporate an
additional ξksk term in (29) of the original NAQ algorithm
to ensure global convergence[14]. Thus, the vector qk in the
modified method is given as

qk = ∇E(wk+1)−∇E(wk+µvk)+ξ̂kpk = εk+ξ̂kpk. (34)

where ξ̂k is defined as

ξ̂k = ω ‖ ∇E(wk + µvk) ‖ +max{−εTk pk/‖ pk ‖2, 0},
(35){

ω = 2 if ‖ ∇E(wk + µvk) ‖2> 10−2,

ω = 100 if ‖ ∇E(wk + µvk) ‖2< 10−2.
(36)

C. Elimination of Line Search

The original NAQ algorithm applies backtracking line
search that satisfies the Armijo’s condition as given in equation
(37).

E(wk+µvk+αkĝk) ≤ E(wk+µvk)+ηαk∇E(wk+µvk)Tĝk,
(37)

where 0 < η < 1 and default value is η = 0.001.
[14] show that line search satisfying Armijo or Wolfe

conditions does not necessarily ensure global convergence Fur-
thermore, linesearch for determining the stepsize αk involves
an additional computation of E(wk + µvk + αkĝk) at each
iteration until a suitable stepsize is determined, thereby further
increasing the number of function evaluations. Also, it not
feasible to fix αk to a constant value throughout all iterations,
as this does not ensure convergence. Hence, we use an explicit
formula (38) for determining the stepsize αk. Thus line search
is eliminated and the stepsize αk is determined using the
formula

αk = −δ∇E(wk + µvk)Tĝk

||ĝk||2Qk

, (38)

where
||ĝk||Qk

=
√
ĝT
kQkĝk. (39)

Qk is determined by Qk = LI where L is the Lipschtz constant
of the gradient. L is chosen to be L = 100||qk||/||pk||.

The proposed mNAQ shown in Algortithm 2 is implemented
on Tensorflow.

Algorithm 2: Proposed Algorithm (mNAQ)
1. k = 1;

2. Initialize w1 = rand[−0.5, 0.5] (uniform random numbers),
v1 = 0 and H1to identity matrix ;
3. While (||E(wk)|| > ε and k < kmax)

(a) Calculate ∇E(wk + µvk);
(b) Calculate ĝk = −Ĥk∇E(wk + µvk);
(c) if E(wk + µvk + ĝk) ≤

E(wk + µvk) + σαk∇E(wk + µvk)Tĝk,
then αk = 1, else αk is computed by (38);

(d) Update vk+1 = µvk + αkĝk;
(e) Update wk+1 = wk + vk+1;
(f) Calculate ∇E(wk+1);
(g) Update Ĥk+1 using (27);
(h) k = k + 1;

5. return wk;

IV. SIMULATION RESULTS

The performance of the proposed algorithm is evaluated
on two non-convex function approximation problems and two
microwave circuit modelling problems. The simulations are
performed in Tensorflow. The implementation of mBFGS,
NAQ and mNAQ are built upon scipy-BFGS and the per-
formance is compared against AdaGrad [9], RMSProp [10],
Adam [12] using Tensorflow’s built-in optimizers. The neural
network used is a simple two-layer feedforward network with
sigmoid activation function. For each example, 15 independent
runs are performed. Each trained neural network is estimated
by average, best and worst of E(wk), average computation
time T in seconds and average number of iterations. For each
example discussed below, the maximum number of iterations
kmax is chosen to be kmax = 100000 and the terminate
condition is set to ε = 1.0× 10−6. The parameter σ is chosen
to be σ = 10−3. Each element of the input and desired
outputs of the training and test data are normalized. In the
range[−1, 1]. The hyper-parameters of AdaGrad, RMSProp
and Adam are set to their default values. The simulation results
with a momentum term µ of 0.8, 0.85, 0.9 and 0.95 are further
discussed below.

A. Benchmark Problems

< Example 1 >

The function approximation problem under consideration is
given as

f(a, x, b) = 1+(x+2x2)sin(−ax2+b), |x| ≤ 4. (40)

Consider the case where a = −1 and b = 0. Thus, the
function reduces to a single input function in x given by



TABLE I: Summary of simulation results of example 1.

Algorithm µ E(w)(×10−3) Time Iteration Etest(w)(×10−3)
Ave/Best/Worst (s) count Ave/Best/Worst

AdaGrad - 59.8 / 58.6 / 60.2 40 100,000 59.03 / 57.69 / 59.48
RMSprop - 3.34 / 0.564 / 7.89 41 100,000 3.35 / 0.409 / 8.16

Adam - 4.15 / 0.324 / 14.3 42 100,000 4.14 / 0.359 / 14.53
BFGS - 15.14 / 0.650 / 31.80 4.9 3,204 15.14 / 0.650 / 30.66

mBFGS - 5.24 / 0.194 / 17.8 58 31,370 5.26 / 0.233 / 17.80
0.8 1.94 / 0.307 / 6.33 23 9,006 1.94 / 0.307 / 6.33

mNAQ 0.85 0.974 / 0.307 / 5.00 19 7,549 0.980 / 0.315 / 5.00
0.9 1.53 / 0.194 / 13.8 15 5,931 1.53 / 0.194 / 13.80
0.95 1.30 / 0.195 / 6.31 11 4,461 1.30 / 0.233 / 6.31

f(x) = 1 + (x + 2x2)sin(−x2). The training samples are
generated with an interval of 0.02 while the test samples are
generated by random sampling in the range x ∈ [−4, 4).
The training and test set consists of 400 and 10000 samples
respectively. The number of hidden neurons used is 7. Thus,
the neural network structure is given as 1-7-1. The summary
of the results is presented in Table I. NAQ failed to determine
a suitable step size and hence terminated much earlier with-
out converging. Thus, the corresponding results are omitted
from the table. The results indicate that the second order
methods, mBFGS and mNAQ converge faster with smaller
errors compared to the first order algorithms. On comparing
the second order methods, mBFGS results are comparable
with mNAQ. However, it is 12 times slower and takes almost
9.9 times more number of epochs to converge (Fig. 1) The
proposed mNAQ algorithm results in 5-7 times smaller error
rates compared to BFGS. On comparing the results of mNAQ
with different values of momentum term, µ = 0.95 is the
fastest with least number of average epochs while 0.85 has
the least average training error. Fig. 2 illustrates the output of
the function under consideration versus the output of the neural
network trained using mNAQ with a momentum of µ = 0.85.
The neural network output is in close approximation with
the original function output. Thus, we can conclude that the
proposed algorithm can be effectively used to model function
approximation problems.

< Example 2 >

We further verify the robustness of the algorithm by ex-
tending the problem in Example 1. Consider equation 40 with
two-input variables x ∈ [−4, 4) and a ∈ [−4, 4). The output
of the function is given by f(a, x) = 1 + (x+ 2x2)sin(ax2).
The training and test dataset comprises of 1680 and 3380
samples respectively. The number of hidden neurons used
is 45. The network structure is 2-45-1 with 181 parameters.
Table II shows the results of the simulation. In this example,
both BFGS and NAQ failed to determine a suitable step size
and hence terminated early without convergence. This further
confirms that line search does not tend to converge for all
cases and the modified algorithms can resolve this situation.
The results corresponding BFGS and NAQ are thus omitted
from the table. From the results, we can observe that though
Tensorflow’s built-in implementation of the first order methods

Fig. 1: The average training errors vs iteration count for
example 1.

Fig. 2: The comparison of network models of mBFGS and
mNAQ vs original test data of example 1.

ensures faster runtime, the training and test errors are large
compared to the second order methods. The second order
methods result in much smaller training and test errors. Further
comparing the results of second order methods, training and
test errors of mBFGS method is comparable with the proposed
algorithm, but mNAQ converges much faster. Fig.3 shows the
average training error versus the number of iterations. mNAQ
with µ = 0.85 has the least average training error.



TABLE II: Summary of simulation results of example 2.

Algorithm µ E(w)(×10−3) Time Iteration Etest(w)(×10−3)
Ave/Best/Worst (s) count Ave/Best/Worst

AdaGrad - 38.44 / 38.43 / 38.45 106 100,000 38.44 / 38.43 / 38.45
RMSprop - 7.71 / 5.33 / 13.95 106 100,000 7.75 / 5.40 / 14.00

Adam - 11.82 / 8.03 / 15.71 108 100,000 11.82 / 8.03 / 15.71
mBFGS - 2.71 / 0.888 / 5.13 467 84,858 2.70 / 0.900 / 5.10

0.8 2.92 / 0.544 / 4.70 375 51,135 2.92 / 0.544 / 4.70
mNAQ 0.85 2.85 / 0.491 / 4.68 373 50,923 2.85 / 0.491 / 4.68

0.9 3.03 / 0.657 / 5.86 290 39,536 3.03 / 0.657 / 5.86
0.95 4.38 / 2.00 / 6.19 157 21,295 4.38 / 2.00 / 6.19

Fig. 3: The average training errors vs iteration count for
example 2.

B. Modelling of Microwave Circuit Problems

Neural networks can find application in solving several
real-world problems such as microwave circuit modelling.
Microwave circuit modelling problems are highly non-linear
with many irregularly aligned poles in the S parameter. Thus,
modelling of these poles with very small errors is important.
In this section, we evaluate the robustness and effectiveness of
the proposed algorithm in the modelling of microwave circuits.

< Example 1 : Modelling of a waveguide filter >

In this example we develop a neural network model of
a rectangular waveguide filter (WGF) [16]. The inputs to
the neural network are the post distance d and frequency
f. The structure of the rectangular waveguide under con-
sideration is shown in Fig 4. For the training data, length
d = {3.88, 3.92, 3.96, 4.00 and 4.04mm} and for test data
length d = {3.90, 3.94, 3.98 and 4.02mm}. Frequency f
ranges between 35 to 39 GHz each containing 251 frequency
points. The number of training and test samples are 1255 and
1004 respectively. The outputs are the magnitudes of the S-
parameters |S11| and |S21|. Fig. 5 shows the training data
of the waveguide filter. The number of hidden neurons used
is 8. The simulation results are shown in Table III. BFGS

and NAQ failed to determine a suitable step size and hence
not tabulated. The results of the Adam and RMSProp are
comparable with the mBFGS and mNAQ methods. However,
the mNAQ converges faster compared to the first order and
mBFGS methods. Fig. 6 shows the average training error
over epochs. Among the second order methods, mNAQ with
µ = 0.85 performs the best the least average training error.

Fig. 4: Layout of rectangular waveguide filter (WGF).

Fig. 5: Training data set of WGF.

< Example 2 : Modelling of microstrip lowpass filter >

Further we evaluate the performance of the proposed al-
gorithm on a larger microwave circuit problem to model
a microstrip low pass filter (LPF). The dielectric constant
and height of the substrate of the LPF are 9.3 and 1mm,
respectively. Fig. 7 shows the layout of the microstrip LPF. The
inputs to the neural network are the length D and frequency f .
The outputs are the magnitudes of the S-parameters |S11| and
|S21|.The frequency range is 0.1 to 4.5 GHz. For the training
and test data, length D ranges between 12-20 mm and 13-19



TABLE III: Summary of simulation results of rectangular waveguide filter (WGF).

Algorithm µ E(w)(×10−3) Time Iteration Etest(w)(×10−3)
Ave/Best/Worst (s) count Ave/Best/Worst

AdaGrad - 73.70 / 14.90 / 105.5 69 100,000 75.51 / 16.6 / 107.1
RMSprop - 0.978 / 0.886 / 1.46 70 100,000 1.47 / 1.34 / 2.06

Adam - 1.14 / 0.874 / 3.20 70 100,000 1.61 / 1.03 / 1.85
mBFGS - 1.03 / 0.856 / 1.38 81 21,236 1.57 / 1.34 / 1.89

0.8 1.07 / 0.867 / 1.53 54 10,236 1.59 / 1.40 / 2.13
mNAQ 0.85 0.980 / 0.861 / 1.27 45 8,442 1.49 / 1.36 / 1.78

0.9 1.29 / 0.858 / 4.48 53 9,982 2.16/ 1.36 / 2.46
0.95 1.14 / 0.837 / 1.70 53 10,070 1.68 / 1.36 / 2.36

Fig. 6: The average training errors vs iteration count for WGF.

mm respectively at intervals of 2mm. Each interval contains
221 samples. The training set comprises of 1105 samples and
test set comprises 884 samples. The training and test data were
generated using Sonnet [17]. The number of hidden neurons
used is 45. Fig. 8 shows the training data of the microstrip
low pass filter. Table IV shows the summary of simulation
results. From the table, we observe that the second order
methods result in lower training errors compared to the first
order algorithms. Fig. 9 shows the average training error over
epochs. Though the training errors of mBFGS and mNAQ
are comparable, mNAQ converges much faster compared to
mBFGS. mNAQ with µ = 0.8 performs the best. Fig. 10
illustrates the output of the trained neural network with mNAQ
µ = 0.8 for two sets of lengths d = 13mm and 15mm. The
output of the trained model is close to the original test dataset.
Thus, we can conclude that the proposed algorithm can be used
effectively in practical models.

D

Fig. 7: Layout of microstrip lowpass filter (LPF).

Fig. 8: Training data set of microstrip lowpass filter (LPF).

Fig. 9: The average training errors vs iteration count for LPF.

V. CONCLUSIONS

In this paper, we focus on implementing the BFGS, mBFGS
and NAQ methods as a library in the Tensorflow environment.
However, from the results obtained above, we observe that
BFGS and NAQ does not terminate regularly while mBFGS



TABLE IV: Summary of simulation results of microstrip low-pass filter (LPF).

Algorithm µ E(w)(×10−3) Time Iteration Etest(w)(×10−3)
Ave/Best/Worst (s) count Ave/Best/Worst

AdaGrad - 26.6 / 26.4 / 26.7 112 100,000 22.4 / 22.3 / 22.5
RMSprop - 2.99 / 2.44 / 4.07 113 100,000 7.00 / 1.88 / 36.0

Adam - 4.63 / 3.67 / 5.60 137 100,000 37.0 / 3.41 / 212.5
mBFGS - 1.04 / 0.834 / 1.46 493 81,457 1.01 / 0.529 / 3.52

0.8 0.93 / 0.827 / 1.37 303 38,470 0.744 / 0.534 / 1.07
mNAQ 0.85 1.02 / 0.756 / 1.62 314 39,678 7.32 / 5.75 / 87.8

0.9 1.00 / 0.716 / 1.46 242 30,619 0.842 / 0.558 / 1.87
0.95 1.24 / 0.834 / 1.85 209 26,547 2.08 / 0.600 / 13.7

Fig. 10: The comparison of network models of mNAQ vs
original test data of LPF.

and mNAQ performed normally. The line search satisfying
Armijo’s condition fails to find the step size after a few
epochs, thus confirming that linesearch does not necessarily
lead to global convergence. However, this does not imply
that the BFGS and NAQ methods with Armijo linesearch
fails to converge. Upon adjusting the parameters appropri-
ately, the BFGS and NAQ also converges to a stationary
point. The proposed modified NAQ algorithm ensures global
convergence without linesearch and can be effectively used
in practical applications. The trained neural networks can
be used as models of microwave devices in place of CPU-
intensive EM/physics models to significantly speed up circuit
design while maintaining good accuracies. Further with the
distributed capabilities of TensorFlow to support both large-
scale training and inference, we can conclude that we can
effectively model complex problems and obtain much faster
solutions.
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